
A Lightweight MBT approach for Visual
Acceptance-Test Driven Development - Experience

Report
Elodie BERNARD⇤†, Fabrice AMBERT⇤, Bruno LEGEARD⇤‡

⇤
FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS Besançon, France

†
Sogeti, Lyon, France

‡
Smartesting, Besançon, France

[elodie.bernard|fabrice.ambert|bruno.legeard]@femto-st.fr

Abstract—In this presentation, we give the results of an
experiment using a lightweight MBT approach to implement
Acceptance Test driven Development in a large Agile IT project.

Index Terms—Model-based-testing, Lightweight MBT, Agile
Software Development Lifecycle, ATDD

I. INTRODUCTION

The practice of Acceptance Test Driven Development
(ATDD) was born as an extension of Test Driven Development
[1] [2] [3]. In ATDD, acceptance tests are produced collab-
oratively during requirements analysis by business analysts,
product owners, testers and developers. To write readable test
cases that support test automation, ATDD often use a domain-
specific scripting language, called the Gherkin language [4],
in a Given-When-Then format. Gherkin’s language test cases
written in Gherkin language are often quite atomic, covering
one aspect of a User Story for example. [4]. To define more
global acceptance tests, for example end-to-end test cases, an
approach using a graphical representation of workflows and
a lightweight MBT approach [5] can be appropriate. This is
what we present in this experience report of using Lightweight
MBT to implement a visual ATDD approach in the context of
a large-scale IT project.

II. EXPERIMENTATION AND LESSON LEARNED

The research questions we aimed to verify were as follows:
• RQ1: To what extent is the Lightweight MBT approach

adapted to short agile iterations?
• RQ2: To what extent is the Lightweight MBT approach

efficient at creating and maintaining automated scripts?
We will present our experiments on two projects with two

distinct contexts with our Lightweight MBT tool: Yest. Now
we will present the two contexts of the projects on which we
conducted our experiments

a) Context 1: The first project, which we will call Project
A, dealt with the testing of a web application on a large
quality management application in a French railway company.
It was developed in an Agile context with 4-week sprints
and a test approach to verify the features implemented at
the end of each sprint. Test automation started 1.5 years

after the beginning of the application development and used
the Lightweight MBT approach (with the Yest tool) and the
Selenium framework. The test cases to be automated were built
by the test automation specialist via Yest then he completed
the adaptation layer and built the automation code. Only test
cases for automation were built with Yest, existing test cases
were created in a standard test management tool (here Squash)
for 1,5 years, manual test cases had been developed without
any information about a future test automation plan.

b) Context 2: The 2nd project, which we will call Project
B, dealt with the testing of a web application to manage
employees skillset of a French railway company. It was
developed in an Agile context with 4-week sprints and an
ATDD approach. As early as sprint 1, the test teams were made
aware of automation and the tests were built according to a set
of methodologies and best practices. Automation was initiated
after 6 months of the project (as soon as stable processes were
identified) using an MBT approach (with the Yest tool) and
the Selenium framework. The tests to be automated were built
by the test team via Yest and then an automation engineer
completed the adaptation layer in Yest and built the automation
code. The objective of these two approaches was to evaluate
how the use of Lightweight MBT could facilitate test design
in an agile context and the implementation of test automation
on a large IT project. The metrics collected to evaluate the
efficiency of the approach were the time dedicated to test
design and implementation [6], the number of test cases
produced and the number of steps per test, as well as the
number of US processed.

The following section will discuss the study of manual test
design and implementation compared to an approach with
Lightweight MBT.

A. Manual test design and implementation vs. Lightweight

MBT approach

In order to compare the two approaches we confronted the
test design and implementation between projects A and B over
a 3-month period. For both projects, the basis for designing
the tests was the US. These US had exactly the same model
for both projects: i.e. a presentation of the context, followed

by a description of a set of management rules. These rules
must be processed in test cases.

In Project B we ensured that the Lightweight MBT approach
was applied throughout the project. As part of the experiment
we analyzed the US and defined the scope that would be
covered during the next sprint. We therefore had visibility into
the US that were new and the features that would need to be
updated. So we started each sprint by quickly updating the
highest priority test cases to be run.

We will now present the results obtained following these test
design and implementation phases on each of the projects. For
a 4-week sprint, the time dedicated to design was about 1740
minutes for Project A and 1770 for Project B (an average
of four days). We will use hours and minutes as the unit
of measurement, as we will report design times by test case
and US. Team A processed an average of 13 US per sprint
compared to 32 US for team B. Now let’s take a more detailed
look, i.e. at the number of test cases produced and taking
into consideration the number of steps per test case. Team
A produces an average of 102 test cases per sprint with an
average of 10 steps per test case, and team B produces an
average of 131 test cases with an average of 15 steps per test
case. If we take into account the number of steps per test case,
i. e. an average of 1020 steps for project A and 1965 steps for
project B, we arrive at a conception time of 1 min 42 s per
step for team A against 54 s for team B, i. e. a decrease by
almost 50%. (47%)

For rather similar project perimeters, with a similar test
case design and implementation source, the results of our
experiments indicate that test design with Lightweight MBT
approach is 47% more efficient than a traditional manual
design approach. (shown in the figure 1)

Fig. 1. Summary of results on the study of design times between manual
design and implementation vs. Lightweight MBT

In order to explain these results, here is a summary of
the points that made it possible to be more efficient with a
Lightweight MBT approach. To begin the manual design of
tests is traditionally done in a test management and execution
tool such as hp ALM, Squash TM or Excel. (Here Squash
TM is used) In these tools, in case of a change affecting
a set of test cases it is necessary to take each of these test

cases individually. With a Lightweight MBT tool it is easy to
identify the model impacted by a change, update the model as
required and then generate all the updated test cases, without
having to modify them individually. This generation of test
cases saves a lot of time, and this is possible through the easy
use of the tool, hence the Lightweight aspect which allows
easy and fast updates in a workflow and then regenerating
test cases. This tendency is confirmed by the study of update
times. In the context of project B, time spent updating test
cases was distinguished from time spent creating new test
cases. On the design study of 268 test cases with 110 new
test cases and 156 in update, we observed an average gain
of 60% on the update time of test cases, so it is twice faster
than the design phase. Compared to a manual approach, design
with Lightweight MBT gives good results and is more efficient
for test case design and implementation and very efficient for
updating test cases.

B. Automation

As part of our evaluation of the Lightweight MBT, we
sought to evaluate how effective this approach was in cre-
ating and maintaining automated test cases. To this end, we
conducted two experiments, one on project A and the other
on project B, which we presented in the previous section. On
project A no tests were produced by the test team with the
MBT tool, it was the test automation engineer who created
the test workflows and generated the test cases and then the
scripts. The objective was to reproduce in the MBT tool the
test cases already existing on the project. The choice of this
approach was guided by the desire to compare two approaches:
build test cases in a Lightweight MBT tool with visibility on
automation (project B) and take existing test cases and adapt
them in a Lightweight MBT tool, but without considering
future automation (project A). Thus on project B, the test
cases were already existing and the automation engineer only
completed the adaptation layer to produce the scripts. Still with
a view to experimenting with the Lightweight MBT approach,
on project B, we completed the adaptation layer during the
sprint on a 1st perimeter and then on another perimeter during
a subsequent sprint. Including maintenance phases to update
Keywords. These phases are perfectly integrated during the
sprint. A total of 26 days were dedicated to automation on
project A compared to 8 days on project B. The objective on
project A was to automate 5 test cases, representing a total of
48 steps to automate and on project B 12 test cases composed
of 58 steps to automate, i.e. a fairly similar scope to automate
(20% step more on project B) in terms of number of steps to
work on, therefore comparable.

For project A, 6 days were dedicated to the modeling of the
workflow and 2 days to the completion of the adaptation layer,
i.e. 30% of the total effort for automation against 1.5 days for
project B, i.e. 18.75% of the total effort for automation. If we
compare these two global percentages 30% and 18.75% we
obtain a difference of 40%: this is explained by the fact that
the workflows and test cases did not exist on the project A
which required a lot of work by the automation engineer to

2

identify the existing test cases and introduce them in Yest. The
1st results show that when the test cases are already present the
effort to complete the adaptation layer in Yest is reduced. After
the test design phase and the completion of the adaptation
layer in Yest, we studied the design phase of Keywords. Their
coding accounted for 42% of the time dedicated to automation
on project A compared to 62% on project B, a difference of
20%. If we compare the coding time between the two projects
(11 days on project A, 5 on project B) we observe a difference
of 55%. The writing of Keywords was twice as fast on project
B as on project A. This can be explained by the fact that on
project B the testers who designed the tests had conceived the
test workflow with a view to automation, ensuring that there
were uniform and consistent test cases that could be easily
adapted to a Keywords system. On the 1st project, the test
cases had been developed without any real reflection on the
automation phase that would follow.

An example of good practice applied is to limit the number
of steps (and their content) in test cases to be automated, this
facilitates the completion of the adaptation layer. This limits
the writing of keywords and their sequencing. As a test case
becomes longer, it can be assumed that it will be more complex
and therefore involve a certain level of complexity to automate.
If we review the experiments and compare the length of the test
cases, i.e. the number of steps they contain between projects
A and B, we can see that the distribution of the number of
steps in the test cases was rather different. Indeed, on project
A on 10 test cases to be automated, only one test case had less
than 10 steps (10 steps exactly) that is 10% of the referential.
On project B, on 13 test cases, 6 test cases had less than
10 steps, almost half of the referential (46%). A majority of
short tests therefore contribute to facilitate and save time in
the completion of the adaptation layer.

This was to assess how the use of good practice on the
Lightweight MBT reduced the design effort of Keywords. The
application of good practices facilitates automation even if the
writing of Keywords remains a major part of the automation
phase. Script generation on both projects is automatic in the
Lightweight MBT tool: once the adaptation layer is completed
and the Keywords implemented, it is possible to generate the
scripts and integrate them into an automated test execution
tool. We did not discuss this part in our study because it
was independent of the use of Yest. Finally, we studied
the maintenance phase: we measured the time dedicated to
maintenance on each of these projects, 7 days on project A,
1.5 days on project B. The perimeter of Keywords was similar,
but there was more complexity in maintaining the Keywords
of project A than on project B. This is the direct consequence
that on project A, the tests were not completely adapted to
be automated so a certain gymnastics had to be set up to
create adapted Keywords and therefore led quite naturally to
maintenance difficulties, because the Keywords were complex.
On the B project the Keywords were simpler, configurable
and reusable on different test steps, thus limiting the updates
to be performed to maintain the scripts. This explains why
Project B has a maintenance time 78% shorter than Project

A and represents 18.75% of the overall effort for automation
compared to 27% for Project A.

III. CONCLUSION

Our approach sought to deal with two challenges : the
optimization of test case design and test automation in Agile
contexts. These results and our experience allow us to affirm
that the tst case designe and implementation with Lightweight
MBT is very well adapted to Agile cycles with short iterations,
because this approach allows us to quickly generate new
test cases, update it and thus allow the earliest possible test
execution. On the B project, applying the Lightweight MBT
approach, nearly 700 test cases were generated via Lightweight
MBT in Agile and ATDD context over 8 months of project
without the test design time delaying the different phases of
the cycle, on the contrary.

With regard to test automation, an early account that test
cases will be automated as part of the project is a key success
factor and a major facilitator of automated test development
and maintenance in the context of large IT projects. On the
project A automation was initiated after more than a year
of development without automation being planned and the
subject was treated without implementation of good practices
both in test design and keywords. As a result, the automation
framework was too complex and its maintenance was very
difficult. On project B, from the beginning of the project, the
tests were designed in a uniform way, trying to use existing
elements as often as possible instead of creating new ones in
order to have the most ”coherent” test cases as we can.

REFERENCES

[1] D. North, “Behavior modification: The evolution of behavior-driven
development,” Better Software, vol. 2006-03, march 2006.

[2] S. Hammond and D. Umphress, “Test driven development: the state of
the practice,” in Proceedings of the 50th Annual Southeast Regional

Conference. ACM, 2012, pp. 158–163.
[3] K. Pugh, Lean-agile acceptance test-driven development: better software

through collaboration. Pearson Education, 2010.
[4] E. C. dos Santos and P. Vilain, “Automated acceptance tests as software

requirements: An experiment to compare the applicability of fit tables
and gherkin language,” in Agile Processes in Software Engineering and

Extreme Programming, J. Garbajosa, X. Wang, and A. Aguiar, Eds.
Cham: Springer International Publishing, 2018, pp. 104–119.

[5] E. Bernard, F. Ambert, B. Legeard, and A. Bouzy, “Lightweight Model-
Based Testing for Enterprise IT,” in 2018 IEEE International Conference

on Software Testing, Verification and Validation Workshops (ICSTW), Apr.
2018, pp. 224–230.

[6] “ISTQB Certified Tester Foundation Level Syllabus, 2018 Version.”
[Online]. Available: https://www.istqb.org/downloads/send/51-ctfl2018/
208-ctfl-2018-syllabus.html

3

https://www.istqb.org/downloads/send/51-ctfl2018/208-ctfl-2018-syllabus.html
https://www.istqb.org/downloads/send/51-ctfl2018/208-ctfl-2018-syllabus.html

QRS 2019 | Tuesday, July 23, 2019

A Lightweight MBT approach for
Visual Acceptance-Test Driven Development

Experience Report

Elodie Bernard, Fabrice Ambert, Bruno Legeard

2QRS 2019 | Tuesday, July 23, 2019

Summary

• Introduction

• Context presentation

• Manual test design and implementation vs.
Lightweight MBT approach

• Automation

• Conclusion

ATDD

Lightweight

MBT

Experience Report

3QRS 2019 | Tuesday, July 23, 2019

Introduction

Verified
solution

MBT Testers

Developers

business analysts

Product owners

(Acceptance Test Driven Development)

ATDD

4

• Initialization of automation : from the beginning of
the project

• Implementation of automation : after 6 month (as
soon as stable processes were identified)

Test automation specialist :
• completed the adaptation layer
• built the automation code.

Test analyst :
built test (including those that will be automated)

Use ATDD approach

All test cases have been created with Yest

Initialization an implementation of automation :
after one and a half years

Test automation specialist :
• built test to automate (Based on the current one)
• completed the adaptation layer
• built the automation code.

Test analyst :
built test (only for manual execution)

Do not use ATDD approach

Only test cases for automation have been created with Yest

• Testing of a web application
• Agile context with 4-week sprints

Context presentation

Project A Project B

• Using the Lightweight MBT approach (with Yest)
• Using Selenium and Junit

Manual test design and
implementation vs. Lightweight
MBT approach

6QRS 2019 | Tuesday, July 23, 2019

Manual test design vs. Lightweight MBT approach
Overview

7QRS 2019 | Tuesday, July 23, 2019

Manual test design vs. Lightweight MBT approach
Lightweight MBT approach

8QRS 2019 | Tuesday, July 23, 2019

Manual test design vs. Lightweight MBT approach
Lightweight MBT approach

Developers

business analysts

Product owners

Testers

Increase
visibility of
the scope

of the
version

Improve
the

validation
of the US

Make
testing
easier

Clarify the
business
needs

9QRS 2019 | Tuesday, July 23, 2019

Manual test design vs. Lightweight MBT approach
Results

On project B
an average gain

of 60% on the update
time of test cases

10QRS 2019 | Tuesday, July 23, 2019

Manual test design vs. Lightweight MBT approach
Conclusion

• Design and update time are almost halved

• Communication between stakeholders is facilitated

• The expression and dissemination of customer needs is improved

• Overall test management is straightforward

Automation

12

• Initialization of automation : from the beginning of
the project

• Implementation of automation : after 6 month (as
soon as stable processes were identified)

Test automation specialist :
• completed the adaptation layer
• built the automation code.

Test analyst :
built test (including those that will be automated)

Use ATDD approach

All test cases have been created with Yest

Initialization an implementation of automation :
after one and a half years

Test automation specialist :
• built test to automate (Based on the current one)
• completed the adaptation layer
• built the automation code.

Test analyst :
built test (only for manual execution)

Do not use ATDD approach

Only test cases for automation have been created with Yest

• Testing of a web application
• Agile context with 4-week sprints

Context presentation (Reminder)

Project A Project B

• Using the Lightweight MBT approach (with Yest)
• Using Selenium and Junit

13QRS 2019 | Tuesday, July 23, 2019

Lightweight MBT for automation
Overview

• Keyword-driven-testing
• Java Selenium add-on
• Data set management

Keywords table with Yest

14QRS 2019 | Tuesday, July 23, 2019

Lightweight MBT for automation
Test automation process

The visual
representation of the

test

The abstract scenario
and the corresponding
automated test script

The test script in
java/Selenium with
the use of dataset

15QRS 2019 | Tuesday, July 23, 2019

Lightweight MBT for automation
Test automation process

Test automation engineer

Testers

Functional
testers actively
participate in
automation

Maintenance
improvement

Improve clarity
for functional

testers on
automated tests

16QRS 2019 | Tuesday, July 23, 2019

Automation
Results

17QRS 2019 | Tuesday, July 23, 2019

Conclusion

Test Design and maintenance improvement

Increase visibility of the scope of the version

Functional testers actively participate in automation

Clarify the business needs

Improve the validation of the US

