
Tool Support for Refactoring Manual Tests
Elodie BERNARD∗†, Julien BOTELLA‡, Fabrice AMBERT∗, Bruno LEGEARD∗‡, Mark UTTING§

∗FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS Besançon, France
† Sogeti, Lyon, France

‡ Smartesting, Besançon, France
§ USC Business School, University of the Sunshine Coast, Sippy Downs, Australia

[elodie.bernard|fabrice.ambert|bruno.legeard]@femto-st.fr
julien.botella@smartesting.com

utting@usc.edu.au

Abstract—Manual test suites are typically described by natural
language, and over time large manual test suites become disor-
dered and harder to use and maintain. This paper focuses on the
challenge of providing tool support for refactoring such test suites
to make them more usable and maintainable. We describe how
we have applied various machine-learning and NLP techniques
and other algorithms to the refactoring of manual test suites, plus
the tool support we have built to embody these techniques and
to allow test suites to be explored and visualised. We evaluate
our approach on several industry test suites, and report on the
time savings that were obtained.

Index Terms—Test suite refactoring, Test suite minimisation,
Lightweight MBT, Machine Learning for Software Testing

I. INTRODUCTION

The increasing complexity of applications, the accelerated
pace of production releases, and frequent personnel turnover,
can lead to test assets becoming poorly maintained. A large
test suite with a long history is likely to contain tests that
are obsolete, redundant, use inconsistent terminology, and
many other flaws that make them less than optimally useful.
For example, 82% of respondents to the 2019 survey of the
French Software Testing Qualification Board answered that
they had been confronted with a problem of obsolescence of
test repositories [1].

This paper focuses on manual test suites, described by
natural language, and the challenging of providing good tool
support for refactoring those test suites to make them more
understandable, maintainable, reusable, concise, and more
amenable to automation. The driving force is primarily cost:
the tool support should reduce the cost of doing such refac-
toring compared to refactoring manually, and the resulting
refactored test suites should be less costly to use and maintain
than the original test suites.

We begin by discussing the motivations for our work, the
contributions, and the related work. Then Section III discusses
how we have applied various machine learning and natural
language processing (NLP) techniques and other algorithms
to the refactoring of manual test suites, Section IV describes
the tool support we have built, Section V gives a series
of recommended steps for effective refactoring, Section VI
describes an evaluation of our approach on several industry
test suites, and Section VII discusses conclusions and future
work.

A. Motivation
Expanding on the general goal of cost-effectiveness men-

tioned above, there are three primary goals for our work:
1) Test Suite Exploration: is the first necessity for a

tester who comes to a large and unfamiliar repository
of manual test cases. We want to provide automated
ways of grouping test cases, finding redundancies and
similarities between test cases, so that the tester can
quickly understand and start to optimize the test suite.
For this paper, we assume the general case where no test
execution history is available, so exploration is based
just on the test case documentation - i.e. test steps - in
natural language text of the manual test cases.

2) Legacy Test Sanitization: is the process of reversing
the entropy of the test suite, in order to make it more
maintainable and easier to use and understand. This
typically involves changes such as: reintroducing con-
sistent terminology and abbreviations, standardizing test
step description, detecting and removing redundant tests,
abstracting similar test steps by transforming them into
a single parameterized step, and grouping related tests
into suites.

3) Test Model Generation: can be a useful first step
towards automating some of the manual tests, but is also
a helpful way of visualizing the similarities and differ-
ences between the test cases in a test suite. We want our
tool to be able to generate a concise graphical summary
of any given set of tests, and then export that partial
model of the tests as a starting point for automation
using model-based testing, and also as documentation
that gives an overview of those tests and the relationships
between them.

B. Contributions
The primary contributions of this work are:
• demonstration of how machine learning and NLP tech-

niques can be applied to the task of refactoring manual
test suites;

• the creation and visualization of test models for any given
suite of tests;

• novel tool support for refactoring manual tests and a
recommended refactoring process;

• an industry evaluation that demonstrates that the tool sup-
port reduces the time required for refactoring a test suite,
and that the resulting test suite has reduced execution
time.

II. RELATED WORK

Test asset management is a regular concern for teams,
whether to eliminate redundancies or to manage test obso-
lescence. Test suite reduction addresses the first of these
concerns, and is an active research area [2], [3]. Several
approaches and tools propose to reduce the size of test suites
and thus the time required to run them, but whether they are
based on requirement coverage [4], [5] or test similarity [6],
all are dedicated to automated testing. Our work has similar-
ities with test techniques following reduction, we implement
clustering on tests [7] but on manual tests expressed in natural
language. By manual tests, we mean system-level test cases
or acceptance test cases composed of a set of steps, which
are themselves composed of an action and an expected result.
These tests are based on a variety of application test assets:
from web applications to large desktop applications.

NLP techniques are, in the context of testing, generally
used to generate tests from requirements. They can capture
the semantics of requirements to generate keyword sequences
corresponding to the requirement tests [8]–[10]. In our ap-
proach, NLP is used in two activities. Firstly, to group tests
based on similarities between scenarios [11] and secondly, in
the refactoring of test steps to allow the merging of similar
test steps by using a distance calculation between terms [12].

III. REFACTORING TECHNIQUES

This section describes the various machine-learning clus-
tering techniques and NLP (Natural Language Processing)
algorithms that we have applied to the tasks of grouping tests
by their similarity and assisting in the refactoring of those test
steps. For each task, we describe several approaches that we
tried, and the one that we selected as being the most useful,
with rationales. The memory and runtime efficiency of each
approach was a major consideration, since the resulting tool
must run inside a browser on a typical client machine, so that
companies can refactor their test suites without their test-suite
data going off-site.

A. Test clustering

The first thing a user needs, when refactoring manual
tests, is to be able group tests by functional scope. This can
allow them to identify where the refactoring effort should be
spent. We tried several clustering techniques. They all have in
common the necessity to characterize each test by a numeric
vector in order to compute the distance between tests. For a
given set of test cases, the resulting set of vectors forms a
matrix, which is the basis for the clustering algorithms. The
next subsection describes various techniques we tried to create
a vector that characterizes each test case, and the following
subsection describes clustering techniques.

1) Vectorization of test cases: A vector is a list of numbers
that define a position in space of the object it represents
relative to other objects of that kind. We evaluated seven
approaches to representing a manual test by a vector: the
first three are word-based, based on the set of words used
in the description of the test, while the others are step-based,
considering just the steps within each test.

1) our initial approach was the common bag-of-words
encoding, which just counts the number of times each
word appears in the test. A problem with this approach
is that it creates very large vectors, because there are
many distinct words. These vectors consume too much
memory for our requirements.

2) we tried removing all short words (three or less char-
acters). But because this ignores some significant words
(on, off, etc.), clustering results were less accurate.

3) we tried to avoid non-significant words by using tf-idf
(Term Frequency-Inverse Document Frequency), which
weights each word by its usage in the full document.
This gives smaller, more relevant vectors. This tech-
nique, often used for SEO (Search Engine Optimiza-
tion), gives good results but needs longer computation
time prior to clustering. Vector size is still high and
when the number of words increases, memory usage and
computation time also increase.

4) our first step-based approach was to treat each test step
as a single string, and use bag-of-words on these strings.
So each vector element is the number of times that
exact step appears in the test case. However, this strict
equality was too strong, since steps with data values are
considered different, and so are not grouped together.

5) an improvement on the previous approach is to replace
each step parameter value (if any) by a placeholder (i.e.
‘data’) prior to comparison. This significantly improves
results for tests with parameterized steps, but not for
other nearly-identical steps, which are important when
working with legacy and often obsolete test suites.

6) we merge steps that are ‘syntactically close’ (Leven-
shtein [13] distance less than K) into a single vector
element. As above, we also replace parameter values
by a placeholder before comparing steps. The problem
with the Levenshtein metric is that it considers a three
character string with one single-character difference to
another string, to have the same distance value as a hun-
dred character string with one single-character difference
from another string.

7) to solve the above issues with Levenshtein distance,
we compute a similarity ratio between each pair of
test steps, using the Jaro-Winkler distance [14], which
produces a number between 0 and 1. The higher the
result is, the closer the strings are. We consider two
steps as identical if their Jaro-Winkler distance is higher
than 0.8. This creates vectors with fewer elements, but
still meaningful enough to be used for clustering.

8) A further improvement consists of not considering the

2

step number of usage during the vector creation, but only
its presence. We found that this avoids creating strong
vector differences if a test step is included in several
iterations of a loop.

This final approach to vector creation has sufficiently small
memory and runtime overhead to be practical, since it is based
on test steps rather than words. The distance calculations
invoke Jaro-Winkler O(N2) times, where N is the number
of steps, but this can be reduced by pre-filtering if required.

We now describe how this vector creation approach has been
applied as a basis for several clustering algorithms.

2) Clustering algorithms:
1) a first approach is to use the k-means algorithm to

partition a number of observations (here test sequences)
into k clusters. Results were good, but the problem
was that the user must choose k prior to clustering.
This k can be evaluated with the elbow method (https:
//www.scikit-yb.org/en/latest/api/cluster/elbow.html) but
this requires running the algorithm multiple times before
choosing k, which increases computation time signifi-
cantly.

2) a second approach was the mean-shift algorithm
(https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.MeanShift.html), which discovers groups
in a smooth density of samples (here tests) and
chooses the number of clusters automatically. This
gave good results, but we noticed that users often
want to extract ‘sub-groups’ from the groups that were
originally computed, rather than having just one level
of clustering.

3) to enable multiple levels of clustering, we can use
a hierarchical clustering algorithm, such as http://
www.analytictech.com/networks/hiclus.htm. This algo-
rithm starts by assigning each test to its own cluster.
Then the closest clusters are grouped into a single
cluster, repeating this process until all tests are clustered
into a single cluster. The result of the algorithm is a
dendrogram [15] – see Fig. 1 for an example. To be
more convenient, we found a graphical representation
to enable the used to interact with this dendrogram as
seen in Fig. 3.

Fig. 1. An example of a simple Dendrogram diagram.

Once the tests have been grouped together, we want to
enable the user to choose one of those groups and refactor
some of the test steps within the group to make them more
consistent and homogeneous.

B. Test step refactoring

Two mechanisms have been implemented to reduce the
entropy of the test suite. One merges similar steps by making
them identical, and the other introduces parameterized steps
to capture steps that are identical apart from data values.

1) Merging similar steps: Two steps may represent the
same test action, but have differences in their wording. This
can be due to typos, or because several testers may have
maintained the test suite. In order to make manual test
execution easier the same test action should have the same
wording each time it is used. Furthermore to automate the test
suite execution, we may want to use a keyword approach,
with each keyword representing a test action. The number
of keywords to implement will be lower after the test suite
has been refactored. The tool uses the same string distance
techniques as for clustering (e.g. Jaro-Winkler distance) to
identify similar steps and allows the user to merge such test
steps, and all their usages in the test suite.

2) Parameterizing steps: The second way to merge test
steps is to parameterize them. For example, if there are two
similar steps: ‘Click on the red button’ and Click on the
green button’, then these steps could both be replaced by a
parameterized step: ‘Click on the COLOR button’, where
COLOR is a parameter that can be instantiated to a concrete
data value such as red or green.

To support this refactoring, once a test step and its param-
eter have been identified by the user, the tool uses regular
expressions to find all related test steps that are candidates
for adding this parameter. The chosen step and its parameter
are transformed into a regular expression (i.e. ‘Click on the
* button’), which is used to search for potential instantiations
of the new parameterized step. These can then be displayed
to the user as potential parameterization candidates.

IV. TOOL

The Orbiter tool includes several features dedicated to test
refactoring, each with a recommended usage. Figure 2 shows
the general interface of the Orbiter tool (at Oct 2019), which
is available and can be used online on a trial basis [16].

In this section, we will explain each of the main features of
this tool. In the next section we will describe a recommended
methodology to better use these features to perform efficient
test suite refactoring.

The tool is composed of four main features:

• Test suite analysis for test case clustering;
• Optimization and refactoring of test cases;
• Visualization of test cases and relations between them;
• Metrics for tracking refactoring.

3

https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
http://www.analytictech.com/networks/hiclus.htm
http://www.analytictech.com/networks/hiclus.htm

Fig. 2. Screenshot of the Orbiter Tool.

A. Test suite analysis for test case clustering

This first feature allows test cases to be imported from a
test management tool (e.g. ALM, Squash), to cluster those
test cases using hierarchical clustering algorithms, and display
them in a hierarchical view using dendrograms [15]. We can
thus combine the existing grouping of test cases by their
folders in the repository (a tree structure) with the clustering
based on the similarities between the textual description of
each test case.

In addition to applying this clustering to the whole test
suite in one group, it can also be applied to each folder
at a given level within the test repository. This keeps each
top-level repository folder separate, but allows clustering of
tests within that folder. This feature can also be used to
analyze redundancies that occur between different folders, by
switching between different views as shown in Fig. 3. The
left diagram shows test cases grouped within each sprint, to
identify similarity within Sprint 1, and within Sprint 2, etc.
At this level, identifying whether similarities exist between
sprints is complex. But by changing the depth level to the
global level (right-hand side), we can see there are similarities
between tests in sprints 4 and 5, such as between the test cases
”Sprint 5/Management of Owner with Secondary residence”
and ”Sprint 4/Owner Spain residence”.

These redundancies are difficult to identify ‘manually’ in
common test repositories, as this requires consulting all test
cases one by one to identify these redundancies. Here, the
dendrogram visualization makes the task much easier. Finally,
the dendrograms allow the user to select a cluster of similar
test cases in order to apply optimization and refactoring to
those tests. This is the subject of the following section.

B. Optimization and refactoring of test cases

This subsection describes three refactoring features of Or-
biter that can be used to clean up and improve the quality and
consistency of a set of manual test cases.

1) Test correction: The first refactoring feature that Orbiter
offers is the identification of similar test case steps, so that they
can be refactored to use the same terminology, phrasing, etc.
As described above, this refactoring can be applied at different
levels, to find similar test case steps within a selected set of
test cases, or globally across the entire repository.
For example, Fig. 3, shows two test cases selected, so applying
this refactoring in this state means that only the steps contained
in these two test cases will be analyzed for similarity.

Figure 4 illustrates the optimization and refactoring possi-
bilities offered by the tool. The left panel shows the details
of the chosen test cases plus all their test steps and expected
results (the indented light gray lines). Here, the step ‘Choose

4

Fig. 3. Hierarchical clustering of test cases in Orbiter – left side shows clustering within each folder, while the right side shows global clustering of all tests.

Fig. 4. Illustration of test step refactoring features in the Orbiter tool. The left-hand panel shows a selected test step, and the right-hand panel shows the
closest matches (2), followed by the top-ten matching lines.

a secondary residence’ is selected. At the top of right-hand
panel the ‘Selected keyword’ area shows the selected test step
and allows us to edit it. In the ‘Closest matches’ area below
this, we find a list of test steps (two in this case) that are most
similar to the selected step. The text of each matching test step
shows the differences from the selected keyword by displaying
missing text in blue with a line through the middle of the
text, and added text in green on a green halo background.
Each match also provides several action buttons, including
one that replaces the matching text by the selected keyword
to make them identical. This supports one-click refactoring to
remove differences such as spelling mistakes and inconsistent
terminology.

Finally, the ‘Automatic Matcher’ panel at the bottom shows
the results of a background search within the current working
scope to find the top ten phrases (test steps or expected results)
that may be good candidates for refactoring, because they are

highly similar to some other phrase in the working scope. The
resulting phrases are not necessarily related to the selected
keyword, but simply suggest to the user other refactoring tasks
within the current scope that may be productive.

In the next screenshot, Fig. 5, the working scope has been
changed to global (all tests), and we can see that more close
matches to our selected keyword are found and the ‘Automatic
Matcher’ panel shows a different set of 10 lines with higher
levels of similarity to each other. The use of global scope
versus local scopes will be discussed in the following section,
which will present good practices for test suite analysis and
refactoring.

2) Test correction: The second feature associated with test
optimization and refactoring is test correction. Test correction
offers the possibility to delete, add, swap, and edit steps. These
operations can be performed at the scale of a test case or more
broadly at a test group. Thus for a step it is possible to edit

5

Fig. 5. Screenshot of Orbiter tool with Working Scope changed to global (all tests), showing more similar matches.

it either at the level of a single test case or on a whole set of
test cases.

3) Refactoring by parameterization: Orbiter also offers the
possibility of inserting parameters into test steps in order to
unify several test steps that are similar except for one small
phrase. The use of parameters can give a higher level of
refactoring by unifying keywords that deal with the same
action, but use different values.

Fig. 6. Before applying parameterization refactoring.

In Fig. 6, with the selected keyword ‘The amount of the
annual contract must be equal to 465e’, it is clear that
there are 4 close matches that are extremely similar. The only
difference is the amount of the annual membership fee. The
definition of a parameter is easily done by selecting the value
selected to be parameterized, here 465 e, then by defining a
name for the parameter, here ”amount”.

The tool also provides automatic propagation functionality
by suggesting steps that can match with the application of
the parameter, thus facilitating the homogenization of steps.
This homogenization can be done individually by updating the
selected keyword, or by applying the parameterization to the
closest matches proposed. The details of the manipulations will
be done through the presentation of the refactoring process.

C. Visualization of test sequences and relations between them

For a selected test case or group of test cases, it is possible
to obtain a visualization of these scenarios in the form of a
business process diagram showing the sequences of all the
steps in all those tests (see Figures 8 and 8 for examples of

these diagrams). These diagrams are animated in the sense
that we can hover over a specific test case and see its path
through the business process diagram highlighted in bold. In
addition, as steps are updated the diagram is also updated on
the fly, so the user can see test step nodes being merged in
the diagram. This use of workflow diagrams as a support for
refactoring is described in the description section of the tool’s
usage process.

D. Metrics for tracking refactoring

In order to determine the progress of refactoring and opti-
mization of the test repository, the tool provides metrics such
as: the number of test cases, the number of steps (actions and
expected results) within those tests, and also the number of
‘keywords’ (any test step that is used more than once). The
use of these metrics is described further in Section VI.

V. RECOMMENDED REFACTORING PROCESS

This section describes the refactoring process we used
during the evaluation. It is organized into five main phases:

1) choosing a scope to refactor;
2) choosing which test steps to refactor;
3) refactoring those test steps to homogenize them;
4) refactoring whole test cases
5) applying parameterization refactoring.

A. Identifying a scope to refactor

One of the first questions that can arise when starting to
refactor an existing test repository is deciding where to start.
Even if a first subset of test cases is identified, it can still
be complex to know where to begin. We have identified two
complementary starting points, where the choice between them
depends on how well the existing test cases are structured.

In the case where the existing test cases are very poorly
structured, with many similar test steps written differently,
so requiring significant refactoring, it is advisable to start by
using the ‘Automatic Matcher’ on a large or global scope
in order to improve the test steps. This will allow an initial
homogenization and simplification of the global test repository.

6

This operation can be stopped when the Automatic Matcher
no longer offers any relevant results.

This starting point is optional, because it depends on the
maturity of the test repository, but it is advisable to carry it
out before starting further refactoring, as it saves a significant
amount of time for further optimizations. Indeed, careless
usage of the Automatic Matcher on small local scopes can
result in redundant operations. An example is to work on a
specific scope, choose to homogenize steps in large numbers
(within this restricted scope), but then have to repeat these
same operations later because another scope contains similar
test steps to the scope previously studied.

Another advantage of using the Automatic Matcher with a
global scope early in the refactoring process is that it highlights
similar steps across the whole repository, and therefore pro-
vides the tester with a better knowledge of the test repository.

The second starting point, which is independent of the
Automatic Matcher, consists of looking directly at the den-
drogram tree structure in order to determine the scope of test
cases to target for refactoring. Even if Orbiter allows you to
study a repository as a whole, starting with a subset can be
a smart solution, particularly for huge repositories. It is the
dendrogram that will determine where to start refactoring.

As explained in the tool description, Orbiter allows you to
group the test case by similarity to different degrees: on the
tree structure on different levels (1, 2, 3, etc.) or at level 0, i.e.
globally without taking the tree structure into consideration.
In all situations, the test cases are grouped by similarity and
it is possible to study the proposed dendrogram independently
of the level studied. The dendrogram itself is composed of
a set of depths ranging from the lowest to the highest level.
What we call the lowest level is the groups to the left of the
dendrogram in Fig. 7 (shown in green and labelled as ‘lowest
level’): they are the ones that are most similar to each other.

Fig. 7. A dendrogram, showing low-level and high-level groups of tests.

The further the groups move to the right, the fewer simi-
larities there are (the highest level is represented in black on
Fig. 7 and labelled ‘highest level’). The lowest levels have the
most similarity, so it is efficient to first target these groups
and then move on to the higher levels with less similarity. In
addition, refactoring test cases starting from the lowest levels
sometimes leads to the reevaluation of test cases on higher
levels. A slightly higher level test case may become a lowest
level test case. As the opposite is not very common, it is even

more strategic to start at the low level than at the high level
in order to limit refactoring work.

Once the scope of study has been chosen, refactoring and
optimization of the tests can begin.

B. Choosing test steps to be refactored

Once a set of test cases have been selected, their test steps
can be inspected to see if refactoring is required. Note that
we are focused here on test steps to be refactored and not test
cases, because we first work on all the steps before consulting
test cases in detail. This avoids inspecting test cases that are
not currently reviewed and may contain inconsistencies. The
correction of the steps will provide clarity to the test cases
and thus facilitate their inspection later.

The choice of steps to be performed can be made in different
ways that we will describe. As before, we recommend using
the Automatic Matcher on the chosen scope first, as it quickly
eliminates redundancies and simplifies the scope to be studied.
Then, different options appear to determine which step to
begin with. We recommend using test visualization via the
business process diagrams, because it is a significant support
for refactoring operations as well as for the acquisition of
skills on the test repository studied. Indeed, a crucial aspect
of refactoring operations, which is a real challenge, is to build
up good knowledge of the test repository. In the context of
refactoring operations, familiarity with the test repository is
not always present, and yet it is essential to promote the most
effective refactoring possible.

This is where workflow is important, as it allows a rapid
increase in competence through visual representations. Figure
8 shows the diagram for four test cases, and illustrates how
we can quickly describe the related business behaviour: in the
context of a subscription, two choices are possible initially
– either choose a main residence or a secondary residence.
Then for each of these choices we can specify if the insured is
owner or tenant, define the number of rooms, and then finally
calculate an estimate.

Fig. 8. Business process diagram for visualizing a set of four test cases.

As a result, although knowledge of the business domain
and the system under test is a real strength for refactoring test
cases, it is less necessary with the help of visual representa-
tions.

In addition to helping to improve skills and understanding
of the business, the workflow can be the input to the choice of
steps to be reworked. The study of the workflow by identifying
patterns leads to refactoring by quickly targeting redundancy
points. The most useful pattern to identify is tasks on the

7

same vertical line. Fig. 9 shows a diagram where we have
highlighted a column of test steps by a red rectangle. Several
redundancies can be identified between these four test steps:
‘Choose a principal residence’ and ‘Choose a principal
residance’ are two identical tasks, but one is misspelled.
This type of error is easily identified and can therefore be
quickly corrected. On the other hand, for the following line
‘Choose an insured owner’ or ‘Choose an insured tenant’
no refactoring is necessary, because these are two distinct
actions. The elimination of redundancies in the workflow
leads to the quick clarification of the visual representation as
described above.

Fig. 9. Business process analysis

After a step has been selected for refactoring, there are
several refactoring approaches that can be applied, as discussed
in the following subsections.

C. Homogenize test steps

The selected test step is displayed as the ‘Selected keyword’
in the tool and one can apply a set of operations (deleting,
moving, updating, parameterization, etc.) to this test step. Even
if a range of options is possible, we recommend starting by
unifying, optimizing and correcting test steps before moving
up to the level of operations dedicated to whole test cases.

For a selected step, the tool proposes a set of steps more or
less similar to the chosen step. By default, the tool performs
its analysis on the chosen scope, that is, on the selected group
of test cases. As a result, homogenization and correction are
carried out at the local scope level. However, during this phase
we recommend changing the working scope to be as global
as possible, to avoid redundant work. During our evaluation
experiments, we noticed that, in general, when a correction
had to be made at a small local scope, it also had to be made
at a larger scope. The initial phase of refactoring is longer if
a larger scope is used, because it requires the analysis of a
larger number of closest matches. Nevertheless, using a larger
scope can save a significant amount of time for the rest of the
work. It makes it possible to harmonize other perimeters in
advance of later phases. On the other hand, if the objective of
refactoring is not to work on other parts of the test repository,
then keeping the working scope in the group is a right choice.

Orbiter displays the number of occurrences of the chosen
keyword. This information is essential, because when updating

the step, we must keep in mind that the modification will
be performed for the number of occurrences indicated. It is
therefore suggested that before a refactoring operation is made,
one should investigate where the keywords are called from, in
order to know the context of use of the step. Thus, once the
choice of the working scope has been made, we can consult
the closest matches in order to homogenize and correct, if
necessary, the steps close to the chosen keyword.

Be aware, it is important not to apply any parameters at this
time. Indeed, it is more appropriate to apply parameters once
you have visibility on the test cases. Depending on the context
and needs, the application of parameters is not necessarily
appropriate, we will detail the use of parameters later.

A recommended way of choosing a good test step for
applying homogenization refactoring is firstly to select one
of the steps proposed in the closest matches, then identify if
that steps needs refactoring. Then look at the visualization
of the test cases that contain that step and closely related
steps using the business process diagram view, and from this
diagram choose related steps that need refactoring. Continue
by alternating between these two approaches.

This homogenization phase can be considered complete
when the visual representation is simplified and the proposals
in closest matches do not allow new update operations to be
carried out.

D. Refactoring test cases

Once the homogenization phase of test steps is completed
it is time to work on whole test cases, to correct, homogenize
and optimize them. The consultation of test cases has different
objectives and makes it possible to perform different opera-
tions, in particular to modify steps in their context of use.

For each scenario, it is recommended to read the steps and
select them, if work is to be done on them. As mentioned
above, it should be kept in mind that keywords are potentially
used several times and therefore updating should be considered
according to the call contexts. When consulting the test cases,
it is possible to perform refactoring work as mentioned above
as well as reordering the steps. The reorganization of the steps
can involve moving the step, deleting it and splitting it up.
The choice to perform these different operations depends on
different factors. The easiest action to identify is the step
deletion. For a selected keyword, which appears in several
occurrences and whose use is not relevant, it is interesting to
delete it in order to reduce the number of steps in the repository
and thus reduce the execution time of test cases. Then, it
is important to identify steps that are too dense and contain
too many actions. These steps are often time-consuming to
execute and in case of failure, traceability with the source of
the error is more complex to identify, as several actions have
been performed. It is therefore suggested to split the steps and
avoid a sequence of actions in the same step. This operation
increases the number of steps in the repository, but unifies it
by splitting the actions.

8

E. Applying parameterization

The application of parameters is the last step to be taken
in the refactoring and optimization of existing test cases. The
use of parameters must be done with care, because misuse of
them can lead to a loss of knowledge about the test repository.
An example would be to confuse two types of data, an A data
and a B data that require different processing. If we refactored
such test steps into a single parameterized step, we treat these
data in a similar way, which may confuse readers – it would
be better to keep the test steps clearly separate.

For this and other reasons, we recommend applying the
parameters at the end of refactoring, because it is at this
time that we have the best understanding of the test cases.
In addition, parameterization is easier to carry out thanks to
automatic proposals for applying the parameters. When adding
a parameter, the tool proposes a list of keyword matches that
are good candidates to apply the same parameter as well. The
problem is that if parameterization is applied before reaching
a certain level of uniformity, the proposed keywords matches
are not relevant, as they potentially contain business errors,
misspellings, etc.

Following the above recommended process allows us to
simplify, rework and optimize existing test cases step by step
in the most efficient way possible. The next section will
present our evaluations of this approach.

VI. INDUSTRY EVALUATION

The evaluation of the refactoring approach presented in this
paper was carried out on three different projects, in the context
of the maintenance of large applications in the railway domain.
The total size of the existing test repositories was several
thousand test cases, which are documented in natural language.
We applied assisted refactoring techniques on subsets ranging
from several dozen test cases to several hundred test cases (703
test cases in the largest subset) depending on the application
and scope we had to cover. The objective of the refactoring
performed was at several levels: reduce existing redundancies
to reduce the number of test cases; identify steps performing
the same action to merge these steps into a single test action to
facilitate maintenance; and parametrize these steps to prepare
for possible automation.

A. Research Questions

The questions we would like to answer are as follows:
• To what extent does this refactoring process and tool-

support provide an efficient solution to support the opti-
mization and refactoring of existing manual test cases?

• To what extent does this refactoring approach fit into
an agile development approach, and can it be efficiently
integrated into development cycles with short iterations?

B. Evaluation Metrics

In order to test the effectiveness of our approach, we used
the following set of metrics:

• Time (in hours) taken to perform refactoring with Orbiter;

• An evaluation of the time required to perform refactoring
without tools;

• The initial and final counts of tests, steps, and keywords,
in order to calculate the percentage reductions.

Our estimation of the manual refactoring time (without
using tools like Orbiter) is based on several input parameters:

• the refactoring times for a simple, medium and complex
test step;

• the number of test cases in the test suite;
• the complexity of the test suite (based on an index chosen

by the user);
• the refactoring objective (a percentage chosen by the user,

giving an estimate of the standardization they would like
to achieve);

The complexity and refactoring-objective numbers are used to
adjust the refactoring time for typical steps (easy, medium and
complex). The higher the complexity and refactoring-objective
numbers, the longer each step will take to refactor, and vice
versa. Once these times have been calculated, with the total
number of steps, the percentage of refactoring targeted, and
the refactoring times of the steps, we are able to estimate the
total refactoring time without tools for the whole test suite. The
overall complexity of test referentials varies. They all have a
variable number of test cases, with test cases of complexity
ranging from simple, medium to complex. For each of the
referentials, a complexity of 1 to 5 has therefore been defined.
(visible in the table I) To conduct the evaluation, the process
described in Section 3 was followed. On each experiment
an expert of the Orbiter tool and a functional expert on the
application worked together.

C. Evaluation Results

We studied a range of different test repositories in order to
test the tool on heterogeneous environments. The various ex-
periments were conducted on real existing test cases associated
with personnel and rolling stock management applications on
a French railway company and containing a panel of varied
test cases of different levels of complexity.

We performed nine refactoring experiments using Orbiter,
with the results shown in Table I. There was an average
decrease of 14% in test cases, 18% in the number of steps
and 22% in keywords. We estimated an average time saving
of 42% with the tool compared to an approach without.

However, these results vary across the different experiments.
For example, the reduction in the number of test cases ranges
from 0% to 90%. This is explained by the fact that the
objectives and degree of maturity of the test repositories are
different. When refactoring test suites used for non-regression
testing, there was an average decrease of 30% in the number
of test cases, which was higher than the general average.
For these non-regression test suites, the average reduction in
test steps and in keywords was also higher (38% and 43%
respectively), and the time required to carry out the tool-based
refactoring was halved (53% decrease compared to manual
refactoring).

9

Exp# Testing Type #Tests ∆% #Steps ∆% #Keywords ∆% Manual (mins) Orbiter (mins) ∆% Complexity
1 non-regression 11 0.0 278 -31.6 151 -48.3 104.0 45.0 -56.0 2
2 non-regression 9 -33.3 334 -29.9 201 -13.4 52.4 20.0 -61.8 1.5
3 non-regression 63 0.0 1380 -7.2 920 -18.8 565.8 330.0 -41.7 3
4 functional 44 0.0 350 0.6 301 23.9 61.2 40.0 -34.7 1
5 functional 39 0.0 369 0.0 313 -14.7 49.0 30.0 -38.8 1
6 functional 547 -1.3 4105 -2.5 2473 -5.9 5583.3 205.0 -96.3 1
7 functional 302 0.0 6212 0.0 1444 -28.7 956.6 600.0 59.4 1
8 functional 703 -4.0 16648 -2.0 5440 -4.2 782.9 338.0 -56.8 1
9 non-regression 31 -90.3 402 -84.6 249 -92.8 726.3 338.0 -53.5 4

Average: 194.3 -14.3 3342.0 -17.5 1276.9 -22.6 986.8 216.2 -42.2 1.75
TABLE I

EXPERIMENTAL RESULTS OF REFACTORING USING ORBITER. THE ∆% COLUMNS SHOW THE PERCENTAGE OF CHANGE IN THE PRECEDING COLUMN(S).

On the other hand, for experiment 8 that worked on a large
number of test cases, without reviewing all the test cases or
by taking small test suites (less than 50 test cases), different
results were found. In this experiment there was no specific
objective, but the goal was just to try to correct the test cases.
Lower results were obtained: 4% reduction in the number of
test cases, 2% reduction of steps and 4.2% of keywords. The
time saved compared to a manual approach was 57%. These
results are explained by the fact that on a large suite of test
cases, very few are reviewed, and on those smaller number
of test cases, only the steps are modified without necessarily
trying to delete them.

Our conclusion from these experiments is that in all the
experiments, with a range of different refactoring objectives,
Orbiter saved time compared to a manual approach, but the
time savings varied from 34% to 96%. Depending on the
fineness of the refactoring objectives, it is possible to obtain
good refactoring results. This is done by simplifying the test
repository by reducing the number of test cases and steps, and
thus obtaining a gain in uniformity through the reduction of
the number of keywords.

The tool therefore provides a solution to support the op-
timization and refactoring of existing test cases. In addition,
we found that the tool support can be integrated into Agile
development modes by adapting effectively to cycles with
short iterations, as the time spent using Orbiter can be shorter
because it is being applied iteratively to different subsets of
the test repository. On average, it takes 4 hours to perform
refactoring on a given scope.

The advantage of using this technique is that it provides
significant visibility on the tests through the graphical repre-
sentation, quickly indicating redundancies and errors. How-
ever, even if this technique is faster than any other approach,
it requires in an industrial context to be included in existing
cycles.

D. Threats to Validity

Better results are always observed on smaller test suites
(less than 65 test cases, which represents 66% of the test
repositories reviewed). This is explained by the fact that on
a reduced set we are able to generally review all test cases,
whereas on a large scale (at least 300 test cases) we do not
review all test cases. One point of attention would be to extend
the experiments and try to cover larger areas as a whole. This

would allow more test cases to be treated, in order to obtain
more detailed results and not mainly targeted at smaller areas.

Finally, our estimations on the time required to complete the
manual refactoring are based on a calculation that includes a
set of metrics, and the validation of testers who know the
test repository. Although the times evaluated seem consistent,
it does not replace a real experimentation in a manual way
with the recording of the time spent. The absence of manual
comparison was due to the difficulty of having the experiment
carried out by two different people (to avoid bias and to reduce
the learning effect) who would have had the same degree
of maturity and domain knowledge. This would also have
doubled the costs and time spent on the refactoring, which
was not acceptable in the industry context.

VII. CONCLUSION

A recent survey, ‘The state of Software Testing - Report
2019’ [17], shows that in the context of enterprise information
systems, in more than 60% of cases, less than 50% of
functional tests are automated. The rework and optimization of
manual test cases is therefore a very common situation faced
by testers. This is especially true when migrating a system or
application to a new platform, or when existing manual test
cases need to be automated.

The approach presented in this paper implements several
clustering and natural language analysis techniques to support
and partially automate test step and test case refactoring
activities in order to improve the maintainability of existing
test cases. The results obtained in terms of refactoring quality
and productivity gains show the significant contribution of
the tool support provided compared to refactoring without
any tools. We have therefore begun to extend the use of the
approach so that it can be used in a routine way on projects
requiring refactoring of existing manual test cases.

REFERENCES

[1] CFTL, “Observatoire 2019 sur les pratiques des tests logiciels en
France (2019 survey on software testing practices in France),”
2019, available from http://www.cftl.fr/wp-content/uploads/2019/04/
JFTL-2019-Enqułte-CFTL-2019.pdf.

[2] S. U. R. Khan, S. P. Lee, R. W. Ahmad, A. Akhunzada, and
V. Chang, “A survey on test suite reduction frameworks and
tools,” International Journal of Information Management, vol. 36,
no. 6, Part A, pp. 963 – 975, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0268401216303437

10

http://www.cftl.fr/wp-content/uploads/2019/04/JFTL-2019-Enquête-CFTL-2019.pdf
http://www.cftl.fr/wp-content/uploads/2019/04/JFTL-2019-Enquête-CFTL-2019.pdf
http://www.sciencedirect.com/science/article/pii/S0268401216303437
http://www.sciencedirect.com/science/article/pii/S0268401216303437

[3] M. Alian, D. Suleiman, and A. Shaout, “Test case reduction techniques
- survey,” International Journal of Advanced Computer Science and
Applications, vol. 7, pp. 264–275, 06 2016.

[4] A. Gupta, N. Mishra, and D. S. Kushwaha, “Rule based test case
reduction technique using decision table,” in 2014 IEEE International
Advance Computing Conference (IACC), Feb 2014, pp. 1398–1405.

[5] Z. Chen, B. Xu, X. Zhang, and C. Nie, “A novel approach for test suite
reduction based on requirement relation contraction,” in Proceedings of
the ACM Symposium on Applied Computing, 01 2008, pp. 390–394.

[6] A. Coutinho, E. G. Cartaxo, and P. D. Machado, “Test suite reduction
based on similarity of test cases,” in 7st Brazilian workshop on system-
atic and automated software testingCBSoft, 2013.

[7] B. Subashini and D. JeyaMala, “Reduction of test cases using clustering
technique,” International Journal of Innovative Research in Science, vol.
Engineering and Technology Vol 3, no. Special Issue 3, pp. 1992 – 1995,
2014.

[8] H. M. Sneed, “Testing against natural language requirements,” in Seventh
International Conference on Quality Software (QSIC 2007), Oct 2007,
pp. 380–387.

[9] H. M. Sneed and C. Verhoef, “Natural language requirement spec-
ification for web service testing,” in 2013 15th IEEE International
Symposium on Web Systems Evolution (WSE), Sep. 2013, pp. 5–14.

[10] A. Ansari, M. B. Shagufta, A. Sadaf Fatima, and S. Tehreem, “Con-
structing test cases using natural language processing,” in 2017 Third
International Conference on Advances in Electrical, Electronics, Infor-
mation, Communication and Bio-Informatics (AEEICB), Feb 2017, pp.
95–99.

[11] S. Gnesi, G. Lami, and G. Trentanni, “An automatic tool for the analysis
of natural language requirements,” Comput. Syst. Sci. Eng., vol. 20, 01
2005.

[12] A. E. V. B. Coutinho, E. G. Cartaxo, and P. D. de Lima Machado,
“Analysis of distance functions for similarity-based test suite reduction
in the context of model-based testing,” Software Quality Journal, vol. 24,
no. 2, pp. 407–445, 2016.

[13] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
feb 1966.

[14] W. E. Winkler, “String comparator metrics and enhanced decision rules
in the fellegi-sunter model of record linkage,” Proceedings of the Section
on Survey Research Methods, pp. 354–359, 1990.

[15] G. Bisson and R. Blanch, “Stacked trees: A new hybrid visualization
method,” in Proceedings of the International Working Conference on
Advanced Visual Interfaces, ser. AVI ’12. New York, NY, USA:
ACM, 2012, pp. 709–712. [Online]. Available: http://doi.acm.org/10.
1145/2254556.2254690

[16] Smartesting, “Orbiter,” 2019, available from http://orbiter.smartesting.
com/.

[17] PractiTest, “State of testing survey 2019,” 2019, available from https:
//qablog.practitest.com/state-of-testing/.

11

http://doi.acm.org/10.1145/2254556.2254690
http://doi.acm.org/10.1145/2254556.2254690
http://orbiter.smartesting.com/
http://orbiter.smartesting.com/
https://qablog.practitest.com/state-of-testing/
https://qablog.practitest.com/state-of-testing/

	Introduction
	Motivation
	Contributions

	Related work
	Refactoring Techniques
	Test clustering
	Vectorization of test cases
	Clustering algorithms

	Test step refactoring
	Merging similar steps
	Parameterizing steps

	Tool
	Test suite analysis for test case clustering
	Optimization and refactoring of test cases
	Test correction
	Test correction
	Refactoring by parameterization

	Visualization of test sequences and relations between them
	Metrics for tracking refactoring

	Recommended Refactoring Process
	Identifying a scope to refactor
	Choosing test steps to be refactored
	Homogenize test steps
	Refactoring test cases
	Applying parameterization

	Industry Evaluation
	Research Questions
	Evaluation Metrics
	Evaluation Results
	Threats to Validity

	Conclusion
	References

