
Journal Pre-proof

Adaptive early classification of temporal sequences using deep
reinforcement learning

Coralie Martinez, Emmanuel Ramasso, Guillaume Perrin,
Michèle Rombaut

PII: S0950-7051(19)30582-9
DOI: https://doi.org/10.1016/j.knosys.2019.105290
Reference: KNOSYS 105290

To appear in: Knowledge-Based Systems

Received date : 1 March 2019
Revised date : 19 September 2019
Accepted date : 27 November 2019

Please cite this article as: C. Martinez, E. Ramasso, G. Perrin et al., Adaptive early classification of
temporal sequences using deep reinforcement learning, Knowledge-Based Systems (2019), doi:
https://doi.org/10.1016/j.knosys.2019.105290.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.knosys.2019.105290
https://doi.org/10.1016/j.knosys.2019.105290

Adaptive early classi�cation of temporal sequences using

deep reinforcement learning

Coralie MARTINEZa,∗, Emmanuel RAMASSOb, Guillaume PERRINa,
Michèle ROMBAUTc

abioMérieux, Marcy l'Etoile, France
bFEMTO-ST Institute, Univ. Bourgogne Franche-Comté, Besançon, France

cGrenoble Institute of Engineering Univ. Grenoble Alpes, GIPSA-Lab, Grenoble, France

Abstract

In this article, we address the problem of early classi�cation (EC) of tempo-
ral sequences with adaptive prediction times. We frame EC as a sequential
decision making problem and we de�ne a partially observable Markov decision
process (POMDP) �tting the competitive objectives of classi�cation earliness
and accuracy. We solve the POMDP by training an agent for EC with deep
reinforcement learning (DRL). The agent learns to make adaptive decisions be-
tween classifying incomplete sequences now or delaying its prediction to gather
more measurements. We adapt an existing DRL algorithm for batch and on-
line learning of the agent's action value function with a deep neural network.
We propose strategies of prioritized sampling, prioritized storing and random
episode initialization to address the fact that the agent's memory is unbalanced
due to (1): all but one of its actions terminate the process and thus (2): ac-
tions of classi�cation are less frequent than the action of delay. In experiments,
we show improvements in accuracy induced by our speci�c adaptation of the
algorithm used for online learning of the agent's action value function. More-
over, we compare two de�nitions of the POMDP based on delay reward shaping
against reward discounting. Finally, we demonstrate that a static naive deep
neural network, i.e. trained to classify at static times, is less e�cient in terms
of accuracy against speed than the equivalent network trained with adaptive
decision making capabilities.

Keywords: early classi�cation, adaptive prediction time, deep reinforcement
learning, temporal sequences, Double DQN, trade-o� between accuracy vs.
speed

∗Corresponding author
Email addresses: martinezcoralie.mc@gmail.com (Coralie MARTINEZ),

emmanuel.ramasso@univ-fcomte.fr (Emmanuel RAMASSO),
guillaume.perrin@biomerieux.com (Guillaume PERRIN),
Michele.Rombaut@gipsa-lab.grenoble-inp.fr (Michèle ROMBAUT)

Preprint submitted to Journal Name September 19, 2019

*Revised Manuscript (Clean Version)
Click here to view linked References

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

1. Introduction

Early classi�cation (EC) of temporal sequences with measurements collected
dynamically over time is of prime importance in time-sensitive applications.
When each measurement can be costly or when it is critical to act as early as
possible, there is a need for methods to make fast online predictions. This is for5

example the case in the �eld of health, where it is necessary to provide a medical
diagnosis as soon as possible from the sequence of medical observations collected
over time. Another example is predictive maintenance with the objective to
anticipate a machine's breakdown from its sensor signals.

Taking into consideration that some incomplete sequences can be classi�ed10

using fewer measurements than more complex ones, an EC method should make
decisions with adaptive prediction time. It should adaptively decide to classify
an incoming yet incomplete sequence now or to delay the prediction to gather
more measurements. The method should balance its decision between two com-
petitive objectives: classi�cation earliness and accuracy.15

1.1. Related work

As opposed to static data, temporal sequences are dynamic data that can
be sequentially completed with new measurements over time. In the literature,
classi�cation on other types of dynamic data has been proposed by several
authors which turned this problem as a sequential decision problem.20

Formulated as "learning when to stop thinking and do something" in [1],
this problem was tackled by reinforcement learning (RL). The authors were
interested in "anytime algorithms" that can be interrupted at any time and for
which we assume that the longer they "think", the better the quality of their
response. In particular, the authors seek to build a policy that decides if an25

anytime algorithm should continue thinking or if it should return its current
best answer. Their approach is policy-gradient-based and uses REINFORCE
algorithm from [2].

In [3], a Markov decision process (MDP) is formulated for the problem of
text classi�cation for which it is not always necessary to read an entire document30

to classify its content. By RL using approximate policy iteration, the authors
propose a method that either continues reading a document sentence by sen-
tence, or classi�es it (using a support vector machine). Their method is shown
to better accomodate to small training datasets than standard non-sequential
classi�ers.35

The approach proposed in [3], working on a single feature (the sentence),
was extended to multiple features by the same authors in [4]. The key idea is
that some data points can easily be classi�ed using few features while others
would require more features to achieve an accurate classi�cation. This can be of
practical interest in various domains. In medicine for example, online symptom40

checking for disease diagnosis requires such an algorithm to �nd key positive
symptoms. REFUEL algorithm proposed in [5] is a policy-based method using
REINFORCE which encourages a RL agent to discover positive symptoms more
quickly. The authors incorporated a potential-based reward shaping in order to

2

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

adapt the reward according to the observations collected by the agent before45

and after making an action.
The problem of costly feature acquisition in the medical domain was also

addressed in [6] who proposed to optimize the trade-o� between classi�cation
accuracy and the total feature cost with deep reinforcement learning (DRL)
based on Double Deep-Q-Network (DDQN) algorithm from [7]. The authors50

demonstrated the capability of their algorithm to solve binary classi�cation
problems e�ciently.

The trade-o� between classi�cation accuracy and the prediction time is also
of paramount importance in EC applications. Also called early prediction, this
problem has been solved using sequential decision methods by various non-DRL55

approaches in [8, 9, 10, 11, 12, 13].
We proposed in [14] a recent previous work on a DRL approach using online

Deep-Q-Network (DQN) algorithm for the multi-class EC problem. Compared
to standard EC approaches, this approach o�ers an end-to-end learning of both
the features in the sequences and the decision rules. The end-user thus does not60

need to perform feature engineering. The simultaneous optimization of both
classi�cation accuracy and earliness relies on a trade-o� speci�ed by the user in
terms of a reward function dedicated to the EC problem.

The framework proposed in [14] applies DQN algorithm in its original form,
i.e. in online learning with successive repetitions of 1) interaction collection65

between the agent and the environment, and its storing in the agent's memory,
and 2) update of the agent's policy. It makes the agent's memory unbalanced.
Indeed, after each acquisition of a new measurement, the agent can either predict
a label or wait for more data. For a classi�cation decision at time k, the agent
collected k measurements in the sequence and the memory has been �lled with70

k − 1 delay actions against one classi�cation action. The delay action is over-
represented. Moreover, since most actions terminate the acquisition process, it is
generally unlikely for the agent to reach the end of a sequence. Early prediction
times are over-represented as well. The unbalanced memory in both prediction
times and actions can lead the agent to learn on sub-optimal interactions and75

disturb or slow down its overall training.

1.2. Contributions

The contributions we detail in the present paper are the following.
(1) We frame EC as a POMDP �tting the two competitive objectives of

classi�cation earliness and accuracy. We experimentally compare two de�nitions80

of the POMDP based on delay reward shaping against reward discounting.
(2) In order to solve the POMDP and train an EC agent, we adapt DDQN

algorithm from [7] in two versions, online learning and batch learning, depending
on whether the EC application comes with a �nite training dataset or can collect
new training data over time.85

We introduce three modi�cations to cope with the aforementioned unbal-
anced memory issue. The modi�cations are the following: we make use of an
adapted prioritized sampling and prioritized storing when performing experience
replay and we simply rede�ne episode initialization.

3

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

We experimentally show that these modi�cations improve the agent's train-90

ing in terms of accuracy against speed and make the proposed algorithm more
robust to hyper-parameters setting.

(3) In experiments, we demonstrate that static naive deep neural networks
trained to classify at static times are less e�cient in terms of accuracy against
speed than equivalent networks trained with RL and bene�ting from decision95

making capabilities on adaptive prediction times.
The remainder of the paper is organized as follows. Sec. 2 gives background

knowledge of RL terminologies and algorithms. In Sec. 3, we de�ne the EC
problem. Sec. 4 and Sec. 5 introduce the method by de�ning and solving a
partially observable Markov decision process dedicated to EC. In Sec. 6, we100

carry out experimental evaluations on the method. Sec. 7 concludes the paper.

2. Background of deep reinforcement learning

2.1. Reinforcement learning

In RL, the objective is to solve a decision making process characterized by
an agent interacting in an unknown environment through trial and error. In105

each state s from the state space S, the agent can pick some action a in the set
of possible actions A. The choice of action a is dictated by its policy π such
that a = π(s). As a response, the agent receives a reward r = R(s, a) and moves
toward next state s′ = T (s, a) with R the reward function from the environment
and T its transition model. The interactions < s, a, r, s′ > between the agent110

and the environment go on until the agent reaches a terminal state leading to
the end of an episode.

At all time steps t ∈ N+, the agent seeks to choose actions leading to maximal
return de�ned as the sum of future discounted rewards

∑∞
k=0 γ

krt+k. γ ∈ [0, 1]
is a discount factor valuing immediate rewards rather than future rewards. The115

optimal policy π∗ leads to the maximal return.

State value. The value of a state s ∈ S is de�ned as the expectation of return
the agent can hope to get starting from that particular state s and following its
policy π.

Vπ(s) = Eπ[

∞∑

k=0

γkrt+k|st = s]

Action value. The action value (or Q-value) of a state s ∈ S conditioned on an
action a is de�ned as the expectation of return the agent can hope to get by
picking action a in state s and then following its policy π.

Qπ(s, a) = Eπ[
∞∑

k=0

γkrt+k|st = s, at = a]

Bellman equation allows to decompose the action value as the sum of immediate
reward plus discounted action value of the following state.

Qπ(s, a) = Eπ[rt + γQπ(st+1, at+1)|st = s, at = a]

4

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

If the optimal action value function de�ned as Q∗(s, a) = maxπ Qπ(s, a) is
known, then an optimal policy can be inferred by acting greedily over the Q-
function such that π∗(s) = arg maxaQ

∗(s, a).
To �nd an optimal policy, we can use two families of methods [15]: policy-120

based methods approximate the policy function π directly while value-based
methods approximate the action value function Qπ(s, a) and act greedily over
it to derive the policy.

2.2. Deep-Q-Network

In [16], the authors seek to approximate the optimal action value function125

Q∗ by a deep neural network Q(s, a,Θ) with parameters Θ. Through a gradi-
ent descent on mini-batches of interactions {< s, a, r, s′ >} and using Bellman
equation, the DQN algorithm minimizes the loss function from Eq. 1 using two
strategies:

L(Θ) = (r + γ arg max
a

Q(s′, a,Θ−)−Q(s, a,Θ))2 (1)

• Experience replay allows to sample mini-batches of past interactions130

{< s, a, r, s′ >} from a replay memory to perform stochastic gradient
descent. Samples within a batch are likely to come from independent or
remote interactions further reducing correlations in the neural network
updates than the original Q-learning algorithm.

• Q-learning targets are computed with a separate Q-network Q(s, a,Θ−)135

whose parameters Θ− are updated periodically to remove correlations and
improve convergence of the algorithm.

Double Deep-Q-Network. In order to overcome DQN overestimations of the ac-
tion values, the authors in [7] introduce DDQN algorithm and modify the loss
function to optimize in Eq. 2.140

L(Θ) = (r + γQ(s′, arg max
a

Q(s′, a,Θ),Θ−)−Q(s, a,Θ))2 (2)

3. Problem de�nition

Let X = (x1, ..., xT) ∈ Rp×T be a temporal sequence with maximal length
T ∈ N+. At each time step t ∈ [1, T], the measurement xt is a vector of p ∈ N+

features. When the temporal sequence is not fully acquired, we say that we
observe a partial temporal sequence X:t = (x1, ..., xt) ∈ Rp×t with t ≤ T . We145

suppose we have a training dataset D = {(Xj , lj)}j=1..n with n pairs of complete
temporal sequences X and their associated label l ∈ L, with L the set of labels.

Classi�cation. A (static) classi�er is a mathematical function fclassif mapping
from a temporal sequence X to its label l such that fclassif : {X} → L.

5

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Early classi�cation. We de�ne an early classi�er as a mathematical function
fearly mapping from a temporal sequence X to a label l and predicting the
optimal earliest time step t∗ ∈ [1, T] to perform classi�cation, such that fearly :
{X} → L × [1, T]. The early classi�er seeks to optimize the two competing
scores of classi�cation accuracy and earliness:

t∗ = arg max
t∈[1,T]

Acc(fearly(X:t), l) + Earliness(t)

These two objectives are often competitive since for two time steps t1, t2 ∈150

[1, T], an earlier time step t1 < t2 gets a larger score of Earliness while its score
of Acc can decrease due to the lack of information in Xt1 in comparison to Xt2 .

4. Early classi�cation as a Partially Observable Markov Decision Pro-

cess

We de�ned an early classi�er as a model mapping from a temporal sequence155

X to a label l and predicting the optimal earliest time step t∗ ∈ [1, T] to perform
classi�cation. In real-life applications, we do not observe the complete sequence
X but rather sequentially collect new measurements xt ∈ Rp at each time step
t ∈ [1, T]. We focus on applications which do not seek to directly predict optimal
time step t∗ ∈ [1, T] for classi�cation but rather decide online, at each time step160

t, to perform classi�cation on the partial sequence X:t or to delay classi�cation
in order to get additional measurements.

To move closer to this objective, we frame EC as a sequential decision mak-
ing problem represented by a POMDP. We de�ne the POMDP by the tuple
{S,A, T,R,O, γ} where S is the state space, A is the action space, T is the165

transition model, R is the reward function, O is the observation space and γ is
the discount factor. Each element of the tuple is introduced below.

Agent. The mathematical function for EC that we seek to optimize becomes
the policy of an agent which will interact and train within the POMDP.

States. S is the state space. A state s ∈ S is characterized by the tuple170

s = (X, l, t) with (X, l) ∈ D a pair of complete temporal sequence X and
its associated label l from the training dataset and with t ∈ [1, T] the number
of time steps observed in the sequence. Since the objective is to predict labels
l ∈ L as early as possible, in real-life applications we do not have access to the
full state information. The label and future measurements are unknown and175

the Markov decision process is said to be partially observable. Such models
assume that we cannot directly observe the underlying state but instead receive
an incomplete or noisy observation of that state.

Observations. O is the observation space. An observation o of a state s =
(X, l, t) is the partial sequence of measurements from X collected until time t180

such that o = X:t.

6

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Actions. A is the action space: A = Ac ∪ ad, with ad the action of delaying the
prediction and with Ac the set of classi�cation actions: Ac = L.

Dynamics. T : S×A −→ S is the transition model. In real-life EC applications,
the acquisition of observations is often costly and has to be shortened as much
as possible. Once the system decides to perform classi�cation, observations are
no longer collected. The transition model T is de�ned by:

T ((X, l, t), a) =

{
terminal if {a ∈ Ac} ∪ {a = ad ∩ t = T}
(X, l, t+ 1) if a = ad

Rewards. R : S × A −→ R is the reward function. Let R(s, a) be the reward
for taking action a in state s. Rewards should encode the objective we want the185

model to reach, speci�cally earliness and accuracy in the EC problem.
We choose to reward classi�cation actions according to the accuracy of

the predicted label. When the predicted label matches the reference label,
we give a positive reward R((X, l, t), a = l) = +1. On the contrary when
the predicted label di�ers from the reference label, we give a negative reward190

R((X, l, t), a 6= l) = −1.
We point out that an objective can be encoded by several reward functions.

For a same objective of fast prediction using as few features as possible, the
agent is rewarded positively with a score +1 if the classi�cation is correct in [5]
while it receives null reward for correction classi�cation and negative rewards195

for incorrect classi�cations in [6].
To encode the objective of earliness, the following strategies are possible:

• We could reward the agent based on classi�cation actions only and use
a discount factor γ < 1 to motivate the agent to get early rewards. The
reward function is then de�ned by

R((X, l, t), a) 7−→





+1 if a ∈ Ac and a = l
−1 if a ∈ Ac and a 6= l
0 if a = ad

• Or we could shape the rewards for delay with a score depending on time.
If the rewards for delay are given all at once at the time of classi�cation,
the agent will get sparse rewards which are often di�cult to train on as200

explained in [15]. To avoid sparse rewards, the agent will be given negative
rewards at each decision of delay instead of a single reward at the end of
delay: R((X, l, t), ad) = −λ × c(t) with c : [0, T] → R+ the cost function
of delaying the prediction at time t, a monotonic non-decreasing function
of time. λ ∈ R+ is a parameter setting the trade-o� between the two205

objectives. The more important earliness is in comparison to accuracy,
the larger λ should be. The will to compromise is application-dependent
and the user can set λ to his preference.

We want the penalization for delay to take into account the amount of
information the agent has collected so far. The idea is that the more210

7

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

observations and knowledge the agent has about the sequence, the worst
it is to delay. We want a penalty increasing in time t, in the form of κt

with κ > 1. We normalize the reward function for delay so that it is
bounded independently of the sequence maximal length T .

The reward function is then de�ned by:

R((X, l, t), a) 7−→





+1 if a ∈ Ac and a = l
−1 if a ∈ Ac and a 6= l
−λ ∗ κt/(κT − 1) if a = ad

If available, including domain knowledge into the reward function can guide215

the agent towards a better or faster learning.

Discount factor. γ ∈ [0, 1] is the discount factor. When γ < 1, rewards are
discounted and more importance is given to immediate rewards. For episodic
environments with short horizons, the cumulative reward is �nite and γ can be
set to 1. Environments for EC have horizon of size T which is the maximal220

length of sequences.

4.1. POMDP models

We de�ne two models of POMDP for EC, based on delay reward shaping or
reward discounting:

• Mshaping = {S,A, T,R,O, γ} is a POMDP where delay actions are re-225

warded negatively over time with R((X, l, t), ad) = −λ ∗ κt/(κT − 1),
∀t ∈ [1, T] and rewards are not discounted with γ = 1.

• Mdiscount = {S,A, T,R,O, γ} is a POMDP where rewards are discounted
with γ < 1. The action of delay is not rewarded and the agent col-
lects rewards (positive or negative) from classi�cation actions only with230

R((X, l, t), ad) = 0,∀t ∈ [1, T].

4.2. Speci�cities of the POMDP models

All but one of the actions terminate the episode. As de�ned above, actions are
either to predict a label l ∈ L or to delay prediction: A = Ac∪ad. Since we ter-
minate the acquisition of new observations once the classi�cation is performed,235

all but one of the actions lead to a terminal state. The probability of reaching
time t in an episode tends to zero as t increases:

P (st 6= terminal) = P (a1 = ad)︸ ︷︷ ︸
≤1

P (a2 = ad)︸ ︷︷ ︸
≤1

... P (at−1 = ad)︸ ︷︷ ︸
≤1

=

t−1∏

j=1

P (aj = ad)︸ ︷︷ ︸
≤1

Actions of classi�cation are the rarest. When the agent classi�es at time t, the
episode is composed of t−1 actions of delay for one action of classi�cation. This
results in getting interactions that are mostly composed of delay action.240

8

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

5. Learning the action value with a deep neural network

The action space being �nite and small, we choose to learn the action value
function and de�ne the agent's policy π by acting greedily over the action val-
ues. The observation space composed of temporal sequences is continuous and
therefore the action value function cannot be represented by a �nite table with245

action values on all pairs of observations and actions.
We approximate the action value function Q(s, a) with a deep neural network

Q(o, a,Θ) with parameters Θ de�ned over the set of observations O. From the
POMDP de�nition and by approximating the action value with a deep neural
network, the method simultaneously learns optimal classi�cation patterns in250

the sequences and optimal strategic decisions for the time of prediction. The
end-to-end learning capabilities of neural networks set the user free from a prior
step of feature engineering and de�nition of prediction rules.

We train the neural network Q(o, a,Θ) with DDQN algorithm from [7] to
�nd optimal parameters Θ. In the following we propose two versions of the255

algorithm to address the speci�cities of the EC POMDP, in online learning and
batch learning, depending on whether the EC application comes with a �nite
training dataset or can collect new training data over time.

5.1. Batch learning

Since many real-life EC applications come with a �nite training dataset,260

their underlying POMDPs can generate a �nite number of episodes to train on.
Unlike video games traditionally used in DRL and for which the emulator can
generate an in�nite number of episodes, these applications cannot collect new
data along training. For example, in microbiological diagnostics, data acquisi-
tion is expensive because of the experiments it requires to conduct, and it is265

common to be limited in the amount of data that can be collected.
For those applications with a relatively small training dataset, we propose

to adapt DDQN algorithm in batch learning, i.e. by decoupling data collec-
tion from the agent's training. We argue that all possible training interactions
between the agent and the environment can be simulated and stored in an ex-270

haustive replay memory before updating the agent's policy.
We present in Algo. 1 the adaptation of DDQN to EC in batch learning. The

idea is to �rst build an exhaustive replay memory with all possible interactions
and then use prioritized sampling proposed in Sec. 5.1.1 to cleverly learn from it.
The advantage of a batch version of the DDQN algorithm is to set the agent free275

from its traditional exploration-exploitation dilemma, leading to fewer hyper-
parameters to tune.

5.1.1. Prioritized sampling

DDQN uses a stochastic gradient descent where a mini-batch of interactions
is uniformly sampled from the replay memory to update the neural networks280

parameters and minimize the loss function from Eq. 2. A speci�city of the
POMDP for EC is the over-representation of the delay action ad compared to
prediction actions Ac. With DDQN uniform sampling in the replay memory,

9

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

batches of interactions will be highly unbalanced and the agent will harldy learn
from prediction interactions.285

Related work. Some work in the literature propose a more e�cient management
of the agent's replay memory. In [17], the authors propose prioritized experience
replay (PER), a method which seeks to sample "important" interactions more
frequently than "non important" interactions. The latter allows to learn on
di�cult or rare interactions on which the agent struggles to predict accurate290

Q-values, by re-sampling them more often.
In [18], the authors force that a fraction of the mini-batch is associated to

interactions with positive rewards. In others words, they give higher priority to
interactions with positive rewards and they seek to learn more e�ciently from
these rewarding interactions.295

In this work, we leave aside PER [17] and we propose a less expensive solution
inspired by [18]. We choose to exploit the fact that the interactions between the
agent and the environment can be easily categorized into subgroups, according
to the type of actions selected.

Contrary to [18] where sampling is prioritized according to the scalar rewards300

received in the interactions, we propose to use prioritize sampling by focusing
on particular state�action pairs.

Strategy. We adapt DDQN with a simple strategy where a fraction of interac-
tions within a mini-batch are forced to come from prediction actions and where
the sampling is forced to be balanced among di�erent labels in order to be305

robust to unbalanced training datasets.
From a replay memory M and for each label l ∈ L, we sample a random

mini-batch of interactions {< o, a, r, o′ >} ∼ M such that the observation o is
associated to a temporal sequence X of label l, with fraction µ having a ∈ Ac.
µ ∈ [0, 1] is the sampling parameter.310

10

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Algorithm 1 DDQN algorithm applied to early classi�cation in batch lerning

Require: Environment described by a POMDP {S,A, T,R,O, γ} as de�ned in
Sec. 4.1 and corresponding training dataset D = {(Xj , lj)}j=1..n.
Sampling parameter µ ∈ [0, 1] and DDQN hyperparameters from [7].

Ensure: Action value function Q(o, a,Θ) with optimal weights Θ∗

Store all possible interactions in replay memoryM:
for j = 1 ... n do
Sample a training pair (Xj , lj) ∼ D.
for t = 1 ... T do

Compute observation o = Xj
:t

for a ∈ A do

Compute reward r = R((Xj , lj , t), a)
Compute next observation o′ = T ((Xj , lj , t), a).
Store interaction < o, a, r, o′ > into replay memoryM.

end for

end for

end for

Randomly initialize weights Θ. Set Θ− = Θ.
for step = 1 ... M do

Sample mini-batch of interactions {< o, a, r, o′ >} ∼ M using prioritized

sampling from Sec. 5.1.1 with sampling parameter µ.
Update weights Θ with gradient descent on loss function from Eq. 2 com-
puted on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ− = Θ

end for

5.2. Online learning

Solving EC with RL can also be performed in online learning with successive
repetitions of data collection and optimization of the policy. This is suitable for
EC application allowing for streaming or multi-phases data collection. For ex-
ample in predictive maintenance, the machine sensor signals are daily monitored315

and the training dataset for this application could regularly be increased.
To �t to the EC POMDP speci�cities, we propose in Algo. 2 an adapta-

tion of DDQN algorithm in online learning, with a simple episode initialization
strategy (Sec. 5.2.2), prioritized sampling (Sec. 5.1.1) and prioritized storing
(Sec. 5.2.1).320

5.2.1. Prioritized storing

To avoid possible overwriting of the delay action ad in the replay memory,
we propose to allocate a fraction of the memory to prediction actions. With
this strategy, delay actions will not be stored with the same importance than
prediction actions and will be more often replaced.325

11

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

5.2.2. Episode initialization

To answer our objective of fast decision making, the agent has little interest
in postponing prediction and reaching the end of temporal sequences. Therefore
a static episode initialization at time t = 1 would cause early prediction times
to be over-represented in the replay memory. In Algo. 2, we adapt DDQN with330

a random episode initialization. We start an episode at random time in the
temporal sequence to compel the agent to explore and train on all times of the
sequence acquisition.

Algorithm 2 DDQN algorithm applied to early classi�cation in online learning

Require: Environment described by a POMDP {S,A, T,R,O, γ} as de�ned in
Sec. 4.1 and corresponding training dataset D = {(Xj , lj)}j=1..n.
Sampling parameter µ ∈ [0, 1] and DDQN hyperparameters from [7].

Ensure: Action value function Q(o, a,Θ) with optimal weights Θ∗

Randomly initialize weights Θ. Set Θ− = Θ. Initialize replay memoryM.
for episode = 1 ... M do

Initialize episode observation ot with episode initialization from Sec. 5.2.2
while episode not terminated do
The agent receives observation ot and picks action at =
arg maxa∈AQ(ot, a,Θ) with probability ε or random action with
probability 1− ε.
The environment computes reward rt = R((X, l, t), at) and next obser-
vation ot+1 = T ((X, l, t), at).
Store interaction < ot, at, rt, ot+1 > into replay memoryM according to
prioritized storing from Sec. 5.2.1.
Sample mini-batch of interactions {< o, a, r, o′ >} ∼ M according to
prioritized sampling from Sec. 5.1.1 with sampling parameter µ.
Update weights Θ with gradient descent on loss function from Eq. 2
computed on the mini-batch {< o, a, r, o′ >}.
Periodically update Θ− = Θ
Increment time t = t+ 1

end while

end for

Batch learning or online learning?. We point out that the two versions of the
algorithm can be combined in the speci�c case where the user has a �nite training335

dataset at �rst and will later collect additional training samples. It is possible
to �rst build an exhaustive memory from the �nite available training dataset,
learn a policy in batch learning, and then update the policy in online learning
while processing newly collected data as they arrive.

6. Experimental evaluation340

The experimental objectives are threefold: (1) We evaluate the e�ect of delay
reward shaping against reward discounting in the de�nition of the POMDP.

12

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Figure 1: Distribution of labels a, b,
c, and d among the sets of training,
validation and testing.

a
b
c
d

-30 -20 -10 0 10 20 30

tsne1

-60

-40

-20

0

20

40

60

ts
ne

2

tsne1 vs. tsne2

Figure 2: Two-dimensional t-SNE embedding
of the temporal sequences from the training set.

(2) We compare early classi�ers with adaptive prediction time capabilities to
equivalent naive deep neural networks trained to classify at static times. (3) We
assess performance gain brought by our speci�c adaptation of DDQN algorithm.345

6.1. Dataset

Data. We conduct experimental evaluations on a dataset collected from a pri-
vate project carried out by bioMérieux company. Data are multivariate time
series derived from living organisms. The EC application is related to an in-
vitro microbiological diagnostic and seeks for rapid categorization of the living350

organisms described by MTS. The 3155 temporal sequences X = (x1, ..., xT)
have length T = 77 and each measurement xi∈[1,T] is a 5-dimensional array.
With previous notations from Sec. 3, X ∈ R5×77.

This real-life example can be generalized to industrial problems with the
same EC objective on multivariate or univariate temporal sequences. In previous355

work [14], we compared the RL framework to state-of-the-art methods on the
UCR archive from [19] which is widely used as benchmark for classi�cation and
clustering of time series. We point out that the autonomous learning of features
for decision-making and classi�cation makes the proposed method applicable to
data on which we have no features expertise. Indeed, we did not have any prior360

knowledge on these public datasets.

Labels. Sequences are associated to labels a, b, c, and d depicting four classes of
living organisms. Fig. 1 gives the distribution of the labels among the training,
validation and testing sets.

t-SNE projection. In Fig. 2, we represent the training set with a two-dimensional365

t-SNE embedding of the (complete) temporal sequences using algorithm from
[20]. We observe overlapping clusters of points from di�erent labels. Samples
from class b and c are often mixed among the same clusters of points. This il-
lustrates the complexity of the dataset in which sequences from di�erent classes
are very similar due to the biological variability in the dataset.370

13

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

6.2. Evaluation pipeline

In Sec. 4, we framed EC as a sequential decision making problem de�ned by
a POMDP. We proposed to solve the POMDP by training an agent with RL in
Sec. 5. In this section, we introduce metrics and procedures used to train the
agent, select optimal policies and compare performance between trainings.375

6.2.1. Hyper-parameter setting

In Sec. 5, the agent is de�ned by its policy whose model is a deep neural
network Q(o, a,Θ) with weights Θ trained with DDQN algorithm. The deep
neural network training depends on a set of hyper-parameters to de�ne. The
combinatorial space of the hyper-parameters being too large, we cannot perform380

an exhaustive search.
To �ne-tune the method, we randomly select a set of hyper-parameters in a

restricted combinatorial space near optimal parameters presented in [16]. We
dedicate one agent per setting of hyper-parameters. Agents are trained sepa-
rately between all settings.385

6.2.2. Training procedure

When trained under supervision (for static classi�cation or regression tasks),
deep neural networks are updated until the loss function stops decreasing on
the validation set. The selection of the best deep neural network model is also
straightforward: the selected model is the one with highest performance on the390

validation set. When trained with reinforcement, the loss function is based on
an approximation of future cumulated rewards and is typically not used to stop
the training procedure or to select optimal policies either.

Instead, for each hyper-parameter setting of the method, we independently
train an agent for a �xed number of episodes in the environment, until it reaches395

100000 updates of its deep neural network weights Θ. We simultaneously eval-
uate the agent of each setting on the validation set every 1000 updates of Θ.
Fig. 3 reports the evaluations performed during an agent's training.

6.2.3. Evaluation metrics

Accuracy. We de�ne the agent accuracy Acc on a dataset D = {(Xj , lj)}j=1..n

as

Acc =
n∑

j=1

1(fclassif (Xj) = lj)/n

Time of prediction. The prediction time tj,pred of the agent on a sequence
(Xj , lj) ∈ D is de�ned as the earliest time step for which the action value
of a classi�cation action outreaches the action value of delay, such that:

tj,pred = min
t∈[1,T]

{arg max
a∈A

Q(Xj
:t, a) ∈ Ac}

14

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

The prediction time tpred of the agent on a dataset D is the mean of prediction
times on all sequences from the dataset, such that:

tpred =
n∑

j=1

tj,pred/n

6.2.4. Optimal policy selection400

In [16], the authors evaluate the agent's policies over training and select the
optimal policy as the one with the highest score of reward. In the special case
of EC for which two competitive objectives are optimized one against the other,
the optimal policy selection can be application-dependant.

Among all trainings, each one being dedicated to a set of hyper-parameters,405

we select the policy with highest Acc on the validation set for several ranges
of tpred (as illustrated in Figs. 4, 6 and 7 where the top-5 optimal policies
are represented). We then have as many optimal policy candidates as ranges
of tpred considered. Among all candidates, we can then choose the optimal
policy as the one satisfying the most our will to compromise between accuracy410

and speed. The optimal policy re�ects the best performance achieved by the
method during its �ne-tuning.

6.2.5. Training evaluation

Best performance. To assess an agent best performance during its training, we
compute max Acc, as illustrated in Fig. 3.415

Mean performance. To globally assess an agent performance over its entire
training, we compute mean Acc and mean tpred over all the agent's evalua-
tions, that is to say on the 100 policies that were evaluated every 1000 updates
of Θ, as illustrated in Fig. 3. A large score of mean Acc means that the agent
was globally highly accurate all along its training.420

Stability. We measure the stability of a training through the variation in Acc
and tpred with the standard deviation metric (stdev), as illustrated in Fig. 3.
A high score of stdev Acc means that the policies evaluated along training were
not equally accurate and very unstable.

6.2.6. Methods comparison425

Best performance. When comparing several methods, we seek to identify which
one gave the best results. Thus we compare the optimal policies results between
each method, as illustrated in Figs. 4, 6 and 7.

Robustness. We are also interested in assessing the robustness of each method
regarding the hyper-parameter setting. We compare each method through the430

distribution of max Acc, mean Acc, stdev Acc, mean tpred and stdev tpred
computed on each training. For each metric, we report the p-values of Mann-
Whitney rank statistical tests on the null hypothesis that the two versions are
equivalent.

15

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Figure 3: An agent training with 100000 updates of its deep neural network parameters Θ.
The agent's policy is evaluated every 1000 updates on the validation set. Policies performances
are represented with dot points in terms of Acc vs. tpred. Dots points are colored according
to the updates. The black vertical line (resp. band) gives the agent's mean (resp. stdev) tpred
over training. The black horizontal line (resp. band) gives the agent's mean (resp. stdev) Acc
over training. The red horizontal line gives the agent's maximal Acc over training.

6.3. Experimental comparison between two models of POMDP: reward discount-435

ing and delay reward shaping

We carry out an experiment to assess the impact of delay reward shaping
against rewards discounting in the de�nition of the POMDP. We compare the
two POMDP models Mdiscount and Mshaping from Sec. 4.

Experimental setting. We solve each POMDP with DDQN algorithm in batch440

learning, adapted with prioritized sampling, as introduced in Algo. 1. We per-
form 50 trainings on each POMDP model (Sec. 6.2.2) by varying the deep neu-
ral network architecture and respective speci�c hyper-parameters. We vary γ ∈
[0.3, 1] for Mdiscount, λ ∈ {0.05, 0.1, 0.25, 0.5, 1, 2} and κ ∈ {1.06, 1.09, 1.1, 1.2}
forMshaping. Other shared DDQN hyper-parameters are �ne-tuned (Sec. 6.2.1).445

Experimental comparison. To evaluate if both POMDP models achieve compa-
rable best classi�cation accuracy under di�erent trade-o�s, we report in Fig. 4
the top-5 optimal policies within ranges of prediction times (Sec. 6.2.4) for both
Mshaping and Mdiscount models.

For each model, accuracy rapidly increases when the prediction time reaches450

tpred = 30 and then increases only very slightly with the acquisition of more
measurements in the sequences.

Experiments show that Mshaping results in top-5 policies with higher Acc
than Mdiscount under all trade-o� of prediction time tpred.

We compare the robustness between the two POMDP models by computing455

metrics from Sec. 6.2.6 which are shown in Fig. 5 and statistically compared
in Tab. 1. Tests allow to reject the null hypothesis that both POMDP models
achieve comparable max Acc along training. Fig. 5 shows thatMshaping reaches
higher max Acc.

16

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

shaping
discount

20 30 40 50 60

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

Figure 4: Top-5 policies from Mshaping and Mdiscount. We select the top-5 policies in Acc
on the validation set for several ranges of tpred. We evaluate those policies on the test set.
The full line represents mean Acc and the band is the stdev Acc.

Figure 5: Performance metrics on Mshaping and Mdiscount on the validation set. (a) Max
Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean tpred. (e) Stdev tpred.

Also, tests on the stdev Acc and stdev tpred lead to the conclusion that460

Mshaping is more variable than Mdiscount during its �ne-tuning.

6.4. Experimental comparison between early classi�er and naive static classi�ers

We seek to experimentally measure the added value of our method for EC
in comparison to static classi�cation. More precisely, for an agent that would
predict on average at tpred, we seek to evaluate whether a static DNN classi�er465

that would make the prediction with the same average speed (but always at
the same time step tpred) would achieve a better classi�cation quality than the
agent.

To perform the evaluation, we deactivate the decision making capability of
our algorithm, i.e. the RL part, and train the equivalent naive deep neural470

network to classify at a list of prede�ned (static) time steps.

17

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Performance Stability

Max Acc Mean Acc Mean tpred Std Acc Std tpred

0.0228 0.1962 0.0018 0.0016 1.3162e−8

Table 1: Statistical comparison between Mshaping and Mdiscount performance met-

rics. The table reports p-values of Mann-Whitney rank tests on the null hypothesis that
Mshaping and Mdiscount have comparable metric score for each performance metric (max
Acc, mean Acc, stdev Acc, mean tpred and stdev tpred) from Fig. 5. The null hypothesis
is rejected in favor of the alternative hypothesis on tests with a p-value below 0.05, shown
in bold. The alternative hypothesis is that the metric performance is di�erent between the
di�erent POMDP models. Fig. 5 shows which POMDP model has the greatest score.

Experimental setting.

Early classi�er We use experiments from 6.3 on Mshaping solved with
Algo. 1 to obtain early classi�ers enhanced with decision making capabilities.

Static classi�er For regular time steps t ∈ [1, T], we train equivalent deep475

neural networks to map between the partial temporal sequences and the labels.
We use the training pairs from dataset D = {(Xj , lj)}j=1..n and we train deep
neural networks as a mathematical function fclassif such that fclassif : {X:t} →
L. For each regular time step t ∈ [1, T], the deep neural networks are trained
separately until the loss function stops decreasing on the validation set (Sec.480

6.2.2).
The neural networks used for both static classi�cation and the agent's policy

are similar except from the output layer. The output layer of the agent's policy
is linear and has an additional neuron for the delay action compared to the
static classi�er which has as many neurons as labels and a softmax activation.485

Experimental comparison. In Fig. 6, we report top-5 policies performance for
di�erent ranges of tpred (Sec. 6.2.4). Both static deep neural network and early
classi�er have poor Acc in early times (tpred < 20) due to lack of information
in the partial temporal sequences.

Then the early classi�er provides top-5 policies with higher Acc than static490

classi�ers. The improvement in Acc for equivalent tpred is due to the capability
of the agent to adapt its classi�cation individually on each temporal sequence.
The agent can choose to quickly classify sequences that can easily been catego-
rized or to require more observations on sequences lacking discriminant patterns.
The early classi�er's will to individually compromise makes the classi�cation495

more e�cient than static networks using the same amount of observations in all
sequences independently of their complexity.

Interestingly, we cannot evaluate the early classi�er in late prediction times
(tpred > 55). To reach its objective of fast decision making, the agent did not
choose to classify at the end of the sequences and it always provided fastest500

policies.

18

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

50

55

60

65

70

75

80

A
cc

ur
ac

y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

early classifier
early classifier
static classifier

10 20 30 40 50 60 70

Time of prediction

55

60

65

70

75

80
A

cc
ur

ac
y

Figure 6: Top-5 policies from Mshaping and top-5 static deep neural network classi�ers. We
select the top-5 policies and classi�ers in Acc on the validation set for several ranges of tpred.
We evaluate those policies and classi�ers on the test set. The full line represents mean Acc
and the band is the stdev Acc.

6.5. Online learning: Experimental evaluation of prioritized sampling, priori-

tized storing and episode initialization in DDQN algorithm

We carry out an experiment to assess the impact of prioritized sampling (Sec.
5.1.1), prioritized storing (Sec. 5.2.1) and random episode initialization (sec505

5.2.2) when training early classi�ers with DDQN algorithm in online learning.
We compare four versions of DDQN algorithm to solve Mshaping:

• DDQN-baseline refers to original DDQN algorithm [7].

• DDQN-ps refers to DDQN with prioritized sampling and prioritized stor-
ing proposed in Sec. 5.1.1 and Sec. 5.1.1.510

• DDQN-ei refers to DDQN with random episode initialization proposed in
Sec. 5.2.2.

• DDQN-ps-ei refers to DDQN with simultaneously prioritized sampling,
prioritized storing and random episode initialization as synthesized in
Algo. 2.515

Experimental setting. All shared DDQN hyper-parameters are �rst manually
�ne-tuned (Sec. 6.2.1). On each version of DDQN algorithm, we perform 100
trainings (Sec. 6.2.2). We vary rewards for correct classi�cation R((X, l, t), a =
l) ∈ {0,+1} in order to obtain policies with slow decision making and to be able
to compare the four versions of DDQN in late prediction times.520

19

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Figure 7: Top-5 policies from DDQN-baseline, DDQN-ei, DDQN-ps and DDQN-ps-ei eval-
uated on the test set. The full line represents mean accuracy and the band is the accuracy
standard deviation.

Experimental comparison. Top-5 policies (Sec. 6.2.4) on all four versions of
DDQN algorithm are shown in Fig. 7.

For each version, accuracy rapidly increases when the prediction time reaches
tpred = 30. Then, accuracy slightly gets better when the prediction time
increases up to tpred = 40. We can observe that accuracy stops increasing525

(and even slightly decreases in some cases) when the prediction is performed at
tpred > 50 approximately. This is due to the particularity of the application for
which more time passes and more the biological process associated with di�erent
classes will have similar states.

DDQN-baseline top-5 policies are globally the least accurate under all trade-530

o�s of tpred. Top-5 policies with highest Acc for di�erent trade-o� of tpred are
produced by DDQN-ei and DDQN-ps-ei. We can see that the di�erent proposed
strategies lead to optimal policies which are at least as good or better than those
obtained with the original DDQN algorithm.

The distributions of performance metrics from Sec. 6.2.5 are shown in Fig.535

8 and statistically compared in Tab. 2.
We �rst compare the best classi�cation performance achieved by the agent

during each of its training sessions, on each version of the algorithm. That
is to say, on each of training of the agent, we keep the policy that was the
most accurate in classi�cation. Tests from Tab. 2 show that both DDQN-ei540

and DDQN-ps-ei improve max Acc over DDQN-baseline. In other words, these
versions of the algorithm result in policies with the best classi�cation quality.

Then, we compare the average performance of the agent during each of its
training sessions, by averaging the performance of each of its policies from the
same training session. This allows to illustrate the overall performance of the545

agent throughout its training, and not at a speci�c moment of its training. Tests

20

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Figure 8: Performance metrics on DDQN-baseline, DDQN-ps, DDQN-ei and DDQN-ps-ei on
the validation set. (a) Max Acc. (b) Mean Acc. (c) Stdev Acc. (d) Mean tpred. (e) Stdev
tpred.

from Tab. 2 show that both DDQN-ps and DDQN-ps-ei improve mean Acc over
DDQN-baseline which means that these versions of the algorithm improve the
overall classi�cation quality of the agent compared to the baseline.

Also, both DDQN-ei and DDQN-ps-ei shorten mean tpred over DDQN-550

baseline which means that these versions of the algorithm result in earliest
classi�cation times compared to the baseline.

In brief, DDQN-ps-ei is then the version of the algorithm that leads to both
best classi�cation quality and earliest prediction times simultaneously. Both
competitive EC objectives are improved with this version.555

In terms of stability, measured through the metrics of stdev tpred and stdev
Acc, the di�erent versions of the algorithm are comparable except for DDQN-ps
which is statistically less variable in terms of accuracy compared to DDQN-

baseline.
As a conclusion, DDQN-ps-ei, which refers to DDQN combined with all of560

the proposed strategies (prioritized sampling, prioritized storing and random
episode initialization), is the best memory and episode management method
because it simultaneously improves the classi�cation performance of the agent
and fastens its prediction time.

7. Conclusion565

We de�ned a POMDP to train an agent for EC with RL. We modelled the
agent's policy by a deep neural network and we adapted the DDQN algorithm
in order to address the speci�cities of the POMDP that could lead to unbal-
anced memory of the agent if applied without modi�cations. The validity of the
method was shown experimentally on a complex multi-class classi�cation prob-570

lem on a dataset of multivariate temporal sequences with natural variability.
We experimentally demonstrated that:

• Shaping the environment reward signal for delay leads to higher accuracy
at all prediction times than sparse discounted rewards.

21

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Performance Stability

Methods Max Acc Mean Acc Mean tpred Stdev Acc Stdev tpred

DDQN-baseline

vs. DDQN-ei
0.0023 0.1467 0.0430 0.8227 0.6270

DDQN-baseline

vs. DDQN-ps
0.2464 0.0001 0.8067 1.7212e−5 0.1090

DDQN-baseline

vs. DDQN-ps-ei
0.0001 0.0036 0.0286 0.2263 0.5418

Table 2: Statistical comparison between DDQN-baseline, DDQN-ps, DDQN-ei and

DDQN-ps-ei performance metrics. The table reports p-values of Mann-Whitney rank
tests on the null hypothesis that DDQN-baseline have a score comparable to DDQN-ps and
DDQN-ps-ei for each performance metric (max Acc, mean Acc, stdev Acc, mean tpred and
stdev tpred) from Fig. 8. The null hypothesis is rejected in favor of the alternative hypothesis
on tests with a p-value below 0.05, shown in bold. The alternative hypothesis is that the
metric performance is di�erent between the di�erent versions of the algorithm. Fig. 8 shows
which version has the greatest score.

• Improvements to DDQN online algorithm such as prioritized sampling,575

prioritized storing and random episode initialization increase the classi-
�cation accuracy of the agent while boosting the rapidity of its decision
making.

• The method empirically results in an agent with adaptive fast-classi�cation
capabilities which achieves higher accuracy performance than an equiva-580

lent neural network trained for static classi�cation.

References

[1] B. Póczos, Y. Abbasi-Yadkori, C. Szepesvári, R. Greiner, N. Sturtevant,
Learning when to stop thinking and do something!, in: Proceedings of the
26th Annual International Conference on Machine Learning, ACM, 2009,585

pp. 825�832.

[2] R. J. Williams, Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning, Machine learning 8 (3-4) (1992) 229�256.

[3] G. Dulac-Arnold, L. Denoyer, P. Gallinari, Text classi�cation: A sequen-
tial reading approach, in: European Conference on Information Retrieval,590

Springer, 2011, pp. 411�423.

[4] G. Dulac-Arnold, L. Denoyer, P. Preux, P. Gallinari, Datum-wise classi�ca-
tion: a sequential approach to sparsity, in: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, Springer, 2011,
pp. 375�390.595

22

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[5] Y.-S. Peng, K.-F. Tang, H.-T. Lin, E. Chang, Refuel: Exploring sparse fea-
tures in deep reinforcement learning for fast disease diagnosis, in: Advances
in Neural Information Processing Systems, 2018, pp. 7333�7342.

[6] J. Janisch, T. Pevn�y, V. Lis�y, Classi�cation with costly features using
deep reinforcement learning, in: AAAI Conference on Arti�cial Intelligence,600

2019.

[7] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with dou-
ble q-learning, in: Thirtieth AAAI Conference on Arti�cial Intelligence,
2016.

[8] Z. Xing, J. Pei, S. Y. Philip, Early prediction on time series: a nearest605

neighbor approach, in: Twenty-First International Joint Conference on Ar-
ti�cial Intelligence, 2009.

[9] Z. Xing, J. Pei, P. S. Yu, K. Wang, Extracting interpretable features for
early classi�cation on time series, in: Proceedings of the 2011 SIAM Inter-
national Conference on Data Mining, 2011, pp. 247�258.610

[10] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, L. Wang, Early classi�cation
on multivariate time series, Neurocomputing 149 (2015) 777�787.

[11] A. Dachraoui, A. Bondu, A. Cornuéjols, Early classi�cation of time series
as a non myopic sequential decision making problem, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,615

Springer, 2015, pp. 433�447.

[12] W. Wang, C. Chen, W. Wang, P. Rai, L. Carin, Earliness-aware deep
convolutional networks for early time series classi�cation, arXiv preprint
arXiv:1611.04578 (2016).

[13] T. Santos, R. Kern, A literature survey of early time series classi�cation620

and deep learning, in: Sami@ iknow, 2016.

[14] C. Martinez, G. Perrin, E. Ramasso, M. Rombaut, A deep reinforcement
learning approach for early classi�cation of time series, in: 2018 26th Eu-
ropean Signal Processing Conference, IEEE, 2018, pp. 2030�2034.

[15] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning,625

Vol. 135, MIT press Cambridge, 1998.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., Human-level control through deep reinforcement learning, Nature
518 (7540) (2015) 529.630

[17] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay,
arXiv preprint arXiv:1511.05952 (2015).

23

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

[18] K. Narasimhan, T. Kulkarni, R. Barzilay, Language understanding for
text-based games using deep reinforcement learning, arXiv preprint
arXiv:1506.08941 (2015).635

[19] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, E. Keogh, The ucr time series archive, arXiv
preprint arXiv:1810.07758 (2018).

[20] L. v. d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of Machine
Learning Research 9 (Nov) (2008) 2579�2605.640

24

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Conflict of Interest and Authorship Conformation Form

Please check the following as appropriate:

o All authors have participated in (a) conception and design, or analysis and

interpretation of the data; (b) drafting the article or revising it critically for

important intellectual content; and (c) approval of the final version.

o This manuscript has not been submitted to, nor is under review at, another

journal or other publishing venue.

o The authors have no affiliation with any organization with a direct or indirect

financial interest in the subject matter discussed in the manuscript

o The following authors have affiliations with organizations with direct or

indirect financial interest in the subject matter discussed in the manuscript:

Author’s name Affiliation

X

X

X

*Conflict of Interest Form

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

