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Abstract: In this paper, a constrained distributed parameter port-Hamiltonian model of
the ionic polymer metal composite actuator is proposed. This model describes the multiscale
structure of the system. Submodels are coupled by boundary multi-scale elements. In order to
preserve the causality of the system, Lagrangian multipliers are introduced to deal with the
coupling between the electro-stress diffusion in the polymer and the flexible beam structure
of the actuator. Finally, a structure-preserving discretization scheme and some appropriate
projections are used to derive an explicit model suitable for simulation. The accuracy of the
model is verified using experimental data.
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1. INTRODUCTION

Ionic polymer metal composites (IPMCs) are electro-
active systems that can be used either as an actuator or
a sensor. Among the diversity of electro-active materials
such as piezoelectric materials, magnetostrictive materials
etc., IPMCs are more and more used in different applica-
tion fields, e.g biomedical applications, bio-manipulation
and micro- or macro-electromechanical systems (Shahin-
poor, 2016) due to their low-cost voltage, large deforma-
tion, wide working frequency ranges and their capability
of working in aqueous environments. IPMCs consist of
a double electrode layer filled with a polyelectrolyte gel.
Cations and solvent molecules migrate toward the cath-
ode when a difference in the electric potential is imposed
across the two terminals of its double electrode layer. As a
consequence, the cathode side swells while the anode side
shrinks, entailing a bending effect to the anode side (Park
et al., 2010). Based on its physical structure and working
principle, various models for IPMCs have been proposed
in the literature, going from the black box model (Xiao
and Bhattacharya, 2001) to models using more physical
insight (Shahinpoor, 2016; Branco et al., 2012).
A powerful tool for the modeling and control of complex
multi-physical nonlinear systems, called port-Hamiltonian
approach, has been introduced and developed in the last
decade (Maschke and van der Schaft, 1992).
The first port-Hamiltonian modeling of IPMC actua-
tors has been proposed in (Nishida et al., 2011). This
model consists in three sub-components which are multi-
scale, and are all described by distributed parameter sys-

� This work is supported by the INFIDHEM project and the
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tems interconnected each other using boundary multi-
scale (BMS) coupling elements. By considering the out-
domain variables as uniform (Nishida et al., 2011), the
BMS works as a differential gyrator, which lets the out-
domain variables be multiplied by a characteristic func-
tion, meanwhile, makes the in-domain variables be inte-
grated spatially. However, there exists a conflict of causal-
ity due to the coupling of the mechanical properties of
the gel and the mechanical structure (passive moment
coupling of equation (54) in (Nishida et al., 2011)). To
deal with this conflict, we consider a multiscale model
including Lagrange multiplier to account for these me-
chanical constraints, and numerically simulate the model
more precisely, which includes all coupling relations. The
resulting system of differential algebraic equation (DAE) is
reduced to an ordinary differential equation (ODE) using
coordinates projection.
The present paper is organized as follows. In Section 2
is given the constrained port Hamiltonian model of the
multiscale IPMC. In Section 3, a finite difference method
on staggered grids is applied to discretize the system and
the final model is reduced by using coordinates projection.
Numerical simulation and conclusions are given in Section
4 and 5, respectively.

2. MODELING OF IPMC

The IPMC under investigation (cf. Fig. 1) is of length L,
width b and thickness h. It consists of three sub-systems
at different scales as shown in Fig. 1.
First, an electrical model, which is at a scale of nanometer,
is used to represent the fractal-like structure of the double
electrical layers. The dynamics of the polyelectolyte gel,
at a scale of 100 µm, is described by an electro-stress
diffusion coupling model. At last, the global mechanical
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Fig. 1. IPMC structure and shape (Shahinpoor, 2016).

deformation of IPMC is described by the Timoshenko
beam model, whose scale is centimeter. Both the electrical
system and the electro-stress diffusion system are modeled
locally, whereas the mechanical beam system is modeled
globally. In this section, we present each sub-system and
their coupling through boundary or in domain multiscale
elements.

2.1 Electrical system

The two electrodes of Fig. 1 are modeled by the distributed
RC circuit. The voltage V is supposed to be uniformly
distributed on the double layers electrodes.

Fig. 2. Infinite dimension electrical system.

With the idea of (Nishida et al., 2008), (Nishida et al.,
2011), each fractal-like structure (see the red circle in
Fig. 1) is referenced as ξ in a virtual coordinate. Lξ

denotes the length of each fractal-like structure, R1 is the
resistance between two adjacent branches of fractal-like
structure, and R2 and C2 are the resistive and capacitive
impedance of each branch, respectively (Bao et al., 2002).
Each fractal-like structure is connected to the electro-
active gel through its boundary at ξ = 0.
The continuity equation and the Kirchhoff’s current law
(KCL) yield:

∂Q(ξ, t)

∂t
= −∂i(ξ, t)

∂ξ
, (1)

where Q(ξ, t) is the charge density of each capacitor.
By applying the Kirchoff’s voltage law (KVL), one gets :

∂v(ξ, t)

∂ξ
+R1(ξ)i(ξ, t) = 0. (2)

Let v(0, t) = V +Vc, and i(0, t) = I, where Vc corresponds
to the voltage coming from the gel. By defining (Nishida
et al., 2008):

e1(ξ, t) = v(ξ, t) =
Q(ξ, t)

C2(ξ, t)
+R2(ξ)

∂Q(ξ, t)

∂t
,

fr1(ξ, t) = ∂/∂ξ (vc2(ξ, t) +R2(ξ)∂Q(ξ, t)/∂t) ,

f1(ξ, t) = −∂Q(ξ, t)

∂t
,

er1(ξ, t) = −fr1(ξ, t)/R1(ξ),

and combining equation (2), equation (1) can be written
on the form 1(

f1
fr1

)
=

(
0 ∂ξ
∂ξ 0

)(
e1
er1

)
,

(
f∂ξ
e∂ξ

)
=

(
(e1(0) e1(Lξ))

T

(−er1(0) er1(Lξ))
T

)
=

(
(V + Vc e1(Lξ))

T

(−I er1(Lξ))
T

)
.

(3)
Assuming that the impedances are infinite, the current
at the endpoint of each fractal structure is zero, namely
i(Lξ, t) = er1(Lξ) = 0 (Nishida et al., 2011).

2.2 Electro-stress diffusion system

An electro-stress diffusion coupling model is considered to
describe the swelling and shrinking dynamics in the gel
(Nishida et al., 2011). Compared to the diffusion in the
liquid phase of the gel, the deformation of the solid phase
is so fast that it is considered as quasi-static. Consequently,
the mechanical dynamics of the gel is not represented
explicitly, and the radius of curvature of the gel is derived
from the rotational angle of the beam, leading to an
algebraic constraint.

Deformation of the solid phase This deformation is as-
sumed to be symmetric. The schematic is shown in Fig. 3.
The radius of curvature R(x, t) fluctuates along the x-axis,

0
-

Fig. 3. Deformation of gel in one dimension.

but is assumed to be locally homogeneous (Nishida et al.,
2008), i.e. ∂R(x, t)/∂x = 0 always holds in each z domain.
The displacement of each volume point projected in Carte-
sian coordinate is given by:

uz = uz(z, t), ux =
z

R(x, t)
x, uy =

z

R(x, t)
y. (4)

The swelling ratio fs1(z, x, t) of the solid part is defined as
the divergence of the displacement tensor:

fs1(z, x, t) = ∇ · u =
[

∂
∂x

∂
∂y

∂
∂z

]
[ux uy uz]

T

=
2z

R(x, t)
+

∂uz

∂z
.

(5)

According to the hypothesis of symmetric deformation,
the linear formulation about the stress tensor and the
displacement is expressed as:

σij = K
∑
k

∂uk

∂xk
δij +G(

∂ui

∂xj
+

∂uj

∂xi
− 2

3

∑
k

∂uk

∂xk
δij), (6)

where K and G are the bulk modulus and the shear
modulus of the gel, respectively, and δij is the Dirichlet
function. The stresses are average variables in the IPMC.
Further informations on different stresses of IPMC model
1 For the purpose of simplicity, ∂/∂ξ is denoted as ∂ξ and the symbol
t is omitted in the following context.
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are available in (Zhu et al., 2012).
As a result, equation (4) and (6) yield the following
expression:

σxx(z, x, t) =

(
K − 2

3
G

)
fs1(z, x, t) +

2G

R(x, t)
z,

σzz(z, x, t) =

(
K +

4

3
G

)
fs1(z, x, t)−

4G

R(x, t)
z.

(7)

Dynamics of the liquid phase Two coupled phenomena
can be distinguished in the liquid phase: electro-osmosis,
and water transport. These coupled phenomena were for-
mulated in the work of (De Gennes et al., 2000), covering
the transport of ions and the solvent:

je = −σe∇ψ − λ∇p,

js = −k∇p− λ∇ψ,
(8)

where je and js represent the electric current density and
the water flux density, respectively. σe is the conductance,
λ stands for the Onsager’s coupling constant, k denotes
the Darcy’s permeability, ψ is the electric field, and p
represents the water pressure in the network (De Gennes
et al., 2000).
It is supposed that the liquid goes only in the z direction,
so ∇p = ∂p/∂z is the mechanical force. The bulk region
of the gel satisfies the charge neutrality condition, namely
∇je = 0. The incompressibility of poly-electrolyte gel is
also assumed in this work (Yamaue et al., 2005), i.e.:

p = σzz =

(
K +

4

3
G

)
fs1(z, x, t)−

4G

R(x, t)
z. (9)

Thus, the gradient of pressure can be calculated as:

∇p =
∂p

∂z
=

(
K +

4

3
G

)
∂fs1(z, x, t)

∂z
− 4G

R(x, t)
. (10)

So equation (8) can be rewritten as:

js(z, x, t) =
λ

σe
je +

(
λ2

σe
− k

)
∇p

= −D′ ∂fs1(z, x, t)

∂z
+ 1Z

λ

σe
je(t) + 1ZΦ(x, t),

(11)
with

D′ =

(
k − λ2

σe

)(
K +

4

3
G

)
,Φ(x, t) =

(
k − λ2

σe

)
4G

R(x, t)
,

(12)
where 1Z stands for the characteristics function of domain
z. It distributes the boundary values λ/σeje(t) and Φ(x, t)
as uniform constants into z domain.
In the liquid phase, a swelling ratio fs2 is also introduced.
It follows the conservation law that:

∂fs2(z, x, t)

∂t
= −∂js(z, x, t)

∂z
. (13)

This equation can then be reformulated in the PHS frame-
work as:

(
f2

fr2

)
=


−∂fs2

∂t

∂fs2
∂z


 =

(
0 ∂z

∂z 0

)(
fs2

−D′ ∂fs1
∂z

)
. (14)

The effort and the boundary variables are:

(
e2

er2

)
=

(
fs2

−D′ ∂fs1
∂z

)
,

(
f∂z

e∂z

)
=




−D′ ∂fs1
∂z

(
−h

2

)

−D′ ∂fs1
∂z

(
h
2

)

−fs2
(
−h

2

)

fs2
(
h
2

)




.

(15)
Since the solid and liquid phases are strongly mixed with
each other, we have fs1 = fs2 = fs.
As hinted by equation (15), 1Zλ/σeje(t) and 1ZΦ(x, t)
do not appear explicitly in the dynamics, while they
play a role of input in order to match the impermeable
assumption js(±h/2, t) = 0.

Bending moments generated in the gel According to
(Nishida et al., 2008), the stress σxx can be divided into
two parts: the active one σa = (K−2/3G)fs(z, x, t) related
to the active swelling of the gel, and its passive counterpart
σp = 2G/R(x, t)z corresponding to the storing energy.
The active stress can generate an active moment Ma:

Ma(x, t) =

∫ h
2

−h
2

σa(z, x, t)bzdz =

∫ h
2

−h
2

Bafs(z, x, t)dz,

(16)
with Ba(z) = (K − 2/3G)bz.
Besides, the passive moment Mp comes from the passive
stress σp:

Mp(x, t) =

∫ h
2

−h
2

σp(z, x, t)bzdz =
Gbh3

6R(x, t)
. (17)

Regarding to the mechanical model along x-axis, the
curvature 1/R is related to the angular strain ∂θ/∂x of
the IPMC via the geometric relationship:

1

R(x, t)
+

∂θ

∂x
= 0. (18)

At the initial phase of actuation, the active moment Ma

is much larger than the passive moment Mp, as evident
from the phenomenon of quick bending of IPMC. As the
curvature increases gradually, Mp is getting larger than
Ma, which makes the IPMC to bend back slowly.

Coupling with the electrical system In light of equa-
tion (11), the interconnection between the electro-stress
diffusion system and the electrical system is through
boundary variables as 1Zλ/σeje(t), ∂fs/∂z and I, Vc. je
can be related to I by:

je(t) =
1

Lb
I(t). (19)

Given that the two pairs of energy variables 1Zλ/σeje(t),
∂fs/∂z and I, Vc are of different scales and are defined
in domains z and ξ respectively, a coupling element BMS
is proposed to realize the interconnection (Nishida et al.,
2011), as represented in Fig. 4.
By crossing the BMS, λ/σeje(t) is multiplied by the
characteristic function 1Z , which signifies an integration
in domain z. fs|∂z denotes the space integration of ∂fs/∂z
with fs|∂z = fs(h/2, t)− fs(−h/2, t). Based on the power
conservation law, fs|∂z is transformed into voltage Vc(t)
via the gyrator GY :

Vc(t) = − λ

σeb
fs(t)|∂z = − λ

σeb

(
fs(

h

2
, t)− fs(−

h

2
, t)

)
.

(20)
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are available in (Zhu et al., 2012).
As a result, equation (4) and (6) yield the following
expression:

σxx(z, x, t) =

(
K − 2

3
G

)
fs1(z, x, t) +

2G

R(x, t)
z,

σzz(z, x, t) =

(
K +

4

3
G

)
fs1(z, x, t)−

4G

R(x, t)
z.

(7)

Dynamics of the liquid phase Two coupled phenomena
can be distinguished in the liquid phase: electro-osmosis,
and water transport. These coupled phenomena were for-
mulated in the work of (De Gennes et al., 2000), covering
the transport of ions and the solvent:

je = −σe∇ψ − λ∇p,

js = −k∇p− λ∇ψ,
(8)

where je and js represent the electric current density and
the water flux density, respectively. σe is the conductance,
λ stands for the Onsager’s coupling constant, k denotes
the Darcy’s permeability, ψ is the electric field, and p
represents the water pressure in the network (De Gennes
et al., 2000).
It is supposed that the liquid goes only in the z direction,
so ∇p = ∂p/∂z is the mechanical force. The bulk region
of the gel satisfies the charge neutrality condition, namely
∇je = 0. The incompressibility of poly-electrolyte gel is
also assumed in this work (Yamaue et al., 2005), i.e.:

p = σzz =

(
K +

4

3
G

)
fs1(z, x, t)−

4G

R(x, t)
z. (9)

Thus, the gradient of pressure can be calculated as:

∇p =
∂p

∂z
=

(
K +

4

3
G

)
∂fs1(z, x, t)

∂z
− 4G

R(x, t)
. (10)

So equation (8) can be rewritten as:

js(z, x, t) =
λ

σe
je +

(
λ2

σe
− k

)
∇p

= −D′ ∂fs1(z, x, t)

∂z
+ 1Z

λ

σe
je(t) + 1ZΦ(x, t),

(11)
with

D′ =

(
k − λ2

σe

)(
K +

4

3
G

)
,Φ(x, t) =

(
k − λ2

σe

)
4G

R(x, t)
,

(12)
where 1Z stands for the characteristics function of domain
z. It distributes the boundary values λ/σeje(t) and Φ(x, t)
as uniform constants into z domain.
In the liquid phase, a swelling ratio fs2 is also introduced.
It follows the conservation law that:

∂fs2(z, x, t)

∂t
= −∂js(z, x, t)

∂z
. (13)

This equation can then be reformulated in the PHS frame-
work as:

(
f2

fr2

)
=


−∂fs2

∂t

∂fs2
∂z


 =

(
0 ∂z

∂z 0

)(
fs2

−D′ ∂fs1
∂z

)
. (14)

The effort and the boundary variables are:

(
e2

er2

)
=

(
fs2

−D′ ∂fs1
∂z

)
,

(
f∂z

e∂z

)
=




−D′ ∂fs1
∂z

(
−h

2

)

−D′ ∂fs1
∂z

(
h
2

)

−fs2
(
−h

2

)

fs2
(
h
2

)




.

(15)
Since the solid and liquid phases are strongly mixed with
each other, we have fs1 = fs2 = fs.
As hinted by equation (15), 1Zλ/σeje(t) and 1ZΦ(x, t)
do not appear explicitly in the dynamics, while they
play a role of input in order to match the impermeable
assumption js(±h/2, t) = 0.

Bending moments generated in the gel According to
(Nishida et al., 2008), the stress σxx can be divided into
two parts: the active one σa = (K−2/3G)fs(z, x, t) related
to the active swelling of the gel, and its passive counterpart
σp = 2G/R(x, t)z corresponding to the storing energy.
The active stress can generate an active moment Ma:

Ma(x, t) =

∫ h
2

−h
2

σa(z, x, t)bzdz =

∫ h
2

−h
2

Bafs(z, x, t)dz,

(16)
with Ba(z) = (K − 2/3G)bz.
Besides, the passive moment Mp comes from the passive
stress σp:

Mp(x, t) =

∫ h
2

−h
2

σp(z, x, t)bzdz =
Gbh3

6R(x, t)
. (17)

Regarding to the mechanical model along x-axis, the
curvature 1/R is related to the angular strain ∂θ/∂x of
the IPMC via the geometric relationship:

1

R(x, t)
+

∂θ

∂x
= 0. (18)

At the initial phase of actuation, the active moment Ma

is much larger than the passive moment Mp, as evident
from the phenomenon of quick bending of IPMC. As the
curvature increases gradually, Mp is getting larger than
Ma, which makes the IPMC to bend back slowly.

Coupling with the electrical system In light of equa-
tion (11), the interconnection between the electro-stress
diffusion system and the electrical system is through
boundary variables as 1Zλ/σeje(t), ∂fs/∂z and I, Vc. je
can be related to I by:

je(t) =
1

Lb
I(t). (19)

Given that the two pairs of energy variables 1Zλ/σeje(t),
∂fs/∂z and I, Vc are of different scales and are defined
in domains z and ξ respectively, a coupling element BMS
is proposed to realize the interconnection (Nishida et al.,
2011), as represented in Fig. 4.
By crossing the BMS, λ/σeje(t) is multiplied by the
characteristic function 1Z , which signifies an integration
in domain z. fs|∂z denotes the space integration of ∂fs/∂z
with fs|∂z = fs(h/2, t)− fs(−h/2, t). Based on the power
conservation law, fs|∂z is transformed into voltage Vc(t)
via the gyrator GY :

Vc(t) = − λ

σeb
fs(t)|∂z = − λ

σeb

(
fs(

h

2
, t)− fs(−

h

2
, t)

)
.

(20)

2019 IFAC MECHATRONICS
Vienna, Austria, Sept. 4-6, 2019

1244



498 Ning Liu  et al. / IFAC PapersOnLine 52-15 (2019) 495–500

-
-

Fig. 4. Bond graph of the coupling between the domain z
and ξ.

Coupling with the mechanical system At the macro-
scale, the electro-stress diffusion model connects with the
mechanical model through two bending moments, Ma and
Mp, and the angular velocity ∂θ(x, t)/∂t.

2.2.5.1. Coupling through the active moment In view of
the power conservation, an additional term is added into
equation (13) to match the output of active moment:

∂fs(z, x, t)

∂t
= −∂js(z, t)

∂z
+ 1ZBa

∂θ(x, t)

∂t
. (21)

The latter term can be regarded as a diffusion term of
the mass conservation, since the gel consists of multiple
molecules.
The bond graph of this interconnection is similar to the
one in Fig. 4.

2.2.5.2. Coupling through the passive moment As for the
coupling via the passive moment Mp, it is supposed to
make the connection with Φ(t), since both the gel model
and the beam model have the same curvature, 1/R(t) and
∂θ/∂x. Because Φ is a flow source for this electro-stress
diffusion system and Mp is the output of this system, a
Lagrangian multiplier λL is proposed here to deal with
the causality, as shown in Fig. 5. where A = Bp with

Fig. 5. Bond graph of the coupling through Ma, Mp and
∂θ/∂t.

Bp =
bh3

24

(
k − λ2

σe

)−1

.

The relations between Φ and Mp, and fs|∂z and ∂θ/∂t are
expressed as follows:

Mp(x, t) = Φ(x, t)Bp,

∂θ(x, t)

∂t
= B−1

p

[
fs

(
h

2
, x, t

)
− fs

(
−h

2
, x, t

)]
.

(22)

With the Lagrangian λL = Φ, equation (22) is rewritten
as: (

1
Bp

)
λL =

(
λL

BpλL

)
=

(
Φ
Mp

)
,

(1 Bp)

(
fs|∂z
−∂θ
∂t

)
= fs|∂z −Bp

∂θ

∂t
= 0,

(23)

which reveals that the arrow of the Lagrangian multiplier
in the bond graph Fig. 5 is an effort source with zero
flow. This ensures the power conservation. Accordingly,
equation (15) changes to:(

f2

fr2

)
=

(
0 ∂z

∂z 0

)(
e2

er2

)
+

(
−Ba

∂θ(x,t)
∂t

0

)
,

(
f∂z
e∂z

)
=

((
−D′ ∂fs

∂z

(
−h

2

)
−D′ ∂fs

∂z

(
h
2

))T
(
−fs

(
−h

2

)
fs

(
h
2

))T
)
.

(24)

2.3 Mechanical system

The mechanical deformation of IPMC can be represented
by a classic Timoshenko beam with x ∈ [0, L]. The dy-
namics equation is reformulated under port Hamiltonian
framework as (Villegas, 2007):

∂

∂t




x3(x, t)
x4(x, t)
x5(x, t)
x6(x, t)


 =




0 ∂x 0 −1
∂x 0 0 0
0 0 0 ∂x
1 0 ∂x 0







e3(x, t)
e4(x, t)
e5(x, t)
e6(x, t)


+




0
0
0
1


Mext,

(25)

where x3(x, t) = ∂xω(x, t)− θ(x, t),
x4(x, t) = ρA(x)∂tω(x, t), x5(x, t) = ∂xθ(x, t),x6(x, t) =
ρI(x)∂tθ(x, t), e3 = GA(x)x3(x, t), e4 = 1

ρA(x)x4(x, t),

e5 = EI(x)x5(x, t), e6 = 1
ρI(x)x6(x, t).

The distributed bending moment comes from the electro-
stress diffusion system, and reads:

Mext = Ma +Mp. (26)

According to (Le Gorrec et al., 2005), the boundary
variables are calculated as:(

f∂x
e∂x

)
=

(
(e4(0) e3(L) e6(0) e5(L))

T

(−e3(0) e4(L) −e5(0) e6(L))
T

)
. (27)

2.4 Global system

The above three subsystems can be connected to a global
system, which is expressed as:


f1

fr1

f2

fr2

f3

f4

f5

f6




︸ ︷︷ ︸
f

=




0 ∂ξ 0 0 0 0 0 0

∂ξ 0 0 0 0 0 0 0

0 0 0 ∂z 0 0 0 −1ZBa

0 0 ∂z 0 0 0 0 0

0 0 0 0 0 ∂x 0 −1

0 0 0 0 ∂x 0 0 0

0 0 0 0 0 0 0 ∂x

0 0 int 0 1 0 ∂x 0




︸ ︷︷ ︸
J




e1

er1

e2

er2

e3

e4

e5

e6




︸ ︷︷ ︸
e

+A1λL,

(28)
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where int =
∫
Z
Ba(·)dz,A1 = (0 0 −(∂z1Z) 0 0 0 0 Bp)

T
,

with

A∗
1e = e2

(
h

2

)
− e2

(
−h

2

)
−Bpe6 = 0. (29)

Note that the operator ∂z1Z equals to zeros when multi-
plied by a variable outside the z domain (e.g. λL), while
equals to the difference at the boundary when multi-
plied by a variable belongs to its domain (e.g. ∂z1Ze2 =
−e2(h/2) + e2(−h/2)).
Suppose the parameters C2, K, A, ρ, E, and I are homo-
geneous, the Hamiltonian of this system is:

H(t) =
1

2

∫

x

∫

ξ

Q2

C2
dξdx+

1

2

∫

x

∫

z

f2
s dzdx

+
1

2

∫

x

(
GAx3(x)

2 +
x4(x)

2

ρA
+ EIx5(x)

2 +
x6(x)

2

ρI

)
dx.

(30)

3. DISCRETIZATION AND MODEL REDUCTION

In order to preserve the geometric structure of the overall
PHS, the finite difference method on staggered grids
(Trenchant et al., 2018) is employed to discretize each
scale of the distributed parameter model of the system.
The principle of this method is to approximate effort and
flow variables on different grids in order to preserve the
power balances. A particular care has to be paid on the
boundary conditions and to interconnexions between two
different scales. In a second instance a projection is used
in order to get rid of the Lagrangian multipliers.

3.1 Multiscale discretization

Considering the fact that we have a multi-scale model,
ξ and z are local coordinates while x is the global co-
ordinate, which leads to the assumption that for each
point in x, there is one corresponding ξ and z. Hence,
there will be Ne (= Nξ ×Nb) elements for the electrical
system, Ng (= Nz ×Nb) ones for the electro-stress diffu-
sion system, and Nb elements for the mechanical system.
For a sake of conciseness the discretization method is not
detailed here. It yields the final dimensional model below:




˙x1d

ẋ2d

ẋ3d

ẋ4d

ẋ5d

ẋ6d




︸ ︷︷ ︸
ẋd

=




M2DT
1 P1 0 0 0 0

P3 P2 0 0 0 D26

0 0 0 −DT
6 0 −DT

63
0 0 D6 0 0 0
0 0 0 0 0 −DT

6
0 −DT

26 D63 0 D6 0




︸ ︷︷ ︸
Jr




e1d
e2d
e3d
e4d
e5d
e6d




︸ ︷︷ ︸
ed

+




−M2

M1(DT
1 Lr2M2 − I)

0
0
0
0




︸ ︷︷ ︸
B

V +




0
g21 + g22

0
0
0

diag(Bp)




︸ ︷︷ ︸
gc

λLd,

(31)

and the constraint equation

gTc ed = 0. (32)

where x1d =
(
Q1,1 · · · QNξ,Nb

)T
, x2d =

(
f1,1
s · · · fNz,Nb

s

)T
,

x3d =
(
x1
3 · · · xNb

3

)T
, x4d =

(
x1
4 · · · xNb

4

)T
, x5d =

(
x1
5 · · · xNb

5

)T
, x6d =

(
x1
6 · · · xNb

6

)T
, ed = Ldxd, Ld =

blockdiag (1/C2, 1, GA, 1/(ρA), EI, 1/(ρI)) of proper di-
mension, Lr1 = diag(−1/R1), Lr2 = diag(−R2), Lr3 =
diag(−D′), M1 = λ

σeLb (g21 + g22)g
TLr1, M2 = (I +

D1Lr1D
T
1 Lr2)

−1D1Lr1, P1 = λ
σeLbM2g

T
2 ,

P2 = DT
2 Lr3D2− λ

σeLbM1(D
T
1 Lr2M2 + I)g(g21 + g22)

T ,

P3 = M1D
T
1 (I − Lr2M2D

T
1 ). Di with i ∈ {1, 26, 6, 63}

and gk with k ∈ {21, 22} are matrices depending on the
discretization steps and systems parameters.

3.2 Elimination of Lagrangian multipliers

In this section the DAE (31) together with (32) will be
reduced to an ODE, in order to perform the simulation and
apply control strategies afterwards. The proposed method
is based on the idea of coordinate projection as in (Wu
et al., 2014). Given

M =

(
S

(gTc gc)
−1gTc

)
,

where S satisfies: S · gc = 0.

Now define X1 = (x1d x2d x3d x4d x5d)
T
, X2 = x6d,(

X̃1 X̃2

)T
= M (X1 X2)

T
,

B1 =
(
−MT

2

(
M1(D

T
1 Lr2M2 − I)

)T
0 0 0

)T

and B2 =

0. Equation (31) is multiplied by the matrix M , and
becomes:(

˙̃X1
˙̃X2

)
= MJrM

T︸ ︷︷ ︸
J̃r

M−TLdM
−1︸ ︷︷ ︸

L̃d

(
X̃1

X̃2

)
+

(
MB1

0

)
V +

(
0
I

)
λLd

(33)

Meanwhile, equation (32) can be rewritten as:

gTc MT

︸ ︷︷ ︸
g̃c

L̃d

(
X̃1

X̃2

)
= 0 (34)

It is implied from equation (33) that X̃1 does not depend
on λLd. Hence the second line of equation (33) is substi-
tuted by equation (34), reforming a descriptor system as
follows:(

I 0
0 0

)( ˙̃X1
˙̃X2

)
=

(
J̃11 J̃12

g̃c

)(
L̃d11 L̃d12

L̃d21 L̃d22

)(
X̃1

X̃2

)
+

(
MB1

0

)
V

(35)

4. SIMULATION

In this section, the proposed model will be verified by com-
paring the simulation with the experimental results. The
simulation carries out with an IPMC actuator of dimension
45mm (in length)×5mm (in width)×0.2mm (in height),
which contains the tetraethyl-ammonium ion TEA+, and
whose total resistance and capacitance equal to 23.6178Ω
and 0.0635F, respectively. Mechanical parameters of this
IPMC are illustrated in table 1. With a voltage 1V applied,
the deformation of the endpoint of the IPMC strip and the
output current are shown in Fig. 6. From Fig. 6, one can
observe the simulation reproduces the same behaviors of
the experimental results.

5. CONCLUSION

In this article, a detailed IPMC model is characterized
under the port-Hamiltonian framework, and its dynamic
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where int =
∫
Z
Ba(·)dz,A1 = (0 0 −(∂z1Z) 0 0 0 0 Bp)

T
,

with

A∗
1e = e2

(
h

2

)
− e2

(
−h

2

)
−Bpe6 = 0. (29)

Note that the operator ∂z1Z equals to zeros when multi-
plied by a variable outside the z domain (e.g. λL), while
equals to the difference at the boundary when multi-
plied by a variable belongs to its domain (e.g. ∂z1Ze2 =
−e2(h/2) + e2(−h/2)).
Suppose the parameters C2, K, A, ρ, E, and I are homo-
geneous, the Hamiltonian of this system is:

H(t) =
1

2

∫

x

∫

ξ

Q2

C2
dξdx+

1

2

∫

x

∫

z

f2
s dzdx

+
1

2

∫

x

(
GAx3(x)

2 +
x4(x)

2

ρA
+ EIx5(x)

2 +
x6(x)

2

ρI

)
dx.

(30)

3. DISCRETIZATION AND MODEL REDUCTION

In order to preserve the geometric structure of the overall
PHS, the finite difference method on staggered grids
(Trenchant et al., 2018) is employed to discretize each
scale of the distributed parameter model of the system.
The principle of this method is to approximate effort and
flow variables on different grids in order to preserve the
power balances. A particular care has to be paid on the
boundary conditions and to interconnexions between two
different scales. In a second instance a projection is used
in order to get rid of the Lagrangian multipliers.

3.1 Multiscale discretization

Considering the fact that we have a multi-scale model,
ξ and z are local coordinates while x is the global co-
ordinate, which leads to the assumption that for each
point in x, there is one corresponding ξ and z. Hence,
there will be Ne (= Nξ ×Nb) elements for the electrical
system, Ng (= Nz ×Nb) ones for the electro-stress diffu-
sion system, and Nb elements for the mechanical system.
For a sake of conciseness the discretization method is not
detailed here. It yields the final dimensional model below:




˙x1d

ẋ2d

ẋ3d

ẋ4d

ẋ5d

ẋ6d




︸ ︷︷ ︸
ẋd

=




M2DT
1 P1 0 0 0 0

P3 P2 0 0 0 D26

0 0 0 −DT
6 0 −DT

63
0 0 D6 0 0 0
0 0 0 0 0 −DT

6
0 −DT

26 D63 0 D6 0




︸ ︷︷ ︸
Jr




e1d
e2d
e3d
e4d
e5d
e6d




︸ ︷︷ ︸
ed

+




−M2

M1(DT
1 Lr2M2 − I)

0
0
0
0




︸ ︷︷ ︸
B

V +




0
g21 + g22

0
0
0

diag(Bp)




︸ ︷︷ ︸
gc

λLd,

(31)

and the constraint equation

gTc ed = 0. (32)

where x1d =
(
Q1,1 · · · QNξ,Nb

)T
, x2d =

(
f1,1
s · · · fNz,Nb

s

)T
,

x3d =
(
x1
3 · · · xNb

3

)T
, x4d =

(
x1
4 · · · xNb

4

)T
, x5d =

(
x1
5 · · · xNb

5

)T
, x6d =

(
x1
6 · · · xNb

6

)T
, ed = Ldxd, Ld =

blockdiag (1/C2, 1, GA, 1/(ρA), EI, 1/(ρI)) of proper di-
mension, Lr1 = diag(−1/R1), Lr2 = diag(−R2), Lr3 =
diag(−D′), M1 = λ

σeLb (g21 + g22)g
TLr1, M2 = (I +

D1Lr1D
T
1 Lr2)

−1D1Lr1, P1 = λ
σeLbM2g

T
2 ,

P2 = DT
2 Lr3D2− λ

σeLbM1(D
T
1 Lr2M2 + I)g(g21 + g22)

T ,

P3 = M1D
T
1 (I − Lr2M2D

T
1 ). Di with i ∈ {1, 26, 6, 63}

and gk with k ∈ {21, 22} are matrices depending on the
discretization steps and systems parameters.

3.2 Elimination of Lagrangian multipliers

In this section the DAE (31) together with (32) will be
reduced to an ODE, in order to perform the simulation and
apply control strategies afterwards. The proposed method
is based on the idea of coordinate projection as in (Wu
et al., 2014). Given

M =

(
S

(gTc gc)
−1gTc

)
,

where S satisfies: S · gc = 0.

Now define X1 = (x1d x2d x3d x4d x5d)
T
, X2 = x6d,(

X̃1 X̃2

)T
= M (X1 X2)

T
,

B1 =
(
−MT

2

(
M1(D

T
1 Lr2M2 − I)

)T
0 0 0

)T

and B2 =

0. Equation (31) is multiplied by the matrix M , and
becomes:(

˙̃X1
˙̃X2

)
= MJrM

T︸ ︷︷ ︸
J̃r

M−TLdM
−1︸ ︷︷ ︸

L̃d

(
X̃1

X̃2

)
+

(
MB1

0

)
V +

(
0
I

)
λLd

(33)

Meanwhile, equation (32) can be rewritten as:

gTc MT

︸ ︷︷ ︸
g̃c

L̃d

(
X̃1

X̃2

)
= 0 (34)

It is implied from equation (33) that X̃1 does not depend
on λLd. Hence the second line of equation (33) is substi-
tuted by equation (34), reforming a descriptor system as
follows:(

I 0
0 0

)( ˙̃X1
˙̃X2

)
=

(
J̃11 J̃12

g̃c

)(
L̃d11 L̃d12

L̃d21 L̃d22

)(
X̃1

X̃2

)
+

(
MB1

0

)
V

(35)

4. SIMULATION

In this section, the proposed model will be verified by com-
paring the simulation with the experimental results. The
simulation carries out with an IPMC actuator of dimension
45mm (in length)×5mm (in width)×0.2mm (in height),
which contains the tetraethyl-ammonium ion TEA+, and
whose total resistance and capacitance equal to 23.6178Ω
and 0.0635F, respectively. Mechanical parameters of this
IPMC are illustrated in table 1. With a voltage 1V applied,
the deformation of the endpoint of the IPMC strip and the
output current are shown in Fig. 6. From Fig. 6, one can
observe the simulation reproduces the same behaviors of
the experimental results.

5. CONCLUSION

In this article, a detailed IPMC model is characterized
under the port-Hamiltonian framework, and its dynamic
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Table 1. Parameters values

Par. Value Unit Par. Value Unit

ρ 1 1.633 × 103 kg/m3 λ 16.6 × 10−9 m2/(V s)

E 2 9 × 107 Pa σe 3.274 × 10−3 1/(Ωm)

v 3 0.3 1 D′ 1.375 × 10−11 m2/s

k 8.53 × 10−14 m3s/kg

1 Material density.
2 Young’s modulus.
3 Poisson ratio.
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Fig. 6. Displacement of the endpoint of the IPMC and
current.

performance is investigated numerically. The Lagrangian
multiplier method is used to model the geometric con-
straints between the gel and the beam. The global system
forms a stokes-Dirac structure, that guarantees the energy
preservation. This system is later discretized by means of
the finite difference method on staggered grids. Thus, the
model can be reduced into a descriptor port-Hamiltonian
form with the elimination of the Lagrangian multiplier.
Finally, the proposed model has been validated by the
experimental measurements. The ongoing work is to deal
with the modeling of the 2-D tubular IPMC actuator. Also,
the passivity based control design for the IPMC actuator
would be investigated under the port-Hamiltonian frame-
work in the future.

REFERENCES

Bao, X., Bar-Cohen, Y., and Lih, S.S. (2002). Measure-
ments and macro models of ionomeric polymer-metal
composites (ipmc). In Smart Structures and Materi-
als 2002: Electroactive Polymer Actuators and Devices
(EAPAD), volume 4695, 220–228. International Society
for Optics and Photonics.

Branco, P.C., Lopes, B., and Dente, J. (2012). Nonuni-
formly charged ionic polymer–metal composite actua-
tors: Electromechanical modeling and experimental val-
idation. IEEE Trans. on Ind. Elec., 59(2), 1105–1113.

De Gennes, P., Okumura, K., Shahinpoor, M., and Kim,
K.J. (2000). Mechanoelectric effects in ionic gels. EPL
(Europhysics Letters), 50(4), 513.

Le Gorrec, Y., Zwart, H., and Maschke, B. (2005). Dirac
structures and boundary control systems associated
with skew-symmetric differential operators. SIAM jour-
nal on control and optimization, 44(5), 1864–1892.

Maschke, B. and van der Schaft, A. (1992). Port-controlled
hamiltonian systems: Modelling origins and systemthe-
oretic properties. IFAC Proceedings Volumes, 25(13),
359 – 365. 2nd IFAC Symposium on Nonlinear Control
Systems Design 1992, Bordeaux, France, 24-26 June.

Nishida, G., Takagi, K., Maschke, B., and Luo, Z.w.
(2008). Multi-scale distributed port-hamiltonian rep-
resentation of ionic polymer-metal composite. In Pro-
ceedings of the 17th IFAC World Congress, volume 17.

Nishida, G., Takagi, K., Maschke, B., and Osada, T.
(2011). Multi-scale distributed parameter modeling of
ionic polymer-metal composite soft actuator. Control
Engineering Practice, 19(4), 321–334.

Park, K., Yoon, M.K., Lee, S., Choi, J., and Thubrikar,
M. (2010). Effects of electrode degradation and solvent
evaporation on the performance of ionic-polymer–metal
composite sensors. Smart Materials and Structures,
19(7), 075002.

Shahinpoor, M. (ed.) (2016). Ionic Polymer Metal
Composites (IPMCs), volume 1 of Smart Materi-
als Series. The Royal Society of Chemistry. doi:
10.1039/9781782622581.

Trenchant, V., Ramirez, H., Le Gorrec, Y., and Kotyczka,
P. (2018). Finite differences on staggered grids preserv-
ing the port-hamiltonian structure with application to
an acoustic duct. Journal of Computational Physics,
373, 673–697.

Villegas, J.A. (2007). A port-hamiltonian approach to
distributed parameter systems.

Wu, Y., Hamroun, B., Le Gorrec, Y., and Maschke, B.
(2014). Port hamiltonian system in descriptor form for
balanced reduction: Application to a nanotweezer. IFAC
Proceedings Volumes, 47(3), 11404–11409.

Xiao, Y. and Bhattacharya, K. (2001). Modeling elec-
tromechanical properties of ionic polymers. In Smart
Structures and Materials 2001: Electroactive Polymer
Actuators and Devices, volume 4329, 292–301. Interna-
tional Society for Optics and Photonics.

Yamaue, T., Mukai, H., Asaka, K., and Doi, M. (2005).
Electrostress diffusion coupling model for polyelec-
trolyte gels. Macromolecules, 38(4), 1349–1356.

Zhu, Z., Chen, H., Wang, Y., and Li, B. (2012). Multi-
physical modeling for electro-transport and deformation
of ionic polymer metal composites. In Electroactive
Polymer Actuators and Devices (EAPAD), volume 8340.
Int. Soc. for Optics and Photonics.

2019 IFAC MECHATRONICS
Vienna, Austria, Sept. 4-6, 2019

1247


