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Abstract
A methodology for the simulation of large two-

dimensional micro-mirror arrays (MMA) whose behavior
is governed by the static electro-mechanical system is pre-
sented. The considered array is actuated by two different
voltages in two subdomains. The proposed solution makes
it possible to perform simulations of an arbitrarily large size
array without resorting to global calculations. It is built us-
ing principles derived from periodic homogenization, pre-
cisely it is composed of periodic solutions and boundary
layer correctors. We discuss the model’s interests in its
implementation, its simulation and its integration into the
MEMSALab software for automated construction of multi-
scale models.
Keywords: Micro-Mirror Array, Periodic Homogenization,
Boundary Layer Correctors

1. Introduction

Fig. 1: Top view of the MIRA micro-mirror array when all
the mirrors are in the rest position.

Micro-mirror matrices are developed as field selectors
for multi-object spectroscopy (MOS) in astrophysics. This
observation technique makes it possible to simultaneously
collect spectra of faint galaxies and stars in the infra-red
and in the visible. The use of field selectors consisting of
MOEMS array allows the increase of the number of tar-
gets, rapid reprogramming, and should be able to operate in
a cryogenic environment. For many years the Laboratoire
d’Astrophysique de Marseille (LAM) has developed first in
a collaboration with EPFL (Switzerland) and recently to-
gether with CSEM (Switzerland) an array of electrostati-

cally actuated tilting mono-crystalline silicon micro-mirrors
called MIRA, see its top view in Figure 1. As a field selector
for MOS, it has been designed with stringent requirements
such as a filling factor of more than 80%, a contrast ratio of
more than 1000, a wavelength bandwidth from visible to IR,
an actuation voltage lower than 100V and an operating tem-
perature ranging from room temperature to less than 100K,
see [12], [3] and [4] for details.

Fig. 2: The two-dimensional array MIRA of micro-mirrors
with the two zones of different actuations as well as their
interface and the boundaries where the boundary layer terms
are added.

This article is a contribution to multi-scale modeling and
simulation of this array of micro-mirrors. It follows the ar-
ticle [10] which introduces a model of the electric field in a
mono-dimensional MMA with two zones of different actu-
ation. The model includes periodic solutions in both zones
that are corrected by boundary layer terms at the zone in-
terfaces as well as at the array ends. They make it possi-
ble to guarantee the respect of the boundary conditions and
the continuity conditions at interfaces between zones. This
model was implemented in COMSOL and showed that the
simulation time depends on the numbers of zones and of in-
terfaces but not on the number of cells. Here, the modeling
takes into account, in addition to the electrostatic field, the
elastic deformations and the electrostatic force still in the
quasi-static regime. It is developed for a two-dimensional
MMA that also includes two zones of different actuations.
The solution still consists of periodic parts in each zone and
their boundary layer corrections to the interfaces and the
array boundary, see Figure 2. As these corrections are built
independently on each face of the interface and of the lateral
array boundary, it follows that they produce that the sum of



their contribution is discontinuous at the face junctions, that
is to say at the edges. Here, boundary layer correctors are
also introduced to these edges. The resulting model is im-
plemented in COMSOL. Here too, the simulation time de-
pends on the number of zones, boundary and interface faces
and edges, but not on the number of cells. Thus, it can be
applied to an arbitrary large array for a reasonible simula-
tion time.

In addition to the model itself, its construction is an in-
teresting contribution because it has been designed in a way
that is consistent with its integration in the MEMSALab
software [13], [2], [9] of generation of asymptotic models.
This software under development will automatically gen-
erate multi-scale multiphysical models for structures with
one or more asymptotic characteristics such as periodic-
ity, the thinness of certain substructures or highly hetero-
geneous coefficients. From a mathematical point of view,
model constructions are based on the use of the periodic
unfolding method [7], [8], [6], [5]. From the computer
science point of view, they are implemented by rewriting
techniques. They are expressed according to a so-called
extension-combination principle designed to facilitate their
reusability.

The rest of the content of the paper is as follows. We
first recall the equations of the system and the assumptions
used for the construction of the model. Then, we detail the
two-scale transformations used for the application of the pe-
riodic unfolding method to the construction of each of the
components of the model. Then, the implementation of the
model in COMSOL is described and simulation results are
reported. The implementation in progress in MEMSALab
is mentioned before to draw conclusions.

2. The Governing Equations of the MMA

Fig. 3: The parts of a cell of MIRA.

The LAM’s micro-mirror array consists in several thou-
sand micro-mirrors cells arranged in a rectangular shape.
Each cell has two parts that are assembled as shown on Fig-
ure 3. The mirror part is composed of a mirror, a system of
beams and a frame. The mirror is attached to the frame by
the suspended beams. Two landing beams are on the tips
of the suspended beams to prevent the mirror from a short-
circuit generation when in contact with the electrode during
actuation. A stopper beam placed under the frame provides
a precise tilt angle after actuation. The mirror part is with
imposed electric potential φ at −V/2. The electrode part is
composed of an electrode, two landing pads and two pillars.
The voltage V/2 applied to the electrode generates an elec-
trostatic force attracting the micromirror. The two landing
pads are the landing regions of the landing beams and the
pillars are a stiff link between the frame and the electrode.

The outside of these two parts may consist of air or be
empty, in both cases the electric potential is the solution of
the Poisson equation ∆φ = 0. In principle we should con-
sider this equation verified to infinity, but for simplicity it
is considered only in a box while the zero normal flux con-
dition ∇φ.n = 0 is imposed on its boundary. The base of
the micro-mirror as well as the mirror itself are considered
rigid. The other parts are considered to be linearly elastic
and thus the stress tensor σ is governed by the equilibrium
equation −divσ = 0 and its relation with the linearized
tensor of strains ε(u) is by the Hooke law σ = Cε where
C is the tensor of elasticity that is supposed to be isotropic.
Due to the presence of the electrostatic field, the edges of the
elastic and rigid parts are subjected to an electrostatic force
that is to say that the normal stress is imposed σ.n = g
where g = −

(
1
2E ·D

)
n + (n ·E)DT is the electrostatic

force exerted in the presence of an electric field E = −∇φ
and the corresponding electric displacement field D = εE,
ε being the dielectric constant. The assumption of strain lin-
earity is justified only for small angles of inclination of the
mirrors and will have to be relaxed in a later work.

3. Asymptotic Characteristics of the Model
The modeling presented in this article is based on

asymptotic analyzes according to different characteristics
of the solution of the above equations. Before any asymp-
totic analysis, the geometry and the fields are scaled by the
characteristic scale L of the array: x′ := x/L, φ′(x′) :=
φ(x)/L and u′(x′) := u(x)/L from which results the
scaled fields E′(x′) = E(x), D′(x′) = D(x), g′(x′) =
g(x), ε′(u′)(x

′
) = ε(u)(x) and σ′(x

′
) = σ(x) so that the

form of the equations is unchanged by this transformation.
In the following, we only work in the scaled configuration
but, for the sake of simplicity, we ignore the superscript ”′”.

The periodicity of the geometry and the large number
of cells make it possible to introduce the ratio ε between
the size of a cell and the size of the array. It is used as a
small parameter in an asymptotic analysis that leads to an
asymptotic model in the sense of a large number of cells.
During this analysis, it is taken into account that in each
cell the part associated with the mirror is connected to the
voltage −V/2 and that the base is clamped. Assuming that
the imposed voltage is of the order of ε, it follows that the
potential and the mechanical displacement are of the same
order which is expressed by the scaling V ε = εV

ε
, φε =

εφ
ε

and uε = εuε where V
ε
, φ

ε
and uε are in the range of

O(1) compared to ε.

Fig. 4: Elements of the two-scale transformation T ε: (a) the
physical domain made with a periodic array of cells, (b) the
macroscopic domain that is a solid two-dimensional section
of the array and (c) the microscopic domain obtained by
shift and dilation of a cell.

The main part of the two-scale model is obtained by
applying the two-scale transformation operator T ε which



transforms any function defined at the points x of a block
surrounding the micro-mirror array in a function of the
variables x] of the macroscopic domain which is a two-
dimensional section of the block and the variables x1 of a
cell shifted to the origin and dilated by the factor 1/ε see
Figure 4 and for instance [8]. This transformation is applied
to the three fields V

ε
, φ

ε
and uε of the model which leads to

the expected part of the model after a certain number of op-
erations and the use of the approximations T εV

ε
(x],x1) =

V 0(x],x1)+O(ε), T εφ
ε
(x],x1) = φ0(x],x1)+O(ε) and

T εuε(x],x1) = u0(x],x1) + O(ε). The main model part
is constituted by periodic solutions in each of the two zones
of different electric actuation: ∆x1φ0 = 0 in the air or vac-
uum part of the reference cell, φ0 = V 0 on the electrode
part, φ0 = 0 on the mirror part, periodicity conditions on
the lateral boundaries and ∇x1φ0.nx1 = 0 on the remain-
ing boundaries of the air/vacuum part.

Fig. 5: The vector of electric field E0 of the main part of the
solution, ie the periodic part, is represented by a field of ar-
rows. The applied voltages are ±30 volts to the mirror part
and the electrode part. The vertical mechanical displace-
ments is represented by the deflection of the mirror and is
also represented in color.

With regard to the principal mechanical displacement
field u0 and stresses σ0, they satisfy the equations
−divx1 σ0 = 0 in the deformable part of the cell and
the Hooke law σ0 = Cε

0
(u0) in the variables x1 of the

cell, the clamping condition on the basis of the cell, the
normal stress equal to the normalized electrostatic force
σ0.nx1 = g0 with g0 = −

(
1
2E

0 ·D0
)
n +

(
n ·E0

)
D0T

where E0 = −∇x1φ0 and D0 = εE0, as well as the pe-
riodicity conditions on the remaining part of the boundary
of the periodicity cell. A simulation result of the electrical
field E0 is shown in Figure 5.

The fields φ0, D0, u0 et σ0 are defined in the two-scale
variables (x],x1). They are transported back in the physi-
cal domain by the application of the operator B of the in-
verse two-scale transformation which maps a function de-
fined in the variables (x],x1) into a function defined in the
physical domain [8]. The resulting fields being periodic in
each actuation zone it follows that they are discontinuous
at their interface. Corrections are built in the vicinity of
each of the interfaces using an asymptotic ”boundary layer”
method. For this we use an operator T ε

BL of expansion by
the factor 1/ε in the direction orthogonal to the interface
and of two scale transformation in the transverse directions,
see [11] and [9]. It transforms any function defined at the
points x of a neighborhood of the interface into a function

of a variable x] in the macroscopic transverse direction, and
of variables x1 in a column orthogonal to the interface con-
sisting of cells dilated by the factor 1/ε.

Fig. 6: A column of two dilated cells obtained by a bound-
ary layer two-scale transformation T ε

BL for calculating one
of the interface boundary layers. The boundary layer contri-
bution is computed for the electrostatic problem only. The
electric potential is represented in colors at the interface.

These operators of boundary layer transformations are
applied to the differences between the fields and their
main approximation yielding the boundary layer correctors
T ε
BL(φε − Bφ0) = φ0BL + O(ε), T ε

BL(uε − Bu0) =
u0
BL + O(ε) and T ε

BL(gε − Bg0) = g0
BL + O(ε). By

construction, these boundary layer fields are evanescent
away from the interface. The boundary layer electrical
potential φ0BL satisfies ∆x1φ0BL = 0 in the air or vac-
uum part of the column of dilated cells, φ0BL = 0 on
the electrode and the mirror parts, the jump conditions
[[∇x1φ0BL]].nx1 = −[[∇x1φ0]].nx1 and [[φ0BL]] = −[[φ0]]
at the interface, the periodicity conditions on the periodic
boundaries of the column of cells and∇x1φ0BL.nx1 = 0 on
the remaining boundaries of the air or vacuum part. Fig-
ure 6 shows one of the boundary layer corrector φ0BL so-
lution of the above electrostatic boundary value problem.
The equations governing the boundary layer mechanical be-
havior are −divx1 σ0

BL = 0 in the deformable part of the
cell and the Hooke’s law σ0

BL= Cε0BL(u0
BL) in the vari-

ables x1 of the column of dilated cells, the clamping condi-
tion on the basis of the cells, the interface jump conditions
[[σ0

BL]].nx1 = −[[σ0]].nx1 and [[u0
BL]] = −[[u0]], the correc-

tion on the electrostatic force σ0
BL.nx1 = g0

BL not detailed
here for shortness, and periodicity conditions on the period-
icity faces of the column of cells. The boundary layer terms
φ0BL and u0

BL are transported back to the physical space
thanks to the application of operators BBL of inverse two-
scale boundary layer transformations yieldingBBLφ

0
BL and

BBLu
0
BL in the vicinity of each face of the interface.

Just as the periodic fields Bφ0 and Bu0 do not satisfy
the conditions of continuity at the interfaces between actua-
tion zones, nor do they satisfy the boundary conditions ver-
ified by the nominal fields φ and u. Thus, boundary layer
correctors are constructed at the location of the application
of boundary conditions in a manner similar to boundary lay-



Fig. 7: A boundary layer corrector φ0BL of the electrical
potential at a boundary. It is solution of the electrostatic
problem not coupled with the mechanical problem. The
contribution is very localized but is of the same order of
magnitude as that of the imposed voltage.

Fig. 8: A boundary layer corrector φ0BL, u0
BL of the electri-

cal potential and the mechanical displacement, solution of
the electro-mechanical problem, at one of the boundaries.
The contribution to the mirror deflection is in the range of
5% of the main periodic part.

ers at the interfaces excepted that the load comes from the
boundary ∇x1φ0BL.nx1 = −∇x1φ0.nx1 and σ0

BL.nx1 =
−σ0.nx1 . Figure 7 represents one of the boundary layer
corrector φ0BL at one of the boundaries where φ0BL is so-
lution of the electrostatic equations. Figure 8 represents one
of the boundary layer corrector pair φ0BL, u0

BL solution to
the above coupled electro-mechanical problem.

In turn, the boundary layer correctors of two interfaces
or two adjacent boundaries cause a discontinuity on the edge
at their intersection. Thus, for each edge, boundary layer
correctors are defined to correct the gap between the two
boundary layer correctors on the faces. At each edge, we as-
sociate a dilation operator T ε

BL,edge of expansion ratio 1/ε
centered at the center of the edge. It follows the bound-
ary layer corrections T ε

BL,edge(φ
ε −Bφ0 −BBL,1φ

0
BL,1 −

BBL,2φ
0
BL,2) = φ0BL,edge + O(ε), T ε

BL,edge(u
ε − Bu0 −

BBL,1u
0
BL,1 − BBL,2u

0
BL,2) = u0

BL,edge + O(ε) and
T ε
BL,edge(g

ε − Bg0 − BBL,1g
0
BL,1 − BBL,2g

0
BL,2) =

g0
BL,edge + O(ε) where the indices 1 and 2 refer to the

two faces Γ1 and Γ2 adjacent to the considered edge. By
construction, these boundary layer fields are evanescent
away from the edge. The equations governing the correc-

Fig. 9: A solution φBL of the boundary layer problem to an
edge. The corrector is for the purely electrostatic problem.
We observe that in this case the solution is very localized.

tor φ0BL,edge are ∆x1φ0BL,edge = 0 in the air or vacuum
part of the dilated cells, φ0BL,edge = 0 on the electrode and
the mirror parts, ∇x1φ0BL,edge.nx1 = −∇x1φ0BL,1.nx1 on
the face Γ2, ∇x1φ0BL,edge.nx1 = −∇x1φ0BL,2.nx1 on the
face Γ1 and∇x1φ0BL.nx1 = 0 on the remaining boundaries
of the air or vacuum part. For shortness, we do not detail the
equations verified by the edge boundary layer correctors of
the elastic strain field nor those relating to the edges at the
interfaces.

4. Implementation and Simulations
The implementation is done in COMSOL Multiphysics.

More precisely, the implementation of the equations of each
of the periodic principal parts (φ0,u0) is carried out with a
single cell. The boundary layer correctors (φ0BL,u

0
BL) are

calculated with a single cell for the boundaries and with a
column of two cells for the interfaces. For the edge correc-
tors, we use either one cell for the boundary or four cells for
the interfaces.

From the point of view of simulation, the characteris-
tics of the above model can be summarized as follows. The
model consists of a large number of boundary value prob-
lems that are all posed on a small number of cells indepen-
dent of the size of the array. The solution of the model at a
point in the array consists of the main periodic part, possibly
corrected by boundary or interface boundary layer correc-
tors and an edge boundary layer correctors. In any case, the
contributions are strictly local and do not require any global
calculation. Thus, the simulation of a large MMA is done
by assembling local contributions computed on a very small
number of cells.

In this article we do not present a comparison between
the proposed model and a direct simulation of an MMA that
would serve as validation. It is nevertheless noted that, in
principle, a model obtained by an asymptotic method is all
the better if the asymptotic parameter ε is small, ie if the
number of cells in the array is large. This principle is val-
idated for all kinds of configurations by a lot of numerical
simulation work for problems that are generally much less
complex. Moreover, there are also many theoretical articles
that show that the error between the solution of the nominal



problem and the periodic solution of the asymptotic model
is of the order of

√
ε and of the order ε when the boundary

layer correctors are taken into account, see for example the
reference article [1] for a simpler problem. In the present
work, we did not calculate the numerical error between the
result of direct simulation of a large MMA and that of our
model, because the simulation times and the memory re-
sources for a large array are prohibitive. In addition, we
have not yet done the theoretical work of error estimation.
Nevertheless, we consider that the method is sufficiently
tested to be used without additional justification.

5. Perspectives of Implementation in MEMSALab
The principle of boundary layer correctors is general to

all problems of periodic homogenization. In all these prob-
lems, the periodic part of the solution does not satisfy either
the boundary conditions or the possible interface conditions
between zones of the same periodicity. Then a good approx-
imation must include the boundary layer terms. Neverthe-
less, the number of boundary layer equations to be built is
large and their implementation is a long and laborious op-
eration when it has to be developed on a case by case ba-
sis. This limits their use in the context of specific model
developments. From the point of view of the implementa-
tion in the MEMSALab software, the characteristics of the
above type of model are as follows. The construction of the
boundary layer models follows a method similar to that of
the construction of the main part of the model, each part
of model requiring a specific two-scale transformation, and
therefore fits well with the extension-combination principle.
This can be seen through the derivation of the main periodic
part of the electrostatic problem and of the boundary layers
for a one-dimensional array as detailled in the PhD thesis
[9]. The generalization to a two-dimensional MMA and to
the electromechanical problem is being drafted. Moreover,
the construction of a large number of boundary layer prob-
lems does not seem to pose any particular difficulty since it
can be automated. To date, the implementation in MEM-
SALab of automatic building boundary layer problems is in
progress.

6. Conclusion
The method that is proposed makes it possible to simu-

late the solution of the electromechanical problem in a large
MMA. The proposed modeling does not require global cal-
culations, but nevertheless makes it possible to calculate the
solution at any point of the array, whether in the middle
of the array, near the boundary of the array, in the vicin-
ity of the interface between two different zones of different
actuation or even to the edges of the boundary or the inter-
face. This solution requires the construction of a large num-
ber of boundary layer problems both mathematically and in
the simulation tool. Given the regularity of the model con-
struction method, which is based on asymptotic principles,
we believe that it is appropriate for its introduction into the
MEMSALab software as a general method for correcting
periodic parts of homogenized models. This is what we in-
tend to do in the near future. Moreover, calibrations to a
MMA in fabrication are planed.
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Lausanne, 2012.

4. M.D. Canonica, F. Zamkotsian, P. Lanzoni, W. Noell,
and N. De Rooij. The two-dimensional array of 2048
tilting micromirrors for astronomical spectroscopy.
Journal of Micromechanics and Microengineering,
23(5):055009, 2013.

5. D. Cioranescu, A. Damlamian, and G. Griso. The pe-
riodic unfolding method in homogenization. SIAM
Journal on Mathematical Analysis, 40(4):1585–
1620, 2008.

6. G. Griso. Estimation d’erreur et éclatement en ho-
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12. S. Waldis. MEMS-based mirror array for astro-
nomical instrumentation. PhD thesis, Université de
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