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Abstract—Lifetime optimization in heterogeneous wireless sen-
sor networks (HWSN) is investigated in this paper. This is a
natural and important key issue which serves as a basis metric
for QoS of the monitoring activity. To tackle this problem, nodes’
clustering into Disjoint or Non Disjoint Cover Sets is the well-
known technique that has been heavily studied in the literature.
The objective is to organize the sensor nodes into a number
of subsets of nodes that are activated successively. Only the
nodes belonging to an active cover are responsible for targets’
monitoring, while all other sensors are in a sleep mode. The
presented paper is, to the best of our knowledge, the first work
to consider the heterogeneity level of nodes’ batteries in the case
of Disjoint Set Covers (HDSC) based scheduling. To this end, first
a novel mixed integer linear programming (MILP) formulation is
proposed to solve optimally the HDSC problem, next we provide
a genetic algorithm (GA) based approach to achieve approximate
solutions but in polynomial time complexity. A comprehensive set
of experimental results were conducted to assess the behavior of
our proposals in terms of several QoS metrics.

Index Terms—sensor networks, lifetime optimization, integer
linear programming, genetic algorithms

I. INTRODUCTION

With the technological progress, wireless sensor networks
(WSN) emerge as an effective way of monitoring in diverse
fields of applications such as pipeline and seismic monitoring,
disaster prevention, oceanography, tactical surveillance, and
so on. Nevertheless, they are constituted of a small sized
nodes with limited resources in terms of battery lifetime,
memory capacity, and computational power. Consequently,
due to the conceptual constraints of WSN and without being
able to recharge or replace exhausted batteries, especially in
hostile and remote environments, there is an increasing need
for designing techniques to improve the network’s lifetime
service.

In this paper, we focus on the case of Disjoint Set Covers
(DSC) based scheduling in which sensors can participate in at
most one cover and can interchange between idle and active
modes. Unlike previous works that deal with homogeneous
DSC, we consider heterogeneous networks, that is, the initial
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energy levels of nodes’ batteries are different. The heteroge-
neous case seems to be more realistic than the homogeneous
one for the following reasons :
i) wear-out rate : during the network service, the nodes’ energy
will be depleted at different rates leading to non homogeneous
sensors’ battery residual life.
ii) node failures: in large scale WSN, sensor failures are more
likely to occur and network’s reorganization will take place
by adding non necessarily identical nodes to recover the failed
ones.
iii) solar energy replenishment: if the sensor nodes are refill-
able by solar energy, then maintaining the network’s homo-
geneity is far for being true.

In the following, we summarize the contributions of the
presented work.
• Unlike earlier works, we deal with heterogeneous disjoint

set covers (HDSC) based scheduling scheme to prolong
the network’s lifetime.

• A new mixed integer linear programming (MILP) formu-
lation is proposed to tackle optimally the HDSC problem.

• An efficient genetic algorithm based approach is designed
to achieve near optimal network’s lifetime values with
minimal computation time complexity.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the relevant lifetime optimization techniques
that have been proposed in the literature. Section III describes
the new MILP mathematical model. Section IV describes the
genetic algorithm (GA) based approach for the heterogeneous
DSC case. We report in Section V series of experimental
results that assess the behavior of our proposals. Finally, we
summarize the contributions of this work and draw some
conclusions in Section VI.

II. RELATED WORKS

The problem of lifetime optimization in wireless sensor
networks has been formulated and studied in various ways. For
instance, in order to save energy consumption under coverage
requirement, some distributed algorithms have been proposed



in [1] [2] [3] [4] [5] [6]. They seek to keep a maximal number
of sensor nodes in a passive mode while guaranteeing the
whole targets’ coverage. The failed working nodes are replaced
when needed based only on local neighbourhood decisions.

By and large, centralized nodes’ clustering into disjoint or
non disjoint set covers is by far the well-known approach that
has been widely addressed in the literature [7] [8] [9] [10] [11]
[12] [13] [14] [15] [16] [17]. There are two main approaches
DSC and NDSC (for Non-Disjoint) as outlined in Table I.

homogeneous heterogeneous

NDSC

models : models :
IP formulation [10] LP formulation [8], [9]
resolution methods : resolution methods :

Heuristic [10] Heuristic [12] GA [11]

DSC

models : models :
IP formulation [14] No model
resolution methods : resolution methods :
Heuristic, GA [13] No resolution method

TABLE I: A synthesis of fundamental WSN’s lifetime opti-
mization approaches in the literature.

In [9], the authors formulate the energy saving problem as
a linear packing problem, then use Garg-Könemann algorithm
to achieve sub-optimal solutions. An approximation algorithm
is also proposed for q-coverage case problem where only a
partial region have to be monitored. This work is borrowed
in [8] to deal with non disjoint set covers scheduling. Due
to the exponentiality of the number of feasible cover sets,
Column Generation is used to alleviate the induced cost time.
The main idea is that only a restricted number of set covers is
built and other ones are generated when needed by solving an
auxiliary problem formulated as an integer linear programming
(ILP) problem.

In [10], the authors model the network lifetime problem
as a maximum set covers problem. They prove its NP-
Completeness by a polynomial reduction from the so called
3-SAT problem, and provide two efficient heuristics, using a
linear programming (LP) formulation and a greedy approach,
respectively, to enhance the network’s lifetime by clustering
the sensor nodes into a maximal number of non-disjoint cover
sets. In [12], an efficient approach which is called High-
Energy-First is introduced to solve targets’ coverage problem
in HWSN. The clustering process into Non Disjoint Cover
Sets is performed greedily by prioritizing sensors having
high battery residual life. Numerical results show that the
proposed heuristic achieves better performances compared to
other works in the literature.

Energy consumption using DSC based scheme is also in-
vestigated in [18]. The authors’ work consists of a sequence
of two main refinement steps. The first step, identifies the
fields of points that are covered by the same sensor nodes set,
while the second one assigns nodes into mutually exclusive
independent set covers. Its effectiveness is evaluated through
a variety of test-beds simulated scenarios.

Optimizing targets’ motoring in heterogeneous WSN based

on NDSC is addressed in [11]. The authors present first an
Integer Linear Programming (ILP) model to achieve optimal
network’s lifetime solutions and next, they provide a genetic
algorithm based method. The chromosome’s encoding solution
relies on the battery lifespan by using an integer representation.
Each gene represents the number of periods to be scheduled
for each potential cover set. The main drawback of this method
is that the chromosome’s length is exponential in the number
of sensor nodes. This leads to heavier computation times even
for reasonable networks’ sizes.

A genetic algorithm based technique which is called
GAMDSC is also proposed in [13]. The energy saving is
achieved by organizing sensor nodes into Disjoint Set Cov-
ers. The authors use integer representation for the encoding
scheme where each gene indicates the cover’s index to which
a sensor belongs. The adopted chromosomes’ representation
ensures that, at each iteration step, the whole genotypic space
corresponds to feasible solutions. The chromosome’s length is
equal to the network’s size and the gene’s value is bounded
by the optimum number of cover sets which is equal to the
straightforward number of nodes able to monitor the sparsely
covered target. Simulation results show that the proposed
evolutionary algorithm exhibits good performances compared
to the ones obtained by the MILP’s solver.

III. PROBLEM FORMULATION

In this section, the problem of maximizing the lifetime of
a network, consisting of sensors with heterogeneous energy
levels, is presented. The objective is to divide the sensors into
disjoint cover sets where each set covers all the targets. The
disjoint cover sets are then activated successively. The activity
of the network nodes is thus planned in advance for the entire
life of the network.

In the literature, the network is mostly considered to be
homogeneous, that is, the sensors have the same characteristics
and in particular, the same initial energy level. In this case,
only the target coverage objective guides the construction of
the cover sets. The problem of maximizing the network’s
lifetime is then reduced to the problem of building a maximum
number of cover sets, all of which can stay activated for
the same duration. In the heterogeneous case, the problem
becomes more complex and it is necessary to take into account
the difference in energy levels between the sensors when
forming the cover sets. The cover sets may not have the same
activation time period in the heterogeneous case.

A. Notations

In the rest of this paper, we will use the following notations
to present the problem of maximizing the lifetime of a hetero-
geneous sensor network (denoted by HDSC for Heterogeneous
Disjoint Sets Cover):
• N : number of sensors
• M : number of targets
• S : set of sensors = {s1, ..., sN}
• T : set of targets = {t1, ..., tM}
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• Ei : number of time units during which si can be
continuously activated

• Ti : set of targets covered by the sensor i
• Sj : set of sensors that cover the target j
• Ck : set of indexes of sensors forming the kth cover set
• dk: activation time of the kth cover set
In the considered coverage model, it is assumed that target

j is covered by sensor i if and only if the distance (Euclidean
distance) between j and i is less than the sensing radius of
sensor i. To focus only on the coverage problem, it is also
assumed that the communication range of the sensors, Rc,
is at least twice higher than their sensing range Rs (Rc ≥
2 ·Rs). This strong hypothesis makes it possible to affirm, as
in [19], that a complete coverage of a convex region implies
the connectivity of the active nodes.

Intuitively, the maximum number K of disjoint cover sets
that can be built is bounded by the minimum number of
sensors monitoring a target:

K = min
j=1..M

|Sj | (1)

Indeed, each cover set must cover all targets and a sensor can
only belong to one cover set.

Each sensor i has a battery level Bi and an energy consump-
tion per unit of time equal to ei. Consequently, the number of
time units during which sensor i can be continuously activated
is equal to Ei =

Bi

ei
. The maximum network lifetime is then

limited by the value Lmax:

Lmax = min
j=1..M

∑
i∈Sj

Ei (2)

The problem of maximizing the lifetime of a heterogeneous
sensor network is then reduced to maximizing the sum of
the activation times of the formed disjoint cover sets. The
activation time of a set cover Ck can be noted by:

dk = min
i∈Ck

Ei (3)

B. Example
Let consider a simple network (see Figure1) consisting

of 5 sensors monitoring 3 targets with S1 = {s3, s4, s5},
S2 = {s1, s2, s3}, S3 = {s1, s2, s3, s4}. For this example,
there are five possible cover sets: C1 = {2, 5}, C2 = {1, 4},
C3 = {3}, C4 = {1, 5} and C5 = {2, 4}. There are two
possible scheduling for the disjoint case. The first solution
is to form the cover sets C4, C5 and C3. The second one
is to activate successively cover sets C1, C2 and C3. In the
homogeneous case, the two solutions are equivalent with three
disjoint cover sets in each solution. In the heterogeneous case
with different sensors activation times, solutions with the same
number of cover sets may result in different network lifetimes.
For example, suppose that E1 = 2, E2 = 20, E3 = 15, E4 = 2
and E5 = 20. The first solution gives a network lifetime
equal to d4 + d5 + d3 = min(E1, E5) +min(E2, E4) +E3 =
2+2+15 = 19 while the second scheduling returns a network
lifetime equal to d1+d2+d3 = min(E2, E5)+min(E1, E4)+
E3 = 20 + 2 + 15 = 37.

s1

t3 t2

s2
t1 s3

s5

s4

Sensor
Target
Sensing range

Sensing range
s1

s2

s3

s4

s5

t1

t2

t3

Fig. 1: A network with 5 sensors and 3 targets

C. MILP: model formulation

The search for the optimal solution which maximizes the
lifetime of the network while preserving the total coverage
of the targets, can be formulated as a mixed integer linear
programming (MILP) problem. The variables used to define
the problem are the following:
• Continuous variable dk: dk > 0 means that Ck is a cover

set, ∀k ∈ J1,KK where K is the upper bound defined
by (1)

• Binary variable xi,k: xi,k = 1 indicates that the sensor i
is active in the cover set Ck

The objective is to maximize the sum of the duration of the
activation times of the cover sets.

Max

K∑
k=1

dk (4)

The activation time of a sensor i belonging to a cover set Ck is
greater than or equal to the activation time dk. This constraint
is expressed by:

α(1− xi,k) + Eixi,k ≥ dk ∀i ∈ J1, NK,∀k ∈ J1,KK (5)

The constant α is chosen large enough so that the inequality
is satisfied regardless of the value of xi,k. If sensor i does not
belong to the cover set Ck, then xi,k = 0 and the inequality
α ≥ dk is satisfied. If the sensor i belongs to the cover set Ck,
then xi,k = 1 and the inequality Ei ≥ dk must be satisfied.
The coverage of all targets in each cover set is modelled by
the following constraint:∑

i∈Sj

Eixi,k ≥ dk ∀j ∈ J1,MK,∀k ∈ J1,KK (6)

Among all the sensors used to cover a target j, at least one
must be present in the cover set for the inequality to be
satisfied. On the other hand, a sensor can only belong to one
and only one cover set in the disjoint case, this results in the
following constraint:

K∑
k=1

xi,k ≤ 1 ∀i ∈ J1, NK (7)
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Other additional constraints can be added:

dk ≤ max
i∈S

Ei ∀k ∈ J1,KK (8)

This constraint indicates that the activation time of any cover
set will necessarily be less than or equal to the activation time
of the sensor with the shortest lifetime.∑

i∈S
xi,k ≤ βdk ∀k ∈ J1,KK (9)

The constant β is chosen large enough so that the inequality
is satisfied regardless of the values of xi,k. This constraint
makes the cover set of zero duration to be empty. The number
of variables is K +NK. The number of constraints is equal
to MK+NK+NK+N +2K. The resolution of this linear
program with mixed variables becomes impracticable for large
problems. Heuristics and meta-heuristics are more suitable for
large problems and they are able to find sub-optimal solutions
in a reasonable execution time.

IV. PROPOSED GENETIC ALGORITHM

Among the well-known meta-heuristics, adequate for solv-
ing optimization problems, the so-called evolutionary genetic
algorithm, firstly proposed by Holland [20], has been applied
to many scientific areas and is proving to be very effective.
This section presents the proposed Genetic Algorithm (GA)
that is used to solve the HDSC based scheduling problem.

A. Encoding and fitness

To keep the representation of the solutions simple, the
HDSC problem is considered as a permutation of N sensors
and the search space corresponds to the N ! possible ordering
of these sensors. The natural representation of the chromosome
consists then of an ordered sequence (OS) of the N sensors
and each gene corresponds to the index of a sensor.

In this case, the fitness function plays a dual role, that
of building the disjoint cover sets from a given OS and
calculating the maximum lifetime of the network represented
by the OS. The fitness function is detailed in Algorithm 1.
It builds greedily the cover sets by considering the sensors
according to their order in the sequence. Each time a cover
set is formed (it contains enough sensors to cover all targets),
its activation time which corresponds to the shortest lifetime
of the sensors that compose it, is calculated. The network
lifetime L is the sum of the activation times of the cover sets.
The worst-case runtime complexity of the fitness calculation is
O(MN2). As an illustration to how this algorithm operates, its
application on the chromosome ‖1, 3, 4, 2, 5‖ of the example
presented in the section III-B, forms two cover sets ({1, 3}
and {2, 4}) that have a total network lifetime equal to 4.

B. The initial population

The quality of the initial population has a major influence on
the capacity of the GA to achieve approximate solutions and
it might increase its convergence rate. A good quality initial
population does not only consist of good quality individuals
but should also contain diverse chromosomes in order to allow

Algorithm 1 Fitness Algorithm

Require: An ordered sequence OS representing a permuta-
tion of n sensors

Ensure: The lifetime L (cumulative duration of the activation
times of the cover sets C1, .., Ck)
k ← 0 ;
L← 0 ;
while (OS 6= ∅) do
p← 1 ;
T ′ ← T ;
Ck ← ∅ ;
(*While a cover set has not yet been formed and there are still
elements in the sequence that were not examined yet*)
while (T ′ 6= ∅ ∧ p ≤ |OS|) do
i← OS[p] ;
if (Ti ∩ T ′ 6= ∅) then
Ck ← Ck ∪ {i} ;
OS ← OS − {i} ;
for all targets j ∈ Ti do
T ′ ← T ′ − {j} ;

end for
else
p← p+ 1 ;

end if
end while
if (T ′ = ∅) then
k ← k + 1 ;
dk ← mini∈Ck

Ei ;
L← L+ dk ;

else
OS ← ∅ ;

end if
end while

the GA to explore different regions of the search space and
not be limited to a single region with a local optimum. The
generation of individuals with a good quality is in general
problem dependent. For the targets coverage problem with
sensors having heterogeneous initial energy, the main idea
for increasing the lifetime of the network is to maximize
the activation period of each cover set. Since the activation
period of a given set is limited by the sensor with the smallest
energy in the set, it would be careful to try to put sensors
with similar initial energies in the same set. This heuristic
can be used to generate a good quality of initial population;
however, its individuals tend to be very similar. In order, to
keep the initial population diversified and of good quality, half
of the individuals are randomly generated and the other half
according to the heuristic described previously.

C. The crossing and mutation operators

Among several types of crossing operators, the LOX (Linear
Ordering Crossover) [20] linear crossing was used because it
has been shown in [21] that it is adapted for linear permutation
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Parameter GA
Number of Generations 100
Population Size 100
Probability of Mutation 0.1
Probability of Crossover 0.9

TABLE II: List of parameters for GA

problems. A simple mutation operator was used, it consists of
randomly selecting two genes and swapping them.

V. EXPERIMENTS AND RESULTS

The performance and the quality of the solutions given by
the proposed Genetic Algorithm were evaluated in a series
of experiments. All experiments were run on an Intel(R) i7-
8650U processor with 16GB RAM. Different parameters of the
GA, such as the population size and quality, and the number
of generations, were tested in order to examine their impact on
the final solutions. Moreover, the GA was applied to networks
with different number of sensors N , and different numbers
of targets M . In each instance of a network, the N sensors
and M targets were randomly deployed in a 500X500m two-
dimensional area. Each target had to be at least covered
by N/4 sensors. All the deployed sensors can communicate
directly with the base station and have the same 300m cover
range but they start the surveillance with heterogeneous initial
energy, varying between 1 to 10. One unit of energy allows a
sensor to stay active during one unit of time and cover during
that time all the targets in its range.

In this section, the performance of the genetic algorithm is
evaluated with fixed parameters described in table II. In all
these experiments, the crossover and the mutation rates were
equal to 90% and 10% respectively and a two-point crossover
operator was used. As described above, a chromosome repre-
sents the order of the sensors in a given solution and its size
is always equal to N.

Figure 2 compares the average lifetime of the solutions
returned by the GA after 100 generations while starting with
a good quality initial population and a random one. The GA
returns better solutions when initialized with a good quality
solution than with a random one, especially for large networks
that have a large search space.

A. The GA versus the exact method

Table III compares the GA’s execution time and solutions
quality to those of the exact method formulated previously.
The displayed values are the averages of 10 executions over
10 instances for each considered network’s size. For each
instance, the GA starts with a good quality initial population
composed of 100 individuals and executes 100 generations.
Table III shows that the exact method can only computes
the optimal solution for small networks in a reasonable time.
Its execution time increases exponentially to the size of the
network. However, the optimal solutions obtained by this exact
method can be used to evaluate the quality of the solution
returned by the GA for small networks. The gap between the
lifetime obtained by the exact method (Lopt) and the lifetime
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Fig. 2: Average lifetime returned by the GA with different
initial populations

computed with the GA is given in Table III. On the other hand,
the execution times of the GA are relatively small, less than
10 seconds. For small networks, (N ≤ 30), the GA was able
to find the optimal solution. For dense networks with larger
search spaces, only good quality solutions were found because
the GA was limited to 100 generations and had a population of
just 100 individuals. Therefore, it explored the same number
of solutions, 104, regardless of the size of the network.

Exact Method Genetic algorithm
N M Lopt Runtime(s) Gap(%) Runtime(s)

20

40 25.2 1.71 0.00 0.84
60 23.9 2.37 0.00 1.35
80 22.5 1.87 0.00 1.94
100 22.5 1.73 0.00 2.64
120 22.2 1.04 0.00 3.35

25

40 36.0 4.64 0.00 1.08
60 33.7 4.43 0.29 1.77
80 32.4 4.76 0.00 2.57
100 31.8 4.32 0.00 3.51
120 30.5 4.40 0.00 4.56

30

40 40.8 38.28 0.00 1.38
60 37.2 12.20 0.26 2.23
80 36.1 24.68 0.00 3.22
100 35.1 35.06 0.00 4.25
120 34.0 5.76 0.00 5.40

35

40 45.5 82.24 0.43 1.75
60 43.3 149.12 0.00 2.89
80 42.5 84.37 0.23 4.05
100 40.9 7.85 0.24 5.40
120 40.6 9.27 0.24 6.92

40

40 56.7 2175.20 0.52 2.20
60 53.0 1011.15 0.75 3.51
80 52.9 1474.60 1.32 5.01
100 52.3 947.26 0.76 6.58
120 51.5 587.96 1.74 8.47

TABLE III: The lifetime, execution time for different networks
computed with the exact method and the GA.

B. The GA versus the Hill Climbing method

In order to evaluate the performance of the proposed GA
on large networks and since the exact method cannot solve
them in a reasonable time, the GA was compared to a simple
local search method, the Hill Climbing method. The Hill
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Climbing method [22] starts from one initial solution and at
each iteration it searches its local neighborhood for a better
solution. In this comparison the neighborhood of a solution
X is defined as the set of solutions reachable by a two genes
swap in the X . The GA’s parameters, crossover and mutation
rates, and initial population size, were kept the same as in
the previous experiments. On the other hand, the number of
targets was fixed to 1000 and the number of sensors varied
between 1000 and 9000.
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Fig. 3: Lifetime of the best found solutions for different
problem sizes and using the GA or the Hill climbing method.

To fairly compare those two optimization methods, both
were executed for just one hour and only the best found
solutions with each method was considered. Figure 3 shows
the lifetime of the best found solutions with each method and
for different numbers of sensors. It can be noticed that the
proposed GA outperforms the local search methods for all the
considered configurations. The performance difference is more
significant for large dimensions (up to 146.34% network’s
lifetime improvement) because the search space for such
dimensions is just too large for this local search method.

VI. CONCLUSIONS

In this paper, we have studied the problem of energy man-
agement under targets’ coverage requirement in heterogeneous
WSN. The heterogeneity stems for the fact that the initial
energy levels of the nodes in the network are different. Major
achievements include: i) a new mixed integer linear program-
ming (MILP) formulation to tackle optimally the process of
nodes’ clustering in the case of DSC based scheduling, and
ii) a genetic algorithm (GA) based approach which is able to
achieve efficient solutions compared the MILP’s optimal ones.
Based on a comprehensive set of experiments, it was shown,
that obtained results corroborate the merits of our proposals
in terms of several QoS metrics.

Our future work will explore other possible chromosomes’
representations of the encoding solutions as well as the GA’s
backbone design in order to achieve more efficiency with
minimal execution time complexity.
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