Reducing the effect of light shift on a pulsed CPT-based clock

<u>M. Petersen¹</u>, M. Abdel Hafiz⁴, G. Coget¹, C. E. Calosso², S. Gu_erandel³,

E. de Clercq³, R. Boudot¹

¹⁾FEMTO-ST, CNRS, UBFC, 26 rue de l'_epitaphe 25030 Besançon, France. ²⁾INRIM, Strada delle Cacce 91, 10135 Torino, Italy. ³⁾LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire 75014 Paris, France. ⁴⁾PTB, Bundesallee 100, D-38116 Braunschweig, Germany.

Vapor cell atomic clocks are widely appreciated for their excellent short-term fractional frequency stability and their compactness. However, they are known to suffer on medium and long time scales from significant frequency instabilities, generally attributed to light-induced frequency shift effects. We will show the inprogress improvement of a high-performance Cs cell CPT-based atomic clock. There will be a strong emphasis on the first realization and result of the auto-balanced Ramsey interrogation protocol on a CPT-based Cs cell clock showing promising results for significantly reducing the effect of light shift on the frequency. The Allan deviation of the clock frequency has been improved to $2 \times 10^{-13} \tau^{-1/2}$ for 10000 s of averaging time reaching 2×10^{-15} at 10000 s.