
A Tool for Aided Multi-Scale Model Derivation and its Application to the Simulation of a
Micro Mirror Array

Walid Belkhir1,2, Nicolas Ratier1, Duy Duc Nguyen1, Nguyen Nhat Binh Trinh1, Michel Lenczner1, and Frédéric
Zamkotsian3

1FEMTO-ST institute, univ. Bourgogne Franche-Comté, CNRS, ENSMM Time and frequency dept. 26 Rue de
l’Épitaphe, 25030 Besançon cedex, France.

2INRIA Nancy - Grand Est, Pesto project, 54600 Villers-lès-Nancy, France.
3LAM-CNRS, Marseille, France.

Email : walid.belkhir@inria.fr, nicolas.ratier@femto-st.fr, duyduc.nguyen@femto-st.fr, nhat-binh.trinh@femto-st.fr,
michel.lenczner@femto-st.fr, frederic.zamkotsian@lam.fr

Abstract
Modeling the electric field in a matrix of micro-mirrors

is presented as the first application of the MEMSALab soft-
ware package. The latter is dedicated to semi-automated
derivation of multiscale models by asymptotic methods and
will complement simulation software as finite element soft-
ware. It is designed according to a principle of reusability
which is called the extension-combination method devel-
oped with techniques derived from the theory of rewriting.
Keywords: Rewriting Strategies, Periodic Homogeniza-
tion, Micro-Mirror Array, Extension-Combination Method.

1. Introduction
Many microsystems and nanosystems exhibiting one

or more multi-scale characteristics are impossible to fully
simulate with standard tools. In this article, we present the
recent developments of the MEMSALab software package
whose aim is to make available the use of multiscale mod-
els to a large body of researchers and engineers.

A multi-scale phenomenon is generally characterized
by one or more small (or large) parameters. These pa-
rameters constitute the starting point for the construction
of reduced models by asymptotic or perturbation methods
applied to Partial Differential Equations (PDE). Small or
large parameters can originate from time phenomena (e.g.
ratio of frequencies between low and high frequency com-
ponents) or spatial phenomena (periodic structures with
large number of cells, large coefficient variations, small
ratio between lengths, etc). The outcome is a system of
PDEs requiring much less computation time than the nom-
inal model. These methods are grounded on a solid math-
ematical basis and offer a good compromise between the
precision of the models and the computation time. Their
big drawback is that the models must be built on a case-
by-case basis and that their construction always requires a
fairly large mathematical expertise in order to solve spe-
cific difficulties. Until now, this has been preventing their
integration in general simulation software.

This integration is the goal of the MEMSALab project
(for MEMS Array Lab) which recent advances are pre-
sented in this paper. They are illustrated by an example

of asymptotic modeling of the electrostatic field in the Ma-
trix of Micro-Mirrors (MMA) MIRA, well documented in
[4] and [5]. Unlike a case-by-case method of construction,
the adopted method is based on the concept of reusability.
It combines mathematical principles of the two-scale ap-
proximation method established in [6] and concepts of the
rewriting theory issued from theoretical computing. The
first developed applications are in the field of micro and
nanosystems.

The flowchart represented on Fig. 1 is a global view
of the operations of the MEMSALab software package.
A multi-scale model derivation starts with an input Partial
Differential Equation (PDE) extracted from a PDE solver
(FEM in the figure) and being expressed in the User Lan-
guage. Together with the features to be taken into account
for the asymptotic analysis, they are transmitted to the core
that generates the asymptotic model. Then, the latter is sent
to the PDE solver for simulation.

Fig. 1: flowchart of MEMSALab starting from an input
partial differential equation and producing an output sent
in a simulation tool for PDEs as a finite element method
software package (FEM). The input can also be generated
by a user thanks to the User Language (UL). The Selector
is a graphic interface that selects the extensions to be com-
bined for building the multi-scale model in the Core. The
model construction is made by combining extensions of the
library.

This flow of operations is established for what we call
the reference case i.e. the periodic homogenization of a



second order PDE posed in a one-dimensional domain and
with periodic coefficients. Then, it is complexified, we say
extended, in several manners to take into account new fea-
tures yielding new schemes. The input PDEs that come
from a script or a software package has additional fea-
tures. Accordingly, the reference proof is extended in dif-
ferent ways to cover the new features. Applying the ex-
tended proofs to the enriched PDEs yields new multi-scale
models. Finally, a new scheme for an input PDE cover-
ing a group of new features is built by combination. It is
worthwhile to underline that by construction, an extension
is much smaller than the proof that it generates, and is min-
imal in the sense that it includes only what is specific to the
features involved in the new PDE.

Before to state the contributions of this paper, let us re-
view the recent progresses. The language Symbtrans of
rewriting strategies for coding the proofs has been devel-
oped as a Maple R© package [2]. An early formulation
of the idea of model derivation by Extension-Combination
was introduced and was partially implemented in Maple R©
as reported in [10]. For efficiency reasons the program has
been rewritten in Ocaml, a functional language well suited
for implementing rewriting techniques. It is associated to
a Matlab R© interface for launching compilation, applica-
tions of proofs or extensions and for displaying. Then,
a User Language has been built to define input PDEs as
scripts. An important contribution was a better formaliza-
tion of the principle of model derivation by the Extension-
Combination method. These progresses have been reported
in [8] and illustrated with an homogenized model of the
heat transfer in a micro-mirror array. However, this was just
an illustration but still not an implementation.

Since then, two classes of strategies of extensions have
been studied with the goal to find a class of extension strate-
gies that is closed through combination and in the same
time that is transposable in the user language. Two studies
that also include formulae of combinations of extensions
have been published in the report [3]. Here, we present the
second one that has been successfully turned into a specific
language of extensions and added to the user language.

The second novelty of this paper is the presentation of
a library of extensions written in the strategy language and
its use for the derivation by the Extension-Combination
method of the multi-scale model of the electric field in a
micro-mirror array presented in [7].

Finally, we also report on original displaying and de-
bugging tools that are of great help for program writing.

The next section goes into the concept of extension-
combination in slightly more details. Then, in the rest of
the paper, each aspect of this method and of its application
to the MMA model derivation is detailed from the points of
view of input model, asymptotic methods, computing lan-
guage and user language.

2. The Extension-Combination Method
For the construction of an asymptotic model taking into

account several characteristics of the PDE and/or of the
proof, the extension-combination method begins with the
construction of extension operators associated with each
characteristics, cf Ext 1 and Ext2 on Figure 2. When ap-

Fig. 2: Schematic view of the scheme of asymptotic model
generation for the pair (PDERef , ProofRef ) and their ex-
tensions (PDE1,Proof1) and (PDE2,Proof2) by Ext 1 and
Ext2.

plied to the reference pair (PDERef , ProofRef ) they lead
to new pairs (PDE1,Proof1) and (PDE2,Proof2). It is as-
sumed that the extensions are correct in the sense that for
each pair (Proofn, PDEn) the application of Proofn to
PDEn provides an asymptotic model Model n taking cor-
rectly into account the nth characteristics.

Fig. 3: Schematic view of the combination of Ext1, Ext2

and the complementary extension Ext′12 built to generate a
correct extension Ext12.

Fig. 4: Schematic view of the pair (Proof12, PDE12)
built by the combination Ext12 and the asymptotic model
Model12.

By construction, the combination of several extensions,
e.g. Ext1 + Ext2, is another extension covering all the
characteristics of the involved extensions but which is not
necessarily correct in the above sense. To reach correct-
ness, it is generally, but not always, necessary to combine
Ext1 + Ext2 with a complementary extension, e.g. Ext′12

in Figure 3. Figure 4 shows the final step of the method,
i.e. the pair (Proof12, PDE12), built by application of the
extension Ext12, generating the exptected model Model12.

3. The Reference PDE
The choice of the pair (PDERef , ProofRef ) was done

in [10] and the mathematical justifications in [6]. The ref-



erence equation is the second order elliptic posed in the an
interval Ω = (a, b),

− d

dx
(a

d

dx
u) = f in Ω

with mixed Dirichlet and Neuman boundary conditions

u = h on ΓD and a
d

dx
u = g on ΓN .

Here, ΓD and ΓN are two complementary parts of the
boundary of Ω.

3.1 Representation in the User Language
The User Language allows descriptions of equations,

boundary conditions, initial conditions and geometry char-
acteristics. As the script of Reference PDE in Figure
5 shows, the sections Constant, Index, Region, Variable,
Function, Operator, Expression and PDE are to define con-
stants, indices, domains, mathematical variables, functions,
operators operating on functions, mathematical expressions
and finally a PDE. The scripts are written in Unicode
UTF8 format to allow the use of conventional mathemat-
ical symbols such as ∂,

∫
,
∑

, etc and thus to express the
equations in a natural and readable form.

3.2 Representation in the Computation Language
The user language programs are converted into a com-

putational language which is implemented in OCaml. In
particular, the grammar of PDEs, of proofs and extensions
are implemented as OCaml types allowing to reduce the
programming errors. Besides, there is a unique abstract
OCaml type to which all the previous three types are con-
verted. All the computational processing, such as the sym-
bolic transformations, the display and the debugging oper-
ate on the abstract OCaml type in the Core represented in
Figure 1.

3.3 Displaying Tools for Degugging and Reporting
Displaying PDEs, but also of proofs and extensions, can

be done in the Matlab command window with the possi-
bility of hiding all the terms of one or more of the types
as Index, Region etc. For instance, the internal fields of
all functions can be hidden. Another interface in an html
window offers more flexibility to hide or show subterms in
an expression. By selection with a mouse, it is possible
to hide or show all the terms of one or several types and to
hide internal fields or context of a term. Both tools are used
for program debugging. For report editing, expressions are
converted to Latex files and then to PDF files.

4. Extension to the Electrostatic Equation in the
MMA

This section is devoted to the extension of PDERef to
equation PDEElec that governs the electrostatic field of the
MMA. We begin with a brief description of the structure
of the MMA, the boundary value problem that governs the
electrical potential and the extension PDERef 7→ PDEElec.
Then, we provide details on the principle of extensions and
combinations that are used in the kernel.

Fig. 5: Script defining the reference boundary value prob-
lem in the user language. The functions a, f and u are de-
pending on the variable x which is defined on the domain
omega. The latter has for boundary gamma and for out-
ward unit normal n. The functions h and g are functions
of xg D or xg N two variables defined on two parts of the
boundary.

4.1 Electrostatic Equation in the MMA as an Exten-
sion

The structure and operation mode of MIRA, made with
64x32 cells of size 100 x 200 µm, is detailed in [4] and [5].
Figure 6 shows the components of its elementary cell that
is divided into the mirror and the electrode blocks. The
mirror block is composed of the mirror itself, two stop-
per beams with two landing beams on their tips and a sus-
pending beam. The electrode block is composed of an
electrode, two landing pads and two pillars. Each cell is
indivudually addressable and is tilted due to the electro-
static force on the mirror surface. At rest, when no volt-
age is applied, the micro-mirror is held in a flat position
by the suspended beams. When a voltage is applied be-
tween the micro-mirror and the electrode, an electrostatic
force is generated, resulting in the attraction of the micro-
mirror toward the fixed electrode. This yields tilting and
therefore provides a restoring force. For voltages below the
pull-in voltage, the mirror angle is set to a few degrees. At
the pull-in voltage, the electrostatic force increases dramat-
ically and the mirror snaps down toward the electrode until
it is stopped when the mirror touches the stopper beam on
one side and the landing pads in the other side. Therefore,



Fig. 6: The components of a cell of MIRA.

after pull-in the mirror is fixed at a precise tilt angle. Dur-
ing the phase of voltage decrease, the mirror remains in the
same position until it detaches from the stopper beam and
the tilt angle increases. Finally, when the spring force of
the suspended beams overcome the electrostatic force, the
landing beams detach from the landing pads and the mirror
returns to its rest position.

The model of this paper is for a one-dimensional array
as represented on Figure 7 but with a large number of cells.

Fig. 7: The one-dimensional MMA modeled in [7] with
different voltage sources in the two subdomains Ω1 and Ω2.

From the mathematical point of view, the MMA is lo-
cated in a three-dimensional domain Ω and the field of elec-
tric potential u is governed by t he PDE,

−
∑
i,j

∂

∂xi

(
aij

∂

∂xj
u

)
= 0 in Ω,

where a is the permittivity matrix which is generally re-
duced to a single coefficient. The electrical potential sat-
isfies Dirichlet conditions on the electrodes expressed as
u = h on ΓD and an homogeneous Neuman condition∑

i,j aij
∂

∂xj
u ni = 0 on the complementary part ΓN of the

boundary. We also assume that h = ±Vk in the top and bot-
tom electrodes of the two subdomains Ωk of Ω = Ω1 ∪Ω2.

To pass from the Reference PDE to the electrostatic
PDE one uses an extension which transforms the domain
Ω into a three-dimensional domain. This is done by adding
indices to the space variables x and xg, replacing the scalar

coefficient a by a matrix, introducing indices to the deriva-
tives and summations behind the internal equation and the
Neuman condition. Figure 8 shows the fragment of the ex-
tension that specifies the vector character of the variable
x ∈ Ω, the boundary variable xg ∈ Γ, and that changes the
functions a, u and f accordingly.

Fig. 8: Script of a part of the PDE extension that transforms
a function f(x) into a function f(x) which variable is a
vector x = (x1, x2, x3). All internal fields of x are changed
accordingly.

4.2 Principles of Extension-Combination in the Core
In addition to the specification of PDEs, the user lan-

guage allows specifications of extensions. Roughly speak-
ing, an extension is a symbolic transformation that operates
on the tree-like structure of a PDE or a proof defined below.
The design of the extensions is inspired by the formalism
of µ-calculus [1]. When applied to a PDE, an extension
yields a new extended PDE. An extension is composed of
two parts: a navigation part that searches and locates a se-
ries of patterns, and an insertion part that inserts a new
expression to a part of the PDE. The insertion part of an
extension consists of adding one or many expressions to an
expression. This is done by the extension rule Exp ⇒ Exp′.
For instance the extension rule f(x) ⇒ f(x), from Figure
8, inserts an index i to x, to the normal of x and to xg.
The navigation part of an extension can be viewed as a par-
ticular rewriting strategy which is built up of the following
constructors. The extension, which is a restricted form of
the composition, Id(u); S tries to match the expression u
with the input expression, if it does then the extension S
is applied to the input expression, otherwise the extension
Id(u); S fails. The left-choice extension S1 Or S2 applies
the extension S1 to an expression, if this application fails,
then S2 is applied to the expression. The conditional exten-
sion If (S1 and . . . and Sn) Then S applies the extension
S to an input expression after checking that the application
of each Si to the expression does not fail. If one of the



Si fails, then the full extension fails. The one-step exten-
sion Inside(S) applies the extension S to all the immedi-
ate subexpressions of the input expression. The iterative
extension is composed of the introduction of a label L to
an extension S by Label L Of S, together with a jump op-
erator GoTo L that appears in S. This extension iterates the
application of the extension S starting from the input ex-
pression. The one-step constructor Inside together with
the iterative constructor allows one to encode many navi-
gation strategies such as OuterMost.

For example, the extension
OuterMost(L1, Id(f(x)); f(x) ⇒ f(x)), from fig-
ure 8, consists in a search of all subexpressions
of the form f(x) starting from the top of the
PDE, then each subexpression is transformed into
f(x). In fact, a more refined extension would be
OuterMost

(
L1, Id(f(x)); OuterMost(L2, Id(x); x ⇒ x)

)
.

This extension searches for all subexpressions of the form
f(x) starting from the top of the PDE, then in each
subexpression it makes a second search of all expressions
of the form x, the latter being transformed into x.

It is worth noting that the extension OuterMost(L, S)
is not a rudimentary one and can be defined in
the User Language in terms of the rudimentary ex-
tensions mentioned above by OuterMost(L, S) :=
Label L Of (S Or Inside(GoTo L)). This means that either
the extension S is applied successfully, or it fails and in this
case we go into each subexpression of the input expression
and we apply the full extension again.

Two such extensions can be combined to generate
a third new extension. The combination of two ex-
tensions amounts to merge their navigation parts and
their insertion part. More precisely, the combination of
two extensions S and S’ is the extension S′′ Or S Or S′,
where S′′ is the extension that results from the merg-
ing of S with S′. For instance, the merging of the
extension Id(u); S with Id(u′); S′ yields the extension
Id(u′′); S′′ where u′′ is the expression that results from
unification of u and u′, and S′′ is the merging of S
with S′. The merging of Inside(S) and Inside(S′)
is the extension If (S and S′) Then Inside(S′′), where
S′′ is the merging of S with S′. The merging of the
extension If (S1 and . . . and Sn) Then S with the exten-
sion If (S1′ and . . . and Sm′) Then S′ is the extension
If (S1 and . . . and Sn and S1′ and . . . and Sm′) Then S′′,
where S′′ is the merging of S with S′. The merging of the
insertions of two expressions is simply their successive in-
sertions. Finally, we devised a criterion for the correctness
of the operation of combination of extensions, and we have
proved that the combination is indeed correct.

5. Reference Model Derivation
We sketch the model derivation and the grammar of

strategies for its specification.

5.1 The Two-Scale Model and its Derivation
The derivation of the homogenized model presented in

[6] is based on the assumption of periodicity of the coeffi-
cient a and on the hypothesis of a large number N of peri-
ods present in the interval Ω. It consists of a succession of
property applications grouped into seven blocks. The prop-

erties can be general as the Green formula, or specific to the
technique of two-scale approximation. For a domain Ω of
dimension 1 the Green formula corresponds to the integra-
tion by part formula, but it is preferable to write it directly
in the general form∫

Ω

d

dx
u v dx = −

∫
Ω

u
d

dx
v dx+

∫
Γ

tr(u) tr(v) n ds

where tr(.) represents the trace operator of a function on
the boundary. A green rule implementation is in figure
9, it is accompanied with the OuterMost strategy dis-
cussed in Section 5.2.

Fig. 9: Script of the Green Rule and of its application with
the strategy ”OuterMost”.

The homogenized model consists of two boundary
problems, the macroscopic problem posed on the macro-
scopic structure equal to Ω in this case, and the microscopic
problem posed on a dilated reference cell which is in this
case the interval Ω1 = (0, 1). The approximation for small
ε = 1/N of the solution u by the solution of the two-scale
model is of the form u(x) ≈ u0(x)+εũ1(x, x/ε)+εO(ε).
The mean behavior is governed by u0 solution of the
macroscopic problem, while u1(x, x1) is a small rapidly
oscillating perturbation defined on Ω × Ω1 and is Ω1-
periodic in the variable x1. It is constructed from u0 and
the solution of the microscopic problem. Given its rapid
variations, the role of ũ1 is of the same order of magni-
tude as that of u0 in the approximation of the derivative
du
dx (x) ≈ du0

dx (x) + dũ1

dx1 (x, x/ε) +O(ε).
The derivation of this model is based on the two-scale

transformation T that maps any function u(x) defined in
the physical domain Ω into a function (Tu)(x, x1) defined
in the two-scale domain Ω × Ω1. According to [6], the
construction of the homogenized model consists of seven
lemmas that are derived from the asymptotic expansion hy-
pothesis of the two-scale transformation

Tu ≈ u0 + εu1 + εO(ε),

(i) u0 is independent of x1, (ii)
du

dx
≈ du1

dx1
+ O(ε), (iii)

ũ1 = u1 − x1 du
0

dx]
is Ω1-periodic, (iv) u0 satisfies the



boundary conditions at the extremities of Ω, (v) formula-
tion of the coupled equations of u0 and ũ1, (vi) the relation

between u0 and ũ1:
dũ1

dx1
=
du0

dx

dθ

dx1
and the equation sat-

isfied by θ, and (vii) the homogenized equation satisfied by
u0.

5.2 A Grammar of Strategies
The User Language that can specify PDEs and their

extensions is also able to specify proofs. A proof is for-
malized in the User Language as a rewriting strategy that
is a symbolic transformation that describes the way basic
strategies are applied, see the survey [9]. The User Lan-
guage is built up out of basic strategies, traversal strate-
gies, an iterative strategy and structuring strategies. A ba-
sic strategies is a rewriting rule Exp1→ Exp2 correspond-
ing to a mathematical rule. When applied to an input ex-
pression, it transforms it into Exp2 provided Exp1 matches
with the input expression. Otherwise, this rewriting rule
fails. The left-choice strategy S1|S2 applies the strategy
S1 to the input expression, and if this fails, then it applies
the strategy S2. The sequential composition strategy S1; S2
applies S1 followed by S2. The traversal strategy S↓, stand-
ing for the outermost strategy, applies the strategy S to the
input expression, if this fails then S↓ is applied again to
each sub-expression of the input expression. The strategy
S 	 iterates the application of S until it fails or a fixed-
point is reached. Finally, there are strategy constructors al-
lowing one to structure proofs such as Step(name, S) and
Lemma(name, S).

Proofs can be involved in several operations: a proof
can be applied to a PDE, displayed, and extended by means
of extensions similar to those described for PDEs. For de-
bugging operation, two proofs can be compared with a ded-
icated tool that locates the differences modulo the associa-
tivity of the left-choice “|” and the sequential composition
“;” constructors. Moreover, during a proof application an
option allows to display the number of times that a rewrit-
ing rule has been applied successfully and unsuccessfully.

6. Extension to the Two-Scale Model of MMA
All aspects of the extension of the reference proof to the

asymptotic model of electrostatics in the MMA are shortly
described: the features to be covered by the proof, the
changes in the steps of the proof, their implementation in
the language and in the core, the principle of the extension-
combination method in the core and performance indica-
tors for extensions. The implementation of the model in a
finite element software has been done manually, see Figure
12, but is not discussed here as it is the object of [7].

6.1 Features in the Proof of the MMA Model
In addition to the transition from a one-dimensional do-

main to a three-dimensional domain which constitutes the
first feature (F1), the construction of the asymptotic model
of MMA presents three others features that are taken into
account in four extensions of the proof. (F2) The presence
of imposed values of the electrical potential in each cell
prevents the macroscopic variations of the asymptotic so-
lution u0. Therefore the main variations of u0 are inside the
cells only, the approximation of the derivative is of the form

ε∇u ≈ ∇x1u0 + O(ε) and u0 is Ω1-periodic. (F3) Due
to the periodicity, u0 cannot satisfy the nominal boundary
conditions at the ends of the network this causes boundary
layer effects i.e. additional contributions uBL

0 and uBL
L at

the two ends of the network. (F4) Due to the two constant
sources of voltages V1 and V2 in Ω1 and Ω2 and the peri-
odicity of the solution u0 in each of these parts there exists
also a boundary layer solution uBL

int at the interface which
allows to recover the continuity of the model solution.

6.2 Extensions for the Proof
The electric potential solution of the asymptotic elec-

trostatic model has the form

uBL,0 ≈ T−1u0 +T−1
BL,0u

BL
0 +T−1

BL,Lu
BL
L +T−1

BL,intu
BL
int .

It is noteworthy that the construction of the equations sat-
isfied by uBL is performed in a mathematical framework
harmonized with the two-scale approximation method but
replacing the two-scale transformation by an operator for
each boundary layer which transforms Ω into a semi-
infinite domain.

The four features F1-F4 are taken into account inde-
pendently by four extensions which are applied to the con-
struction of the reference model. Taking into account F1
is done in a similar way to what has been done to trans-
form the reference equation. To take F2 into account, the
construction of the model of u0 seems very different from
that of the reference model. However, a precise inspection
shows that it can be carried out by first transforming the
weak formulation used in the reference construction into
a very weak formulation (ie by transfering all the deriva-
tives on the test function) and then by applying Step (v)
which leads directly to the equation of u0 in very weak
form which remains to interpret in terms of strong form.
For F3, it is enough to introduce an indexation of the sub-
domains. Finally, the boundary layer equations of the case
F4 are obtained in a manner similar to that of the case F2
but using the boundary layer operators instead of the two-
scale transformation. A fragment of the script of the ex-
tension that covers F2 is shown in Figure 10. It consists of
adding the steps step0 (transforming the weak formula-
tion to the very weak formulation), step1 1 (a comple-
ment in the definition of specific test functions for the very
weak formulation), and step5 (transforming the very weak
formulation into the strong formulation and interpretation)
without making any change inside Lemma 5 of the refer-
ence proof. The extension associated with F3 is of the same
nature. These two extensions are carried out in indifferent
order. The extension associated with F1 brings modifica-
tions to several levels of the reference Proof as well as in
the extensions associated to F2 and F3. It is therefore ap-
plied after F2 and F3.

6.3 Principle of Extensions-Combinations in the Core
The principle of extensions of proofs is the same as the

one of extension of PDEs presented in subsection 4.2. That
is, there is only one extension language in which the user
writes his extensions and can apply them to both PDEs and
proofs. it follows that the combination of extensions in this
case are the same as the one explained before in subsection
4.2.



Fig. 10: Fragment of the script of the extension for the char-
acteristics F2.

6.4 Implementation of the Extensions for the MMA
Model

The derivation of the asymptotic MMA model was im-
plemented with the extension-combination method using
the three features F1, F2 and F31. Four indicators of com-
plexity and performance were used for the reference and
extended proofs: the number of rewriting rules used with-
out counting the repetitions, same but counting the repe-
titions, the size of a proof counted in kilo-nodes (knodes)
without counting the size of the rules therein, and the size
of the set of rules without counting the repetitions. In order
to evaluate the extensions, we use the relative difference of
these indicators between the extended and reference proofs.
Finally, a global indicator of complexity, called full proof
size, is the sum of the size of a proof regardless of the size
of the rules and the size of the rules without repetition.

7. Conclusion
We presented our recent advances in the development

of MEMSALab software dedicated to the computer-aided
generation of multi-scale models. The main idea be-
hind MEMSALab is the incremental generation of families
of multiscale models by integrating their features instead
of the case-by-case model construction. We described
the core of MEMSALab software, namely the extension-
combination method together with its theoretical founda-
tions, and language for the specification of PDEs, proofs
and their extensions. This design method was partially but
successfully applied to a micro-mirror array, leading to the

1The implementation of F4 is not yet complete at the moment of the
paper submission but does not present additional difficulties.

Fig. 11: Measures of the complexity and performances of
the extension-combination method for MMA modeling.

Fig. 12: Simulation of the asymptotic MMA model of the
electrostatic field in a 12 cells array with the superimpo-
sition of the three solutions u0, uBL

0 , uBL
L and uBL

int . It is
worth noting that the simulation time of this model is inde-
pendent of the size of the array.

simulation of this complex multi-scale multi-physics com-
ponent as a whole. Although the extension-combination
idea was announced and partially implemented in previ-
ous works in the early stages of the development of MEM-
SALab, it reaches its maturity in this work. The novelty of
this paper is to devise a class of rewriting strategies to for-
mulate extensions together with an internal operation that
corresponds to the intended combination operation. We im-
plemented a part of the reference proof in the User Lan-
guage and its extension to several features.

The extension-combination method is not specific to the
multi-scale applications, it is a general method that can be
used in the design of complex systems as far as the reusabil-
ity and the incremental development are concerned. Be-
sides, the User Language, grounded on the transformation
by rewriting strategies, is not narrowly tied to our applica-
tion domain, it could be of general use in the transformation
of mathematical formulas, data-structures, programs etc

We aim to generate more complex models with MEM-
SALab software and to integrate them in a library for in-
dustrial use. We plan to automate the transfer to the finite
element method software. We plan to automate the elim-
ination of non-accessible code in the extensions obtained



by combination. The would drastically reduce of the size
of the extensions. A more challenging problem is the auto-
matic generation of parts of the extensions.

References
1. André Arnold and Damian Niwinski. Rudiments of
µ-calculus. Studies in logic and the foundations of
mathematics. London, Amsterdam, 2001.

2. W. Belkhir, A. Giorgetti, and M. Lenczner. A sym-
bolic transformation language and its application to
a multiscale method. Journal of Symbolic Compu-
tation, 65:49–78, 2014.

3. W. Belkhir, N. Ratier, D. D. Nguyen, and
M. Lenczner. Closed combination of context-
embedding iterative strategies. Report hal-
01277395, 2016.

4. MD Canonica, F Zamkotsian, P Lanzoni, W Noell,
and N De Rooij. The two-dimensional array of 2048
tilting micromirrors for astronomical spectroscopy.
Journal of Micromechanics and Microengineering,
23(5):055009, 2013.

5. Michael David Canonica. Large Micromirror Array
Based on a Scalable Technology for Astronomical
Instrumentation. PhD thesis, ÉCOLE POLYTECH-
NIQUE FÉDÉRALE DE LAUSANNE, 2012.

6. M. Lenczner and R.C. Smith. A two-scale model
for an array of afm’s cantilever in the static case.
Mathematical and computer modelling, 46(5):776–
805, 2007.

7. D. D. Nguyen, N. N. B. Trinh, M. Lenczner,
F. Zamkotsian, and S. Cogan. A multi-scale model
of the electric field surrounding a one-dimensional
micro-mirror array and robust design optimization
of a cell. In submitted to EuroSimE, 2017.

8. D.D Nguyen, W. Belkhir, N. Ratier, B. Yang,
M. Lenczner, F. Zamkotsian, and H. Cirstea. A
multi-scale model of a micro-mirror array and an au-
tomatic model derivation tool. In EurosimE, 2015.

9. Eelco Visser. A survey of strategies in rule-based
program transformation systems. Journal of Sym-
bolic Computation, 40(1):831 – 873, 2005.

10. B. Yang, W. Belkhir, and M. Lenczner. Computer-
aided derivation of multiscale models: A rewriting
framework. International Journal for Multiscale
Computational Engineering, 12(2), 2014.


