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Abstract

Energy consumption is a major aspect to consider when designing large scale high perfor-
mance computing HPC systems. Integrating renewable energy sources to the power supply
of an HPC system is an efficient solution to lower its carbon footprint, but it is one faced
by challenges since the power production of most renewable sources is variant while the
power consumption of the system varies with the workload. Advanced workload management
techniques in combination with powering down idle machines allow to increase the efficiency of
this solution. We tackle here the problem of scheduling independent tasks on a multi-machine
platform that is exclusively run with green energy. We propose different power constrained
scheduling algorithms, and evaluate them through an experimental study on an HPC model
that considers the possibility to switch machines on or off.

keywords: Green power, Constrained scheduling, Parallel computing

1 Introduction

The growing dependency on Information and Communication Technology (ICT) services is pushing
service providers to build bigger and more energy consuming ICT structures in order to maintain
the quality of their services. Studies estimate that by 2030 ICT will be responsible for about
20% of global electricity consumption 1 and can produce up to the quarter of the CO2 emissions
worldwide [AE15].

As a result, the energy efficiency of large scale ICT structures has been the focus of many
research projects over the last years. Most of these efforts focus on reducing the system’s energy
consumption. However, even if the energy consumption is reduced, a system still has a carbon
footprint as long as it relies on brown energy. Another “greener” approach consists of reducing the
carbon footprint by integrating renewable (CO2–free) energy sources, such as solar panels, wind
turbines or fuel cells, in the system’s power supply.

Renewable sources can be used either by signing green energy contracts with an electricity
provider or by installing on-site renewable sources which, unlike a green contract, guarantees
an exclusively green energy supply. Using on-site renewable energy sources however presents a
challenge as both the system’s workload and its power supply are intermittent and vary over
time. This means that the availability of the power supply does not guarantee to allow the
execution of all the submitted computational demands at a certain time. As a consequence the
need for new workload and machine management solutions has arisen in order to optimally use
the instantaneous available green power. The main challenge is to cope with the available power
constraints. In [KNPRS17], we proved that scheduling independent tasks within a given power

1https://theshiftproject.org
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envelope on one machine is already NP-hard. On multi-machine platforms, a machine may also be
switched on or off to avoid that it consumes static power when idle.

This work tackles the problem of scheduling tasks on a multi-machine HPC platform where
the computing power comes from renewable sources. Therefore we consider an available predicted
power envelope that varies over time. The parallel computational platform consists of multiple
multi-core machines that can be turned on or off separately. The workload is a set of independent
sequential tasks. The contributions of the paper are the following:

• We propose and discuss different scheduling heuristics for HPC systems that take power
constraints into consideration. We assess their performance in extensive simulations with
different workload models.

• We show the impact of the on/off model for the machine management on the scheduling
solutions.

• We provide a comparison of the heuristics to use depending on the parameters of the
scheduling situation (available power envelope and task characteristics).

The rest of this paper is organized as follows. Studies on scheduling problems in parallel HPC
platforms and in systems that run on renewable power are presented in Section 2. The models used
in the paper are detailed in Section 3. Section 4 presents the power constraint aware heuristics. In
Section 5 we discuss the experimental study and the obtained results. Finally section 6 presents
our conclusion and future work.

2 Related Work

This work addresses HPC systems powered by renewable energy sources as a way to reduce ICT’s
carbon footprint. Its aim is to find an appropriate scheduling strategies to carry out the workload
management process in such systems. Even if our contribution targets parallel architectures of
HPC systems, this section focuses on research work that tackles scheduling problems in large scale
ICT structures.

The three most common types of large scale ICT structures are data centers, HPC systems and
clouds. These systems differ from one another in architecture, IT equipment and types of submitted
jobs. Some research works about scheduling in data centers and cloud environments are based on
task duplication [AK98] or virtualization techniques [BL09] to reduce energy consumption. Mathew
et al. have compared and analyzed scheduling strategies used in data centers [MSJ14], some
of which may have guarantees of robustness [GHBRK12] or optimality [AJ+14]. The addressed
problem is multi-objective for which Iturriaga et al. have proposed in 2016 scheduling strategies
for green-powered federation of data centers [INTD16]. In this context many scheduling criteria
are studied as the number of dead line violations (SLA) [NPTP18] or the request flow [KSTI11].

In the HPC context, where tasks are compute intensive, the makespan is a decisive criterion. In
some cases, as grids or cloud computing environments, HPC systems are considered as heterogeneous
platforms. before the extensive use of graphical processor, researchers were already interested
in scheduling tasks on heterogeneous parallel platforms [WSRM97, THW02]. In this context,
theoretical results are proposed on the complexity of tasks scheduling algorithms [IT07]. Some
works consider homogeneous platforms [HAR94, Wal10] since they are a more relevant model for
HPC clusters. We thus also consider such homogeneous systems for the experimental part of our
work that target HPC clusters.

The focus of the paper is also on power constraints when scheduling computational tasks.
Previous work in this context has payed attention on reducing either power consumption [VAN08,
Bun09] or energy consumption [ABRGR15, WKC+13] of an HPC platform. Minimizing the power
or energy consumption in HPC systems is however complex since it is conflicting with the makespan
criterion. It leads to multi-objective optimization problems [BTW13] that are even more difficult to
solve than the previous ones and only provide a trade-off [LLTW12, PJZA07]. Moreover optimizing
the power or energy consumption does not always mean a reduction of the ICT platform because
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of the rebound effect. [Pie11] highlighted that reducing power consumption may lead to increasing
the number of tasks to be processed. On the other hand, when considering the energy exclusively
coming from renewable sources, the available power at any given time is a more important factor
than the total available energy on a time range since the renewable energy is available anyway and
theoretically free. In this case, the power production is limited and intermittent. The challenge is
to optimize the use of an available power envelope when scheduling tasks as soon as possible and it
can also been solved by minimizing the makespan [KNPRS17, KNPRS18].

GreenSlot [GHL+15] manages parallel batch jobs in a data center powered by both a green
energy source and the electrical grid. The jobs are divided into critical and non-critical and
the scheduler exploits the flexibility of non-critical jobs to produce a schedule matching with
the renewable power production. The system is however connected to the grid to avoid deadline
violations when the renewable power supply is not high enough. Caux et al. propose a genetic-based
algorithm to minimize violations of task due dates in a cloud environment [CRS18], while respecting
the renewable power envelope and the resource constraints [CRGRS18] and without considering
the grid power. Lei et al. propose in [LWZ+16] a genetic algorithm for solving a multi-objective
energy-efficient scheduling problem on a data center that is partially powered by renewable energy
sources. The proposed algorithm addresses the minimization of both the makespan and the total
energy consumption objectives. The work presented here tackles HPC systems solely powered by
on-site renewable sources. The objective is not to reduce the energy consumption but rather to
minimize the makespan under power availability constraints.

3 Model

We define here the elements of the studied model.
Power model: as the power provisioning of the platform solely comes from renewable sources,

its production is not stable and varies over time. For technical reasons the power has to be
maintained at a constant level (setpoint), at least during a time interval. The available power is
thus modeled by X time intervals ∆x of length δx with an available power of Φx. This power is
shared by all the machines of the platform whose cumulative power consumption during a time
interval ∆x is constrained by the level of available power Φx.

Task model: we consider a set T = {T1, T2, . . . , Tn} of n tasks Ti. According to [SS09, GGT15],
the power consumption varies from one task to another depending whether the task intensively
computes or not. Each task Ti is defined by its processing time pi and its power consumption ϕi.

Machine model: the platform is a setM = {M1,M2, . . . ,Mm} of m machines Mj , each with
nb cores cores. Since the total available power is variable and constrained, machines are powered
off as soon as they become idle or when the available power is too low. Powering on a machine
(Sonj) takes a delay Tonj during which the power consumption of the machine equals to Ponj .
When running, a machine consumes at least its static power Pstatj . Then, it takes a delay Toff j ,
during which the power consumption of the machine equals to Poff j , to switch off the machine
(Soff j). The cores of a machine are available only when this machine is powered on.

T1

T2

T4

T5

T3
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Son1
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Tasks on M1
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Figure 1: Task scheduling on machines under power constraints
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Problem definition: the problem tackled here is to statically schedule the tasks on parallel
machines under limited power constraints, without preemption, to minimize the total completion
time Cmax. Note that, for simplicity reasons, we consider sequential independent tasks in order to
have a simple task model without communications nor precedence relations and identical machines.
One of the interests of this model is to consider switching machines on and off when the power
supply is not high enough to turn on all the machines.

Figure 1 illustrates the case where five tasks are to be run on a platform with dual-core machines.
In interval ∆1 there is enough power to start machine M1 and run tasks T1 and T2 but not to
switch a second machine on. In interval ∆2, as the available power increases, machine M2 is started
but only the tasks T3 and T4 can be run within the power envelope. Once machine M1 is finished
with its tasks, it is switched off since the available power does not allow to run tasks on it. Once it
is off, the released power allows to run task T5 on M2.

Complexity: in [KNPRS17] we prove that finding the shortest makespan when scheduling a
set of independent sequential tasks on a multi-core machine with power constraints is a NP-Hard
problem. Since this problem is an instance of the problem studied here (special case where
Tonj = Pstatj = Toff j = 0,∀1 ≤ i ≤ m) then this problem is also NP-Hard.

4 Heuristics

In this section we propose heuristics to compute schedules for the studied problem. Two classes of
heuristics are proposed, list based heuristics and power envelope partition based heuristics. Both
kinds of heuristics use the same task to interval assignment algorithm that also manages the on/off
switching of machines.

4.1 Task to interval and machine assignment

Algorithm 1: The PlaceTask() function

1 PlaceTask (Ti)
Data: Boolean placed, init to false
Result: sTime, time when the task is started

2 begin
3 x← 0
4 while ¬ placed ∧ x ∈ X do
5 machine ← findAvailableMachine(M, ∆x)
6 if machine 6= nil then
7 placed ← checkPowerAvaibility(∆x, pi, ϕi)
8 else
9 machine ← newMachine(M)

10 placed ← checkPowerAvaibility(∆x, Tonj , Ponj) ∧ checkPowerAvaibility(∆x + Tonj , pi,
ϕi + Pstatj)

11 if ¬ placed then x← x + 1

12 if machine.state = Soff then
13 machine.state ← on
14 sTime ← ∆x

15 if machine.state = Soff then
16 machine.state ← on
17 sTime ← ∆x + Toff j

18 return sT ime

At the beginning of the run time, all machines are switched off. The decision to switch a
machine on or off is based on two factors: the computational demand and the power supply
constraints. The task to interval assignment is done by the PlaceTask function. This function is
responsible for task to machine allocation, in addition to task to interval assignment, assuming
that a machine can be in one of 4 states: on, off , Son (switching on) or Soff (switching off). The
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function takes one task at a time and schedules it as early as possible on the first suitable machine
under the following rules (see Algorithm 1):

• No preemption nor job migration are allowed, therefore if a task starts executing on a machine,
it should finish the execution on the same machine. The checkPowerAvaibility function
checks the availability of cores and power during enough time ahead to execute the task.

• If no core is available, a machine must be started, if possible. The function first checks that
the power envelope is enough to start the machine then if it is possible to run the task after
this boot time with enough power for both the machine static power consumption Pstatj
and the task power consumption ϕi.

After placing a task, the scheduler looks for possible optimizations in the start and stop times.
Leaving a machine on reduces the delays and energy losses caused by its booting and shutdown
while keeping a machine on for too long might lead to unnecessary static power waste. The machine
should stay turned on just enough time to finish the execution of all tasks, the issue here is thus
how to determine in advance how long that period is before executing the tasks.

• If a task is assigned to a machine in Soff state, performing a shutdown, during the first
interval of its execution ∆start, the shutdown is canceled, and the execution of the task then
starts as soon as possible.

• If a task is assigned to a machine that is switching on or is in an “off” state at ∆start,
then a delay is applied while the machine boots, and the execution of that task starts at
∆start + Tonj .

• To avoid unnecessarily reboots of machines, before switching a machine Mj to off, the
PlaceTask function looks ahead in Toff j for a machine switch on, if yes, the machine is kept
on. Symmetrically, when switching a machine on, the function looks back for a switch off in
Ton, if yes, then the machine is kept on.

4.2 List based heuristics

List scheduling, one of the most common algorithms in scheduling, can give good solutions within
low time complexity for many scheduling problems. A list algorithm consists of two steps: sorting
the tasks based on a priority value then allocating the tasks, according to this order, to a resource
and schedule it for execution as early as possible. The second step is carried out by the PlaceTask
function.

Our problem can be described as an optimization problem whose objective (makespan mini-
mization) lay on a time axis, while the scheduling constraints (the power availability versus the
power consumption) lay on a power axis. It is thus a two dimensional problem (time and power
dimensions). For this reason we test priorities that consider the time axis, priorities that consider
the power axis and priorities that consider both axis simultaneously. The list based heuristics that
use those priorities are the following: LPT for Largest Processing Time (pi) first, LPN for Largest
Power Need (ϕi) first, LPTPN, for Largest Processing Time times Power Need first (pi × ϕi).
The TwoQs heuristic, or Two Queues, is an adaptation of a list heuristic that alternates between
two queues, namely LPTPN’s queue and LPT’s queue. This heuristic exploits the advantages of
two priority assignments at the same time, privileging tasks that would have low priority in one
queue but might have high priority in the other. The LPP heuristics, for Least Possible Places
first, calculates the number of time slots in which it is possible to execute each task, then, it sorts
the tasks in the queue starting with the task with the Least Possible Places first. This prioritizes
tasks that are harder to schedule regardless of whether it is because they have long processing
times pi or high power consumption ϕi or both. We finally test the case where the task list is not
ordered with the Random heuristic.

The list heuristics use a criterion to sort a task. We also propose a genetic algorithm that
tries to find the best list order without any criterion. An individual is the order of the task list
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and the algorithm just evaluates the list orders and mixes them. The genetic algorithm proposed
in [KNPRS18] repeatedly applies genetic operators to modify a set of individuals. The initial
population is composed of individuals generated with the list heuristics plus random individuals.
First, a selection process is performed to chose individuals from the current population. The fitness
of an individual is the Cmax resulting from using the task list order in the schedule. Then, the
task list order of chosen individuals are shuffled by applying mutation and crossover operators.
Between two generations a selection operator is applied. Several selection, mutation and cross-over
operators are evaluated but we only use Order Crossover(OX) with wheel selection here.

4.3 Power envelope partition based algorithms

List algorithms place tasks one after another and do not consider grouping tasks to better use
the two dimensions of the problem. We present here algorithms that generate power envelope
partitions and group tasks in these partitions.

The first proposed approach, called Binary search, tries to power on the least machines as
possible to spare energy consumed by Sonj and Soff j . It is based on a binary search to find the
best schedule. The starting points of the search are time 0 and a schedule that uses only one
machine (time horizon). The algorithm then tries to find a solution by reducing the time horizon
using a binary search scheme. In a time horizon the algorithm powers a first machine on, schedules
as much tasks as possible on it, then powers a second machine on, schedules tasks and so on until
either all the tasks are scheduled or a task cannot be scheduled. If all the tasks are scheduled the
algorithm reduces the time horizon, else it increases it, using the binary search scheme. Binary
search thus provides an acceptably time costly way to determine the point at which a machine
is switched off, which corresponds to the minimum time horizon under which all tasks can be
executed.

The second approach, called Stripe, tries to group tasks vertically. It first switches a machine
on to schedule one task. It starts with the longest task Ti to guarantee that the rest of the tasks
can fit (on the time axis) in this range as well. Then it schedules as much tasks as possible in
the time interval [∆start,∆start,+pi], where ∆start is the time where the machine is ready to run
tasks, powering on new machines when necessary and possible.

To evaluate the effect of task list orders on the last two approaches BSLPT (Binary Search
- LPT), BSLPN, BSLPTPN, BSLPP, BS2Qs, stripeLPT, stripeLPTPN, stripe2Qs and
stripeLPP are deployed.

5 Experiments

In this section we present an experimental study of the proposed heuristics. We have developed a
python simulator 2 presented in [KNPRS17] that offers a wide range of experimental setups on the
parallel computational platform. The simulator takes as input a set of tasks and the green power
production, expressed by a set of intervals of time with the available power level at each interval.

5.1 Experimental settings

The platform consists of several identical multi-core machines. We assume that the number of
machines available in the platform equals to the length of the task list. This way the availability
of machines is guaranteed which exempts the machine as a resource constraint, and we focus on
variable green power constraints. Other experiments can be done in the future to consider both
constraints at the same time. The number of cores in each machine is nb cores = 4. Based on the
values measured in [DGG+17], the static power consumption of each machine Pstat is set to 95 W,
the time to switch a machine on Tonj = 150 s and the time to switch a machine off Toff j = 6 s.
The power consumption during the start up and the switch off are set to Ponj = 125 W and
Poff j = 100 W since they are usually higher than the static power consumption.

2Source code available at http://github.com/laurentphilippe/greenpower
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To carry out our simulations we must produce the data that represents the two main input of
the scheduling problem, namely the task list and the power envelope.

A realistic model is used to generate the power envelope that represents the various renewable
power supply based on real data. This model [HNP17, HNVP19] provides hourly Φx values according
to a number of wind turbines and an area of solar panels. In order to examine the effect of the power
availability on the heuristics’ performance, we conduct several tests with increasing maximum
power Φx in each generated set of power envelopes. We start by setting the power generation
parameters as follows: solar panels area = 2000m2, pvEff iciency = 0.163, number of wind turbines
= 1, and turbinePowerNominal = 350, where pvEff iciency and turbinePowerNominal are the
efficiency factors of the solar panels and wind turbines respectively. These settings yielded power
envelopes with a maximum power Φ of about 350 W, we then multiply the values of these settings
by 2, 5 and 10 times to yield a maximum Φx of around 700, 1750 and 3500 W respectively. The
data used in this realistic model is collected every hour, therefore, we partition the power envelope
into unified intervals ∆x with length of δ = 1 time unit = 1/10 hour. Hence each 10 consecutive
intervals have the same available power level Φx. Each power envelope is a list of 10000 intervals.

We use two kind of task data sets for the task processing time pi. The firsts, the hyper-
gamma sets, use the model proposed in [LF03]. Based on real workloads, the processing time
distribution of HPC tasks is modeled using a hyper-gamma law with (α1 = 4.2, β1 = 0.94) and
(α2 = 312, β2 = 0.03). Although realistic, this model is based on workload logs collected from
only three sites which limits the experiments to the range of values of these samples. Therefore,
to explore a wider set of parameters, we also use an exponential distribution law to generate pi,
between pmin and pmax time units, to produce the synthetic workloads for the exponential sets.
Since we did not find any model nor real data for the task power consumption values, we use
random generation of ϕi, between ϕmin and ϕmax, with a uniform law, in both sets.

5.2 Evaluation metric

To compare the results of simulations over different data sets with different characteristics we
need a metric. Raw makespan values cannot be compared as they depend on the considered set
of tasks and intervals. A set of long tasks always gives a longer makespan than a set of shorter
ones. Normalizing the makespan values with the processing times is however not sufficient since
the schedule also depends on the available power. Therefore, we propose a metric, called NM
(normalized metric), that provides a fair comparison regardless of the power envelope. The idea is
to compare the distance of the makespan to the best makespan obtained with the same data sets
and to normalize this difference to the power envelope size.

NM =
∑

out÷
∑

total

Where
∑
out is the sum of the pi × ϕi area of all the tasks that are scheduled after the best

Cmax, and
∑
total is the total pi × ϕi area of the task list. Good schedules have low the NM

values and the best have a value of 0. This metric is fair because all heuristics are compared to each
other on the same data sets and the result is normalized on both the processing time and the power
consumption. We take the average of this metric value for each heuristics over 150 executions.

5.3 Results

We conduct two experiments that combines the two kinds of data sets with realistic power envelopes.

5.3.1 Hyper-gamma tasks and realistic power envelopes

In this experiment we use a hyper-Gamma distribution law to generate each task processing time pi
that are close to real data. Each task list contains 50 tasks with a range of processing times between
1 and 500 time units (1 t.u. = 6min). In the absence of actual data for task power consumption,
each ϕi for each task is randomly chosen with a uniform distribution law between 1 power unit
and ϕmax. In this experiment ϕmax ranges between 15 and 150 power units, by steps of 15.
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Figure 2: Average NM, Φmax = 350

Figure 2 presents the average value of NM for each heuristic with increasing value of maximum
task power consumption ϕmax on the horizontal axis. The maximum available power Φ is 350 W.
We notice that with the increase in ϕmax, the performance of most heuristics decreases, especially
the heuristics that use LPT to sort the task list (blue lines). We also point out that heuristics that
take the task power consumption into consideration when sorting the task list such as twoQs (red
lines), LPTPN (green lines) and LPP (brown lines) outperform the LPT based heuristics when the
power constraints are strict, which indicates that the power constraints are the most important
criterion in this case. The reason is that the available power is not enough to execute all tasks
simultaneously, which makes the decision of which task to execute first very important.
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Figure 3: Average NM, Φmax = 3500

Figure 3 presents the case where the maximum available power Φ is 3500 W. In this case, the
tasks are less concurrent for power due to high level of available power. This problem is thus closer
to the classical scheduling problem without power constraints, in which case LPT provides good
performance regarding minimizing the makespan. We notice a degradation in the performance
of heuristics that take the task power consumption into account such as LPN (purple lines) and
LPTPN (green lines).

We point out that the light green dash-dotted line in Figures 2 and 3 represents the NM
of the tested GA, which uses the Order Crossover (OX) with wheel selection. We notice that
this line always has the value of NM = 0. Since the NM value of each heuristics during one
simulation is calculated in relation to the best Cmax produced in for simulation, this means that
GA always produces the shortest makespan. The difference in performance between GA and the
other heuristics increases as power constraints become stricter. On the other hand, when the
power envelope provides plenty of power for task execution, all the heuristics that use LPTPN,
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twoQs, LPT and LPP orders provide a very close performance level to GA for tasks with low
power consumption. For tasks with higher power consumption, the performance of stripe based
heuristics degrades in comparison to BS and list based heuristics as we notice that LPT, BSLPT,
twoQs, BS2Qs and LPP keep the closest distance to GA’s performance line. In addition, even list
and BS heuristics, that use LPTPN for sorting the task list, provide worse performance when the
task power consumption gets higher than 50 t.u. We can then draw the conclusion that in the
least strict power constraint case, the GA does not significantly improve solutions provided by
LPT, twoQs and LPP for tasks that does not require a lot of power. Indeed the task processing
time is a more relevant prioritizing criteria than the task power consumption even for tasks with
high power consumption. We finally point out that LPN which only prioritizes the task power
consumption does not perform well for the makespan minimization objective, neither does SPT
which is designed for flowtime minimization. In fact, other than SPT, all the tested heuristics
improve the produced schedule which is found when keeping the task list in its original random
order, which proves the necessity for smart workload management in this problem.

Table 1: Computation time Φmax = 350

Algo OX BSLPT stripeLPT LPT

Time (s) 24674.80 87.08 67 3.39

Algo LPP BS2Qs stripe2Qs 2Qs

Time (s) 35.68 89.83 65.34 3.59

Table 2: Computation time Φmax = 3500

Algo OX BSLPT stripeLPT LPT

Time (s) 6157.18 49.04 0.71 0.32

Algo LPP BS2Qs stripe2Qs 2Qs

Time (s) 34.59 49.35 0.81 0.35

Tables 1 and 2 present the average computation time of heuristics in both cases where GA is
tested. We chose LPT and twoQs orders as a representation of each heuristics class to compare
to the tested GA and to LPP. We notice that GA takes much higher computation time to find a
schedule. We also point out that the computation time of GA in the case where it performs much
better than the other heuristics (Φmax = 350 W) is up to 5 times higher than its computation time
in the case where its performance is closer to other heuristics (Φmax = 3500 W). This means that
when the scheduling problem is easier (less strict power constraints), the GA reaches its stopping
conditions faster (25 iterations without improvement). In general, even fast list based heuristics
need ten times the computation times when the power constraints are strict to place all tasks in
comparison to their computation time in the (Φmax = 3500 W) case. We finally point out that
LPP is the only heuristics that does not show significant difference in computation time between
the two cases of power envelope. However, it still takes 10 times longer as any other list based
heuristics, due to the process of calculating in how many time slots each task can fit, before sort
the task list. This process increases the time complexity of LPP which is however indifferent of the
data set characteristics. In general, we notice that the computation time is rational to the length
of the schedule. This is logical because the longer the schedule, the more time intervals there are
to explored to find it. This is coherent with the observation that both LPP’s performance and
computation time are consistent with the power envelope variability. Finally we show that list
based heuristics can find a schedule 60 % faster than stripe heuristics and up to 99 % faster than
binary search heuristics. The tested GA on the other hand is around 18000 times slower than
list heuristics while it offers a 0.05 % improvement over the performance of the best list based
heuristics.
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Table 3: Number of on/off, Φmax = 3500

Algo OX Random BS2Qs LPT

ϕmax = 15 12.5 12.7 12.1 11.9

ϕmax = 50 12.1 12.3 11.5 11.45

ϕmax = 100 11.2 11.5 10.25 10.2

ϕmax = 150 10.2 10.5 2.55 2.5

Table 3 presents how many times each heuristics switches a machine on and off on average when
Φmax = 3500 W. We notice that when the available power is much higher than the average of task
power consumption, the number of on/off operations increases. However, when Φmax = 350 W the
available power level is not enough to run more machines even when the task power consumption is
at its lowest. In comparison to the average NM results, we notice that the heuristics that perform
less on/off operations provide a better value for NM.

5.3.2 Exponential tasks and realistic power envelope

In this experiment we use an exponential distribution law to generate pi values between pmin and
pmax ∈ [10, 100] with a step of 10 t.u. This variation in pmax provides more test cases than the
simulation using hyper-gamma distribution laws. As for the maximum power consumption we set
ϕmax ∈ [15, 150] with a step of 15 power units.

Figure 4 plots the heuristics with the best average NM when the maximum available power Φ
is set to 350 W, with increasing value of maximum task power consumption ϕmax on the vertical
axis and increasing value of maximum task processing time pmax on the horizontal axis.

We can distinguish two main areas on this heat-map figure. When the task power consumption
ϕmax ≤ 75W , LPN heuristics give the best performance in most cases. Unlike its poor performance
with hyper-gamma tasks, LPN is able to provide good results in this experiment because of
the shorter processing times, in comparison to the average processing time of around 500 t.u. in
Experiment 1. The task power consumption becomes more important in this case. The right
lower pink corner represents the case where the processing time increases enough to give the
stripe heuristics with LPTPN order the edge. The stripe heuristics hence outperforms BS and
list heuristics for task sets with long processing times and low power consumption. On the other
hand, for tasks with short processing times, BS heuristics outperform both list and stripe heuristics
(the left orange column). The second main area is defined by tasks with a power consumption
ϕmax > 75W . In this case the power constraints become too strict and only the heuristics using
LPP ordering are able to find the best makespan. Once again, for shorter tasks, BS heuristics
outperforms list and stripe heuristics.
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Figure 5: Best average NM, Φmax = 700.

Figure 5 presents the heuristics with the best average NM when the maximum available power Φ
is set to 700 W. We notice that the area where LPTPN based heuristics provide the best performance
expands in comparison to the little pink corner from Figure 4. The area covers now the diagonal
right half of the heat-map, while the performance of the LPN sorting policy drastically decreases
as under less strict power constraints, the task power consumption becomes less relevant against
the task processing time. The stripe heuristics using LPTPN order outperforms the list based
LPTPN when the task power consumption is closer to their processing time. We conclude that the
stripe heuristics performs better with square shaped tasks. The upper left half of the heat-map
where tasks have high power consumption and processing times pi ≤ 60 t.u. is mostly dominated
by LPP. When the processing time is below 25 t.u., stripeLPP gives the best performance in most
of the test cases. We notice a degradation in the performance of BS heuristics in comparison to
the case of Φ = 350W . Furthermore we observe that when power constraints are less strict, lower
complexity heuristics such as list algorithms and stripe algorithms provide good solutions. However,
in the hard cases of the problem, only more complex algorithms can give the best solution in some
test cases. This once more asserts the need for advanced workload management solutions in an
HPC system powered solely by renewable power. However, the time complexity of the solution
should be taken into account when finding the schedule in these systems. The computation times
of the different heuristics in this experiment follow the same ranking given in Tables 1 and 2 of
Experiment 1.

We point out that in both previous experiments, the tested GA provides the best average NM
in all the test cases. Therefore, the results presented in Figures 4 and 5 exclude GA from the
comparison in order to compare the performance of the rest of the heuristics. The mean values of
the NM for the other heuristics on the whole experiments range between a maximum degradation
of 60 % (LPT) and a lower one of 6 % (LPN) in the low power case. Surprisingly the Random
algorithm did not get the worst mean value with only 24 %. In the high power case, the mean
values range between 19 % (BSLPT) and 3.6 % (LPP). These results clearly show that the used
heuritics must be adapted to the avalaible power.

5.4 Summary

Our results show that choosing the right order to sort the task list depends on the characteristics
of both the submitted task list (how much power does the execution of tasks consume ?) and the
power envelope (how strict are power constraints ?). When the available power level is not high
enough to run all the machines of a platform simultaneously, deploying a good on/off mechanism
does not only save static energy consumption, but can also lead to better makespan due to less
rebooting delays.
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6 Conclusion

In this paper we present and test several scheduling heuristics to solve the optimization problem
of task scheduling on HPC platforms powered solely by renewable energy sources. We develop a
scheduler to control the process of switching machines on and off, taking account both time and
power costs. We showed the importance of the initial order of the task list to schedule and the
necessity for smart workload management in order to optimize the performance of the platform
under power constraints.

For future work we plan to use actual HPC workload traces integrating the energy consumption
of the tasks to test our approach. We also aim at investigating the use of energy storage into the
power management process. This will allow to store unused power and to use it at some later
moment to cope with insufficient power production from the intermittent energy sources.
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