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Abstract

In this article, an original approach to model the squeeze film effects in capacitive circular
microplates is developed. The nonlinear von Kármán plate theory is used while taking into
consideration the electrostatic and geometric nonlinearities of the clamped edge microplate.
The fluid underneath the plate is modeled using the nonlinear Reynolds equation with a
corrected effective dynamic viscosity due to size effect. The strongly coupled system of
equations is solved using the Differential Quadrature Method (DQM) by discretizing the
structural and the fluid domains into a set of grid points.
The linear effects of the squeeze film on the microplate have been investigated based on
the complex eigenfrequencies of the multiphysical problem. It is shown that the air film
can alter the resonance frequencies by adding stiffness as well as damping to the system.
The model has been validated numerically with respect to a Finite Element Model (FEM)
implemented in ANSYS and experimentally on a fabricated circular microplates.
The nonlinear effects of the squeeze film have been studied by determining the steady state
solution of the system using the finite difference method (FDM) coupled with the arclength
continuation technique. It is shown that the decrease of the static pressure shifts the res-
onance frequency and leads to an increase of the vibration amplitude due to the reduction
of the damping coefficient, while the increase in the pressure enlarges the bistability do-
main. The developed model can be exploited as an effective tool to predict the nonlinear
dynamic behavior of microplates under the effect of air film for the design of Capacitive
Micromachined Ultrasonic Transducers (CMUTs).
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Nomenclature

n number of grid point P (r, t) net pressure
λa atmospheric mean free path Pa ambient pressure
H thickness of fluid film wj out-of-plane displacement at r = ri
E Youngs modulus uj in-plane displacement at r = ri
ρ density Pj net pressure at r = ri
ν Poisson’s ratio ri position of the ith grid points
R radius of the microplate Hi thickness of fluid film at r = ri
Re radius of the electrode Γi geometric nonlinear term at r = ri
d gap distance ϕi shape functions of the microplate
de thickness of the electrode φi shape functions of the fluid pressure
N0 residual stress λi ith eigenvalues of the system
ϵ0 permittivity of the air ωi resonance frequency of the ith mode
η viscosity ξi damping coefficient of the ith mode
V (t) electric voltage M mass matrices
Vdc static electric voltage C damping matrices
Vac harmonic electric voltage K stiffness matrices
ω excitation frequency KNL nonlinear stiffness vector
D plate flexural rigidity Tp period of a solution
Γ geometric nonlinear term Np number time segment in a period
ηeff effective fluid viscosity P k

i net pressure at r = ri and t = k/Np

Kn Knudsen number ∗,r ; ∗,rr first and second derivative with respect to r
λ0 molecular mean free path ∗̇ ; ∗̈ first and second derivative with respect to t
w out-of-plane displacement u in-plane displacement

PT (r, t) total pressure A
(k)
ij DQM weighting coefficients of the

h thickness of the microplate kth order derivative
σ squeeze number wk

i out-of-plane displacement at r = ri
P0 local pressure of the medium and t = k/Np

1. Introduction

The surrounding fluid has an important impact on the dynamic behavior of resonant mi-
croelectromechanical systems (MEMS). For capacitive microdevices, the distance between
the two electrodes is relatively small compared to the lateral dimension. The vibration of
one of these electrodes can lead to a massive movement of the fluid underneath it. For
macrodevices, the effect of surrounding fluid can be negligible compared to other forces,
such as inertia and gravity forces. However, for microdevices, the fluid film effects increase
as we decrease the system size [1]. The squeeze film effect is one of the most important phe-
nomena which affects the dynamic behavior of resonant MEMS, since it shifts the resonance
frequencies (the shift can reach up to 60% of the natural frequency in vacuum [2]) and it
adds damping to the system.
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The squeeze film effects are in general governed by the Reynolds equation, which describes
the pressure distribution of a thin viscous fluid. In 1886, Osborne Reynolds formulated this
equation for fluid lubrication applications [3]. The equation was reformulated in its general
form by Tipei in 1954 [4] to study the effect of a fluid on two coaxial disks by supposing that
there is no slip between fluid particles and moving surfaces. However, when the gap distance
of the microsystem is comparable to the mean free path of the fluid, the tangential velocity
of the fluid at the boundary cannot be approximated to zero. Therefore, this assumption
(no slip between fluid particles and surfaces) is no longer valid [5]. In general, there are four
flow regimes: continuum regime, transition regime, slip-flow regime and molecular regime.
Each of these regimes are defined using the so called Knudsen number which is given by:

Kn =
λ0

H
(1)

where λ0 is the molecular mean free path of the fluid and H is the thickness of fluid film.
Several studies showed that the validity region of the Reynolds equation can be extended by
choosing an effective gap distance [6, 7, 8, 9] and the most used one is the model of Veijola
et al. [10, 11] because it is accurate and valid for a wide range of Kn. Schrag et al. [12]
performed numerical comparison between the modified Reynolds equation with the results
obtained using the Navier-Stokes model. The two models showed a good agreement for
different width-to-fluid film thickness. The use of Reynolds equation provides a notable
reduction of the computational time compared to the Navier-Stokes model. Also it can be
used for complex microsystems like perforated accelerometers [12, 13] magnetometers[14]
and micromirrors [15, 16].

Other approaches have been used to model the squeeze film effect in microsystems by
determining the quality factor of the resonator. Kadar et al. [17] and Li et al. [18] devel-
oped a model for the computation of the damping parameters of a vibrating microstructure
operating in low pressure conditions based on Christian model [19]. The presented models
take into consideration the coupling effect between the intrinsic damping and the impact of
molecules in high vaccum. The problem with this type of models is that the quality factor is
independent of the dimension of the microsystem and the distance between the two plates.
Bao et al. [20] determined the quality factor of the system by determining the energy losses
from the oscillating plate to the surrounding air. It was shown that, for a rectangular mi-
croplate the quality factor is proportional to the gap distance and inversely proportional to
the plate length and air pressure.

Another method to investigate the effect of the squeeze film on a microsystem consists
in approximating the pressure distribution as a nonlinear damping force [21, 22]. Sedighi
et al. [23] used this method to study the nonlinear dynamic response of a double-sided
electromechanical nano-bridge. The increase in the damping coefficient leads to an increase
of the dynamic pull-in of the system. However, this model is valid only for an incompressible
fluid. That means the stiffness effect is negligible compared to the damping force [24].

The most used technique to study the effect of a surrounding fluid on microsystems is the
finite element method (FEM). Chaterjee et al. [25] used the modal projection method imple-
mented in ANSYS to determine the stiffness and modal damping coefficients of a cantilever.
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The effect of the DC voltage was investigated at different pressures and it was shown that the
static pressure can shift the resonance frequency of microsystems and increases the damping
forces. FEM models are very efficient especially for systems with complicated shapes like
perforated plates [26, 27, 28, 29]. However, this type of model is computationally very time
consuming, making it difficult to use when a large number of simulations are needed.

To reduce the computational time, Veijola [10] presented an equivalent-circuit model of a
capacitive accelerometer. This model was used to determine the effective viscosity parameter
in a narrow gap between the moving surfaces that is valid for viscous and molecular regime.

The solving of a coupled multiphysical system can be also performed by developing
a reduced order model. Galerkin method is commonly used for such type of systems to
separate the time variable from the space variables by writing the unknown variables as a
sum of shape functions and their generalized coordinates. Younis et al. [30, 31] used the
perturbation method to calculate the displacement and the pressure distributions of flexible
microstructures. The model was used to determine an analytical expression of the damping
coefficient and the natural frequency of the coupled problem. The obtained results have
been compared with the experimental data obtained by Legtenberg and Tilmans [32] and
they were in a good agreement. This technique has been used to investigate the effect of
the squeeze film on the nonlinear dynamic behavior of MEMS [33].

Capacitive micromachined ultrasonic transducer (CMUT) is one of the most famous
microsystems that have been developed in the last decades. It consists of a microplate that
vibrate to emit or detect ultrasounds. Several models have been developed to investigate
the nonlinear behavior of such systems. Vogl et al. [34, 35] developed an analytical model
for a circular CMUT based on nonlinear von kármán plate theory. The model is used to
investigate the nonlinear frequency and force response of the microplate around the primary
resonance frequency. The static and dynamic behavior is very sensitive to residual stress,
initial imperfection and squeeze film damping [36, 37, 38, 39]. Galisultanov et al. [40]
developed a 1D equivalent system, based on a rigid piston model, and a 2D FEM model using
COMSOL. The model demonstrates the competition between the electrostatic softening,
caused by the DC voltage, and the squeeze film stiffening due to the gap change.

In this paper, we propose a new approach that can be used to investigate the squeeze
film effects in capacitive micromachined ultrasonic transducers (CMUTs) based on clamped
circular microplates. The behavior of a CMUT is modeled with mechanical equations that
takes into consideration the effect of residual stress, electrostatic nonlinearities and geometric
nonlinearities. The trapped air between the two electrodes is modeled using the Reynolds
equation with an effective viscosity using the Veijola model [10]. The discretization of
the coupled partial differential equations is performed using the Differential Quadrature
Method (DQM) for the structural and fluid domains. The advantage of this method is
that it takes only few grid points for the solution to converge [41, 42]. A first validation is
conducted on our model using ANSYS software. For low squeeze number the two numerical
results, obtained with DQM and ANSYS, are in a good agreement. However, when the
squeeze number is high, the error between the two models increases. Another validation
is performed between the experimental and numerical results by taking into account the
thickness of the electrode. The nonlinear dynamic behavior of the CMUT is studied by
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solving the nonlinear differential equations using FDM in order to determine the steady
state solution of the microplate. For the nonlinear frequency response of the CMUT, we
modeled the microsystem with a clamped boundary condition for the microplate and with
an open boundary condition for the fluid. The decrease in the static pressure in the gap
leads to a decrease in the resonance frequency and an increase in the vibration amplitude.
At atmospheric conditions, the nonlinear frequency response of the CMUT is obtained by
applying high DC and AC voltages. The increase in the static pressure leads to an increase
in the bistability domain of the force response curves.

2. Mathematical Model

We consider a flat circular microplate with a uniform cross-section h and a homogeneous
material with a density ρ and a Young’s modulus E, as shown in Figure 1. The vibrating
electrode is modeled as a perfectly clamped circular microplate with radius R excited with
an electric voltage V (t) = Vdc + Vac cos(ωt) where:

• Vdc is the static electric voltage.

• Vac is the amplitude of the harmonic voltage.

The bottom electrode, with radius Re and thickness de, is placed below the microplate at a
distance d.

Figure 1: (a) A scanning electron microscope photo of a CMUT before bonding the upper microplate to the
substrate. (b) A cross section of a circular electrostatic thin microplate.

2.1. Governing equations of motion

The microplate equations of motion are derived from the nonlinear von Kármán plate
theory. We consider the following hypothesis [43]:

• A straight line (filament), initially normal to the midplane, remains straight and nor-
mal to the surface during the deformation.

• The stress normal to the midplane, σz, is small compared to the other stress compo-
nents and may be neglected in the stress-strain relations.
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The partial differential equations that describe the vibration of a clamped circular plate
are given by [39]:

ρhẅ + cẇ +D∇4w = N0

(
1

r
w,r + w,rr

)
+

ϵ0V
2 (t)

2(d− w)2
− P (r, t)

+
12D

h2

[
1

r
u,rw,r + u,rrw,r + u,rw,rr +

1

2r
(w,r)

3 +
3

2
(w,r)

2w,rr +
ν

r
(u,rw,r + uw,rr)

]
(2)

u,rr +
1

r
u,r −

u

r2
= −1− ν

2r
(w,r)

2 − w,rw,rr (3)

where w and u represent the out-of-plane and in-plane displacement of the microplate and
P (r, t) represents the external forces applied on the microplate. w,r, u,r and w,rr, u,rr are

the first and second derivative of w and u with respect to r. ∇4 =
(

∂2

∂r2
+ 1

r
∂
∂r

)2
is the bi-

harmonic operator, D = Eh3

12(1−ν2)
is the plate flexural rigidity, ϵ0 is the vacuum permittivity,

N0 is the residual stress and ν is the Poisson’s ratio.
For an axisymmetric problem, the microplate has always a horizontal tangent at r = 0

and the in-plane displacement is equal to zero u = 0. The boundary conditions of the
clamped circular microplate are:

At r = 0 : w,r = 0 u = 0

At r = R : w,r = w = 0 u = 0 (4)

To describe the effects of a thin layer of fluid between the moving plate and the fixed
electrode, we use the Reynolds equation. This equation is derived from the Navier-Stokes
equation based on these assumptions:

(i) The fluid is Newtonian.

(ii) The flow is laminar.

(iii) The fluid obeys the ideal gas law.

(iv) No slip between fluid particles and surfaces.

(v) Negligible fluid inertia compared to the viscous and pressure forces (small Reynolds
number).

(vi) The thickness of the film is small compared to the radius of the plate β = d
R
<< 1.

(vii) The heating effects are negligible.
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Assuming an axisymmetric pressure distribution, the pressure component is determined by
solving the following Reynolds equation of a fluid between two circular plates:

∂

∂r

(
rH3PT

∂PT

∂r

)
= 12ηr

(
H
∂PT

∂t
+ PT

∂H

∂t

)
(5)

where η is the viscosity coefficient of the fluid, H is the total gap distance between the two
plates and PT represents the total pressure in the gap, which is defined as:

PT = P0 + P (r, t) (6)

and P0 is the local pressure of the medium. In this case, we suppose that the static pressure
is applied on both upper and lower surfaces of the microplate. Therefore, The resultant
external forces applied on the microplate are equal to the dynamic quantity of pressure
P (r, t). For the pressure boundary conditions, we suppose that the fluid is trapped inside
the gap. Therefore, the flux at the clamped edge is equal to zero. Hence, the derivative
of PT with respect to r is also zero at r = R. At the center of the plate, the pressure is
maximum which means that the derivative of PT with respect to r is zero at r = 0. Hence,
the boundary conditions of a circular plate are defined as:

∂PT

∂r

∣∣∣∣
r=0

=
∂PT

∂r

∣∣∣∣
r=R

= 0 (7)

When the gap distance of the microsystem is comparable to the mean free path of the fluid,
the tangential velocity of the fluid at the boundary cannot be approximated to zero. Many
studies have been carried out on the effective viscosity and the most used one is the model
of Veijola et al. [10] because it is accurate and valid for a large range of Kn. The effective
viscosity described in the Veijola model is given by [10]:

ηeff =
η

1 + 9.638K1.159
n

where Kn =
Paλa

P0H
(8)

ηeff is the effective fluid viscosity in the gap that replaces the actual fluid viscosity η to
extend the validity region of the Reynolds equation especially when the Knudsen number is
close to the noncontinuum regime. Pa and λa are the pressure and the molecular mean free
path in ambient condition. The total gap distance H between the two plates is defined as:

H = dt(r)− w(r, t) (9)

where dt(r) is the gap distance defined as:

dt(r) =

{
d r ≤ Re

d+ de r > Re
(10)

where de is the electrode thickness as it is shown in Figure 1.
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2.2. Nondimensional equations of motion

In order to reduce the complexity of the physical parameters, we rewrite equations (2),
(3) and (5) in terms of nondimensional variables, which are defined as follows:

r = Rr̃; u = dũ; w = dw̃

c =
(Dρh)1/2

R2
c̃; γ =

12Rd

h2
; β =

d

R

N0 =
D

R2
Ñ0; t = T t̃ = R2

(
ρh

D

)1/2

t̃; αe =
ε0R

4

2Dd3

PT = P0P̃T = P0(1 + P ); H = dH̃ PND =
R4P0

Dd
; (11)

Substituting (11) into (2),(3) and (5) and dropping the tilde (∼) in the result, we get:

ẅ + cẇ +∇4w = N0

(
1

r
w,r + w,rr

)
+ αe

V 2 (t)

(1− w)2
− PNDP + γΓ (w, u) (12)

u,rr +
1

r
u,r −

u

r2
= −β

(
1− ν

2r
(w,r)

2 + w,rw,rr

)
(13)

∂

∂r

(
rH3PT

∂PT

∂r

)
= σr

(
H
∂PT

∂t
+ PT

∂H

∂t

)
(14)

where Γ is defined as:

Γ (w, u) =
1

r
u,rw,r + u,rrw,r + u,rw,rr + β

(
1

2r
(w,r)

3 +
3

2
(w,r)

2w,rr

)
+

ν

r
(u,rw,r + uw,rr) (15)

where σ =
12ηeffR

2

d2P0T
represents the squeeze number [44], which refers to the compressibility

of the fluid in the gap. For a small value of σ, the compressibility effect can be neglected
and the fluid can be considered as incompressible. However, for a higher value of σ, the air
is trapped inside the gap and acts as a spring.

For convenience, we rewrite the boundary conditions (4) and (7) in their nondimensional
form:

At r = 0 : w,r = 0 u = 0
∂PT

∂r
= 0

At r = 1 : w,r = w = 0 u = 0
∂PT

∂r
= 0 (16)
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3. Discretization

3.1. Differential quadrature method (DQM)

In order to solve the equations of motion of the system, we reduce the partial differential
equations (PDEs) into a finite ordinary differential equations (ODEs). One of the methods
that has been used in the literature for microscale structures is the DQM [41, 42]. The
aim of this method is to discretize the space domain into a grid of sampling points and
approximating the derivative with respect to r as a weighted sum of the function at the grid
points. The derivative of the unknown parameters w, u and P can be expressed as:[

∂kw

∂rk

]
r=ri

=
n∑

j=1

A
(k)
ij wj;

[
∂ku

∂rk

]
r=ri

=
n∑

j=1

A
(k)
ij uj;

[
∂kP

∂rk

]
r=ri

=
n∑

j=1

A
(k)
ij Pj (17)

where wj, uj and Pj are respectively the out-of-plane displacement, in-plane displacement
and the net pressure at the grid point r = ri. Where ri are the grid points defined by
Chebyshev-Gauss-Lobatto [45]:

ri =
1

2

(
1− cos

(
(i− 1)

(n− 1)
π

))
(18)

A
(k)
ij are the DQM weighting coefficients of the kth order derivative which are given by

[46, 47, 48]:

A
(1)
ij =

n∏
v=1;v ̸=i

(ri − rv)

(ri − rj)
n∏

v=1;v ̸=j

(rj − rv)
i, j = 1, 2, · · · , n i ̸= j

A
(k)
ij = k

(
A

(k−1)
ii A

(1)
ij −

A
(k−1)
ij

(ri − rj)

)
i, j = 1, 2, · · · , n i ̸= j

A
(k)
ii = −

n∑
v=1;v ̸=i

A
(k)
iv i = 1, 2, · · · , n (19)

A
(k)
ij are the respective weighting coefficients that depend only on the sampling points. The

advantage of using this configuration is that it can converge only with a few number of grid
points. Also, it reduces the computational time as a result of the properties of the weighting
matrix

[
A(k)

]
[49, 50]

3.2. Discretization of the governing equations

The discretized form of the microplate equations coupled with the Reynolds equation
can be written as:
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EQdy
w (wi, ui, Pi) : ẅi + cẇi +∇4wi = N0

(
1

ri

n∑
j=1

A
(1)
ij wj +

n∑
j=1

A
(2)
ij wj

)

+ αe
V 2 (t)

(1− wi)
2 − PNDPi + γΓi (wj, uj) ; i = 2, · · · , n− 2 (20)

EQdy
u (wi, ui) :

n∑
j=1

A
(2)
ij uj +

1

ri

n∑
j=1

A
(1)
ij uj −

ui

r2i
=

− β

1− ν

2ri

(
n∑

j=1

A
(1)
ij wj

)2

+
n∑

j=1

A
(1)
ij wj

n∑
j=1

A
(2)
ij wj

 ; i = 2, · · · , n− 1 (21)

EQdy
P (wi, Pi) :

n∑
j=1

A
(1)
ij

(
rjH

3
j (1 + Pj)

n∑
k=1

A
(1)
jk Pk

)
= σri

(
HiṖi − (1 + Pi)ẇi

)
;

i = 2, · · · , n− 1 (22)

where

∇4wi =

[
w,rrrr +

2

r
w,rrr −

1

r2
w,rr +

1

r3
w,r

]
r=ri

=
n∑

j=1

A
(4)
ij wj +

2

ri

n∑
j=1

A
(3)
ij wj −

1

r2i

n∑
j=1

A
(2)
ij wj +

1

r3i

n∑
j=1

A
(1)
ij wj (23)

and Γi is the discrete form of Γ:

Γi (wj, uj) =
1

ri

n∑
j=1

A
(1)
ij uj

n∑
j=1

A
(1)
ij wj +

n∑
j=1

A
(2)
ij uj

n∑
j=1

A
(1)
ij wj +

n∑
j=1

A
(1)
ij uj

n∑
j=1

A
(2)
ij wj

+ β

 1

2ri

(
n∑

j=1

A
(1)
ij wj

)3

+
3

2

(
n∑

j=1

A
(1)
ij wj

)2 n∑
j=1

A
(2)
ij wj


+

ν

ri

(
n∑

j=1

A
(1)
ij uj

n∑
j=1

A
(1)
ij wj + ui

n∑
j=1

A
(2)
ij wj

)
(24)

Hi is the nondimensional film thickness at the ith grid point defined as:

Hi = dt(ri)− wi(t) where dt(ri) =

{
1 ri ≤ Re

R

1 + de
d

ri >
Re

R

(25)
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and the boundary conditions are :

At r = 0 :
n∑

j=1

A
(1)
1j wj = 0 u1 = 0

n∑
j=1

A
(1)
1j P̄j = 0

At r = 1 :
n∑

j=1

A
(1)
nj wj = wn = 0 un = 0

n∑
j=1

A
(1)
nj P̄j = 0 (26)

4. Eigenvalue modeling

4.1. Eigenvalue problem using DQM

In this section, we investigate the effect of the air film on the resonance frequencies
and damping coefficients. The system of equations is composed of three nonlinear partial
differential equations. The first equation (20) is the equation of motion for the downward
displacement w. The second one (21) is the equation that describes the transverse dis-
placement u. The third equation (22) represents the Reynolds equation that couples the
displacement of the plate with the pressure in the gap. For n grid points, the total number of
equations is equal to 3× n, which increases the computational time. To reduce the number
of equations, we write the radial displacement ui as a function of wi using equation (21) and
we replace the expression of ui in equation (20). At the boundary nodes, we use equations
(26) to determine the boundary displacements {w1, wn−1, wn} and pressures {P1, Pn}. This
simplification reduces the total number of equations to 2× n− 5. Then, we decompose the
total displacement wi into a static component ws

i and a dynamic component wd
i .

w(r = ri, t) = wi(t) = ws
i + wd

i (t) (27)

Substituting the expression of wi into the Reynolds equation, we obtain:

n∑
j=1

A
(1)
ij

(
rj
(
dt(rj)− ws

j − wd
j (t)
)3

(1 + Pj)
n∑

k=1

A
(1)
jk Pk

)
=

σri

((
dt(ri)− ws

i − wd
i (t)
)
Ṗi − (1 + Pi)ẇi

)
; i = 2, · · · , n− 1 (28)

The resonance frequencies of the structure and the damping coefficients are determined
by solving the damped eigenvalues of the system of equations (20) and (22) which can be
written as:

MŸ (t) + CẎ (t) +KY (t) +KNL(Y (t), Ẏ (t)) = 0 (29)

where M , C and K are the mass, damping and stiffness matrices; KNL(Y (t), Ẏ (t)) is the
vector with nonlinear parameters and Y (t) is the vector of unknowns defined as:

Y (t) =
{
wd

2, · · · , wd
n−2, P2, · · · , Pn−1

}
(30)

where the unknown parameters
{
wd

1, w
d
n−1, wn

d
}
are expressed as a function of wd

i for i =
2, · · · , n − 2 using the boundary conditions (26). Also, for the pressure parameters, we
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expressed {P1, Pn} as a function of Pi for i = 2, · · · , n−1 using equations (26). To determine
the resonance frequencies and damping coefficients, we neglect the nonlinear partKNL. Even
with this approximation, the solving of this type of system (29) remains difficult. Therefore,
by following Meirovitch et al. [51], we transform equation (29) to the general eigenvalue
problem by defining χ1 = Y (t) and χ2 = Ẏ (t):[

M 0
0 K

]
∂

∂t

[
Ẏ
Y

]
=

[
−C −K
K 0

] [
Ẏ
Y

]
(31)

Then, we determine the linear damped eigenvalues and eigenvectors by formulating the
harmonic displacement amplitude and pressure as follow:

wd
i (t) = ϕie

jωt

Pi(t) = φie
jωt (32)

where ϕi and φi are the shape functions of the microplate and fluid pressure associated to
the frequency ω at the nodes r = ri. Substituting the expression of wi and Pi into equation
(31), the system of equations becomes:

(λA−B)χ = 0 (33)

where

λ = jω A =

[
M 0
0 K

]
B =

[
−C −K
K 0

]
χ = {λY, Y } =

{
λϕd

2, · · · , λϕd
n−2, λφ2, · · · , λφn−1, ϕ

d
2, · · · , ϕd

n−2, φ2, · · · , φn−1

}
(34)

The eigenvalues and eigenvectors are then obtained by solving equation (33). The resonance
frequency and the damping parameter of the ith mode satisfy:

ωi = |Re (−jλi)| and ξi =
|Im (−jλi)|
|Re (−jλi)|

(35)

where Re and Im denote the real and imaginary part, respectively.
To this end, it is important to study the effect of the number of grid points n on the

convergence of the solution. In figure 2, we present the convergence of the first three axisym-
metric modes with respect to the number of grid points n by solving the system of equations
(31). For these simulations, we used the physical parameters of the solid and fluid presented
in Table 1, where the residual stress N0 is determined in order to match the numerical and
experimental first two resonance frequencies [52].

The resonance frequencies of the coupled system are determined for a clamped circular
microplate at atmospheric conditions. With only 8 grid points, we can determine the first
three resonance frequencies of the coupled problem with an error of 6 % for the 3rd mode and
less than 1 % for the first two modes. By increasing the number of grid points, the three
modes converge and 10 points are sufficient to investigate the eigenvalues of the coupled
problem. The error for the first two resonance frequencies is less than 0.04 %. DQM is able
to predict the first resonance frequencies of the coupled multiphysical system with only few
grid points and a high accuracy.
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Table 1: Physical parameters of the CMUT

Symbol Quantity Dimension
E Youngs modulus 149 [GPa]
ρ Density 2330 [kg/m3]
ν Poisson’s ratio 0.27
R Radius of the microplate 116 [µm]
Re Radius of the electrode 75 [µm]
h Thickness of the microplate 2.25 [µm]
d Gap distance 0.770 [µm]
de Thickness of the electrode 0.3 [µm]
N0 Residual stress 2.6 [MPa]
ϵ0 Permittivity of the air 8.85 10−12 [F/m]
η Viscosity 1.83 10−5 [Ns/m2]
λa Atmospheric mean free path 64 [nm]

4.2. Eigenvalue problem using FEM

The squeeze film effects can also be investigated using the finite element method. The
damping and stiffness parameters are determined using the modal projection technique im-
plemented in ANSYS. The squeeze film effects are determined by computing the velocity pro-
files of the structure. The multiphysical problem is solved by coupling two domains: struc-
ture and fluid. The structure domain is modeled with SOLID185 used for three-dimensional
solid structures. The element has the capability to be implemented with stress stiffening,
large deflection, large strain and plasticity effects. For the fluid domain, element FLUID136
is used to model the viscous fluid flow in the small gap separating two surfaces, which is
based on linearized Reynold equation, where only linear terms are taken into consideration
[53]. The Reynolds equation is defined with an effective viscosity ηeff as it was presented
by Veijola et al. [10] in equation (8). The physical parameters used in the next simulations
are listed in Table 1.

As shown in Figure 3, the solid volume is meshed with hexahedral elements while the
fluid surface is meshed with quadrilateral elements where the fluid nodes are the same nodes
as the lower surface of the solid. After that, the clamped boundary conditions of the plate
are defined on the lateral surface of the solid as fixed degrees of freedom in x, y and z
directions. For the fluid boundary conditions, the lateral nodes of the lower plate surface
are defined as wall boundary condition (No-slip boundary condition).

The damping and stiffness coefficients are determined as follows: first the free eigenfre-
quencies and mode shapes of the structure are determined by performing a modal analysis
of the solid structure. Next, for each resonance frequency, the eigenvectors are used to cal-
culate the resulting pressure distribution which represents the acting force applied by the
fluid at each mode. Therefore, ANSYS enables the computation of the squeeze stiffness and
damping parameters.
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Figure 2: The convergence of the first three resonance frequencies for a pressure P0 = 1 bar with respect to
the number of grid points n

5. Parametric and comparative study

In this section, we compare the free resonance frequencies of the circular microplate cou-
pled with the squeeze film model using the two methods outlined in the previous sections.
For the two models, we suppose that the gap distance is uniform along the r axis by neglect-
ing the thickness of the bottom electrode (de = 0 nm) and we choose a null electrostatic
force (Vdc = 0 V) in order to investigate the effect of the film of air on the natural resonance
frequencies of the plate. The number of grid points used in the reduced order model is
n = 20. For the two models, the damping c is chosen to be negligible.

In Figure 4, the resonance frequencies and damping parameters of the first two modes
are calculated using the two presented models while changing the pressure P0. For low
pressures (P0 = 10−2 Pa), the resonance frequencies are equal to the natural frequencies of
a circular plate. In this case, the air film has no impact on the resonance frequencies and
the error between the two models is less than 0.1%. By increasing the pressure in the gap
until P0 = 103 Pa, the natural frequencies remain almost unchanged. At this pressure, the
resonance frequencies start to increase and the error between the FEM and DQM becomes
notable. The pressure increase has a major impact on the Knudsen number which increases
the squeeze parameter σ. For small squeeze number σ << 1, the air film can be treated
as an incompressible fluid. However, for higher values of σ the fluid becomes compressible
and leads to air-spring effect which results in a shift in the resonance frequencies. Also,
the change in the gap pressure has an impact on the damping forces caused by the fluid.
For low pressures, the damping forces are negligible and there is no interaction between the
air and the microstructure. As we increase the pressure, the damping forces increase which
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Figure 3: Front and side views of the clamped circular plate modeled in ANSYS.

decreases the vibration amplitude of the plate. The damping parameters of the first two
modes increase in a linear way while increasing the pressure.
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Figure 4: The effect of changing the static pressure P0 on (a) the resonance frequencies and (b) the damping
coefficients for the first two axisymmetric modes.

In Figures 5 and 6, we respectively varied the parameters d and R at the atmospheric
condition (P0 = 1bar). In Figure 5, we display the resonance frequencies and the damping

parameters of the coupled fluid-structure system. The squeeze number σ =
12ηeffR

2

d2P0T
is

proportional to 1
d2
. For a small gap distance, the air film becomes very thin and the trapped

air behaves as a spring which explains the shift in the resonance frequencies. At this level,
the damping forces are negligible compared to the stiffness forces. The increase in the gap
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distance leads to a decrease in the squeeze number σ. Hence, the damping forces increase
and the stiffness forces decrease until they become equal at the cutoff squeeze number σc.
Around this point the damping forces are maximal and the air behaves as a damper. By
increasing more the gap distance, the damping and stiffness forces decrease and the air
effects become negligible.
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Figure 5: The effect of changing the gap distance d on (a) the resonance frequencies and (b) the damping
coefficients for the first two axisymmetric modes.

In Figure 6, we display the effect of changing the radius of the microplate on the resonance
frequencies and damping parameters of the first two modes. As we know, the change in the
radius of the plate changes the natural resonance frequencies. The squeeze number defined
previously as:

σ =
12ηeffR

2

d2P0T
=

12ηeff

d2P0

√
ρh
D

(36)

is independent of the plate radius R. However, the nondimensional quantity PND = R4P0

Dd
,

which represents the impact of the pressure on the plate, is proportional to R4. As shown in
Figure 6, the damping forces increase with respect to the plate radius due to the increase in
the surface of contact between the air and the plate. We can conclude that for a multiphysical
problem, σ and PND are the two main nondimensional parameters that quantify the effect
of the squeeze film on the dynamic behavior of the microplate.

In Figures 4, 5 and 6, we notice that for small value of σ and PND, the air film has a
small effect on the dynamic behavior of the microplate and the numerical results determined
using ANSYS and DQM are in good agreement. However, at higher values of σ and PND

the error between the two methods increases. The FEM method is based on first solving the
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Figure 6: The effect of changing the plate radius R on (a) the resonance frequencies and (b) the damping
coefficients for the first two axisymmetric modes.

mechanical problem and implementing the obtained results into the Reynolds equation. The
limitation of this method is that the eigenvalues and eigenvectors of the mechanical problem
are not depending of the squeeze parameter σ. That means the squeeze effects are always
determined at the natural resonance frequencies of the plate without taking into account the
frequency shift caused by the Reynolds equation. In the case of the DQM, the eigenvalues
and eigenvectors of the multiphysical problem are obtained by solving the coupled fluid and
solid system of equations. Also, the finite element model defined in ANSYS is valid only
in the case of small displacement (w << 1) and small pressure changes (P << 1). In
Figures 4 and 5, the non dimensional parameter β = d

R
ranging between 10−3 and 5× 10−2.

However, when β increases and becomes close to 1, Reynolds equation approaches its limit
of validation.

Another feature of the DQM is that we can determine the mode shapes of the microplate
and the pressure of the coupled problem. Several techniques have been presented in the
literature on the determination of the mode shapes of a coupled problem. Nayfeh et al.
[30] used the perturbation technique to solve the coupled problem and to approximate the
mode shapes and the resonance frequencies. This method is efficient especially for a simple
system such as a microbeam. However, the determination of the mode shapes for a two
dimensional system is difficult. Another analytical approach was used by Darfing et al. [54]
to determine the pressure mode shapes based on the Green’s function. This method was used
to determine the resulting squeeze film forces acting on a microplate. However, the mode
shapes of the mechanical problem are determined independently of the Reynolds equation
which makes this method only valid for a small squeeze number. The drawbacks of these
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methods is that when we change the boundary conditions of the problem, the expression of
the mode shape should be modified. In our case, the mode shape of the coupled problem
can be easily determined for different configurations (clamped or free boundary conditions)
and with different membrane shapes (circular, rectangular, hexagonal....). Unlike FEM, the
determination of the mode shapes and squeeze effects using DQM requires only few grid
points.

In Figure 7, we present the real and imaginary shape functions of a clamped circular
microplate at atmospheric pressure. At r = R, a rigid wall boundary condition is imposed
for the fluid . The mode shapes satisfy the boundary conditions (26). At the center of the
membrane, the displacement and the pressure are maximal. Therefore, the mode shapes
have a horizontal tangent at r = 0. For the clamped boundary conditions, the displacement
at r = R is null and the pressure satisfies the rigid wall boundary condition which represents
a horizontal tangent.

(a) (b)

Figure 7: The real and imaginary eigenvectors of the first two axisymmetric modes for the solid and fluid
at atmospheric pressure P0 = 1 bar and for 25 grid points: (a) the first mode and (b) the second mode.
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6. Experimental investigations of the squeeze film effects

The CMUT has been fabricated using a low-temperature fabrication technique based
on anodic bonding of SOI wafer on a glass wafer [55]. The idea behind this method is to
define the cavity and the membrane on different wafers and after that they are bonded in a
vacuum condition. For the wafer bonding process, the membrane is a layer of silicon bonded
on a glace Borofloat 33 wafer. this fabrication process is characterized by few fabrications
steps than the sacrificial release technique [56, 57] which makes it shorter and faster for
manufacturing. Also, The membrane is made of single-crystalline silicon layer with a good
mechanical property, good thickness uniformity and low internal stress. These properties
increase transduction efficiency of the CMUT in transmit and receive mode.

In the previous section, we assumed that the gap distance along the r axis is uniform.
However, the electrode thickness can change the gap distance because when r > Re, H(t) =
d+ de −w(t) as displayed in Equation (10 ). This geometric parameter has been taken into
account in the model.

For the experimental tests, the wafer is placed inside a vacuum chamber in order to
eliminate the fluid interaction with the microsystem. As shown in Figure 8, two probes
are placed inside the chamber to ensure the electric connections. The vacuum chamber
has a transparent window (Plexiglas) that enables the laser beam to penetrate without
any distortion. The DC and AC voltages are generated with a DC and AC generators.
The two voltages are combined using a coupling circuit. The displacement/velocity are
measured using a vibrometer OFV-534 (Polytec) at the center of the microplate. The
decoder transforms the optical signal to an electrical one which will be displayed in the
oscilloscope. The measured electrical signal is proportional to the vibration amplitude. The
laser vibrometer is characterized by a high precision (can go up to 1 pm for the displacement
and 10 m/s for the velocity) and a wide frequency range (up to 24 MHz) [58].

Screen 

display

Vacuum 

chamber

Laser 

vibrometer

DC generator 

AC generator 

oscilloscope

vibrometer

decoder
Vacuum chamber window 

Wafer

Probes

Figure 8: Experimental setup based on OFV-534 laser Doppler vibrometer used for the dynamic character-
ization of the microplate in term of frequency response.

In Figure 9, we compare the experimental and numerical resonance frequencies of the
microplate at different pressures P0. The microplate is actuated with a DC voltage combined
with a periodic chirp signal with an amplitude Vac. For low pressure (P0 = 0.45 mbar), the
resonance frequencies of the microsystem are equal to the natural resonance frequencies of
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the microplate. At this pressure, the air effects on the solid are negligible. By increasing the
pressure, the trapped air inside the gap behaves like a spring which explains the increase in
the resonance frequencies.

Figure 9 shows that the numerical results obtained with the DQM approach are in good
agreement with the experimental results even when the squeeze forces are important. The
maximum error between the experimental and numerical results is less than 2.5 %. This
error can be explained by the imperfect boundary conditions of the plate due to the apertures
in the pad access (see Figure 1a). At vacuum, the resonance frequency of the microplate is
equal to 610 kHz while it increases up to 973 kHz at atmospheric pressure. The difference in
the resonance frequency is about 60 %. Therefore, the modeling of MEMS devices operating
in atmospheric conditions should take into consideration the effect of fluid film.
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Figure 9: Experimental validation of the effect of the static pressure on the resonance frequencies.

Another major effect that is commonly studied in CMUTs is the DC voltage effect.
The electrostatic force has a direct impact on the resonance frequencies. Figure 10 shows
the variation of the first two resonance frequencies. As we increase the DC voltage, the
fundamental natural frequency decreases until it reaches zero at a Vdc = 34 V (known as
the pull-in voltage). The decrease in the resonance frequency is due to the negative stiffness
caused by the electrostatic force. At pull-in voltage, the electrostatic force is equal to the
restoring forces of the microplate.
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Also, the DC voltage bends the microplate downward and decreases the gap distance
which increases the effect of the squeeze film. In Figure 10, we present the resonance
frequencies and the damping ratios of the first two axisymmetric modes for different DC
voltages Vdc and pressures P0. For a low pressure, the effect of the fluid film is negligible
which explains the low damping and stiffness forces for the first two resonance frequencies.
By increasing the pressure, the resonance frequencies shift upward due to the added stiffness
caused by the air film. The change in the gap distance leads to an increase in the damp-
ing ratio of the first mode. For the second mode, the damping coefficient remains almost
unchanged.

7. Nonlinear dynamics of a CMUT with squeeze film effects

7.1. Time response analysis

In this section, we investigate the nonlinear dynamic response of a CMUT by taking into
account the squeeze film effects. Thus, the discretized system of equations (20)-(22) is solved
using the long time integration method to determine the time response of the microplate.
This method is based on the fourth order Runge-Kutta integration scheme. The simulations
presented in this section were performed on a circular CMUT with the physical parameters
presented in Table 1. The number of grid points used in simulations is n = 8.

Figure 11 depicts the time response of the microsystem forced with Vdc = 30 V and
Vac = 1 V at a nondimensional frequency ω = 13. The microplate is simulated at atmospheric
pressure condition . The time response in Figure 11(a) and (c) is composed of two regimes:
transient and steady state. At the atmospheric pressure, the solution amplitude stabilizes
rapidly due to the damping forces acting on the structure. As we showed in the previous
section, the decrease in the gap pressure leads to a decrease in the damping forces which
means the transient solution will take more time to stabilize.

As shown in Figure 11, the solution amplitude of the pressure is vibrating around a static
solution however this is not the case when we perform experimental tests because the gap
is not totally closed, due to an opening in the electrode pad (see Figure 1). Therefore, the
static solution of P is always zero. When we choose the rigid wall as boundary condition for
P , the static solution of w(r, t) depends on the pressure in the gap. In Figure 12, we plot
the effect of the static pressure P0 on the static solution of the membrane displacement w
and pressure P . First, we apply a DC voltage Vdc = 30 V to the microplate and we solve the
system in time domain using Runge-Kutta method and we determine the static solution for
w and P for different values of P0. The initial conditions for these simulations are chosen
to be zero for w and P (w(t = 0) = 0 and P (t = 0) = 0). As shown in Figure 12, for a low
pressure P0, the static pressure has a small effect on the static displacement and the total
displacement is equal to the static displacement of the membrane, when we solve only the
mechanical equations. However, as we increase the pressure P0, the static solution changes
and the total displacement decreases. This is due to the pressure difference between the
upper and the lower surfaces of the microplate. At atmospheric pressure, the static solution
decreases by 43 % which modifies the static pressure P0. As the pressure increases the static
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solution of P increases. The changes in the static solution of w and P have an important
impact on the dynamic solution of the coupled problem.

From an experimental point of view, the static displacement does not depend on the
pressure inside the gap. Therefore, the choice of rigid wall boundary condition for the fluid
can generate an error in the static and dynamic tests. Also the dynamic solution of the
microplate depends on the initial conditions chosen at t = 0. Hence, in the next section, we
will choose the boundary as an open boundary condition for the fluid.

7.2. Frequency response analysis

In this section, we study the frequency response of the microplate forced with an AC
voltage near the primary resonance frequency. We assume that the only damping source
is coming from the air film. The boundary conditions of the microplate are chosen to be
clamped for the solid and open for the fluid. Therefore, boundary conditions (26) become:

At r = 0 :
n∑

j=1

A
(1)
1j wj = 0 u1 = 0

n∑
j=1

A
(1)
1j P̄j = 0

At r = 1 :
n∑

j=1

A
(1)
nj wj = wn = 0 un = 0 Pn = 0 (37)

For the periodic solution of the microplate, we use the finite difference method (FDM)
to determine the microplate response when the stable region is reached [59, 60]. The period
of the solution, with a frequency ω, is equal to Tp = 2π/ω. First we discretize the period Tp

into Np time segments. Then, at each point, we write the first and second derivative of wi

using the centered difference approximation with fourth order error as:

ẇk
i =

−wk+2
i + 8wk+1

i − 8wk−1
i + wk−2

i

12 (Tp/Np)

Ṗ k
i =

−P k+2
i + 8P k+1

i − 8P k−1
i + P k−2

i

12 (Tp/Np)

ẅk
i =

−wk+2
i + 16wk+1

i − 30wk
i + 16wk−1

i − wk−2
i

12(Tp/Np)
2 (38)

where wk
i is the displacement of the ith grid point at t = k/Np. At the boundary time

conditions:

wk
i = w

Np+k
i and P k

i = P
Np+k
i if k ≤ 0

wk
i = w

k−Np

i and P k
i = P

k−Np

i if k > Np (39)

As we presented in section 4.1, the nonlinear coupled differential equations (20) and
(22) is a 2 × n − 5 ordinary differential equations and each of these ODE is descretized
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into Np algebraic equations using FDM which makes the total equations to solve equal to
(2× n− 5)×Np.

FDM is coupled with the arclength continuation method to determine how the solution of
a system varies with respect to a certain parameter [59]. We consider the following algebraic
system:

F (X,α) = 0 (40)

where α is the continuation parameter and X is the unknown parameter. The idea of this
method is to avoid varying the parameter α by parametrizing the variables X and α via a
new continuation parameter s, X = X(s) and α = α(s). The system of equations becomes:

F (X(s), α(s)) = 0 (41)

To solve this system of equations, we add an additional equation specified by Euclidean
arclength normalization [59].

XTX + α2 = 1 (42)

where the initial conditions for (41) and (42) are given by

X(0) = X0 and α(0) = α0 (43)

The nonlinear coupled algebraic equations (20) and (22) are solved using the FDM cou-
pled with the arclength continuation technique, where

F (X(s), α(s)) =

{
EQdy

w (wk
i (s), u

k
i (s), P

k
i (s)) i = 2, · · · , n− 2; k = 1, · · · , Np

EQdy
P (wk

i (s), P
k
i (s)) i = 2, · · · , n− 1; k = 1, · · · , Np

(44)

where the vector of unknowns is:

X(s) =
{
wk

i (s), P
k
j (s)

}
i = 2, · · · , n− 2; j = 2, · · · , n− 1 and k = 1, · · · , Np (45)

where n is the number of grid points, NP is the number of segments in the periodic solution
and α = ω is the control parameter .

In Figure 13, we present the frequency response of the microplate for several pressures
P0. The microplate is actuated with a DC voltage Vdc = 31 V and an AC voltage Vac = 1 V.
At atmospheric pressure, the frequency response of the microplate is linear and this is due
to the damping added by the squeeze model. The decrease in the pressure P0 inside the gap
has two effects on the dynamic behavior of the CMUT: first, it shifts the resonance frequency
and second it increases the vibration amplitude. In fact, the decrease of the pressure in the
medium reduces the stiffness and the damping effects caused by the air film. Figure 13(a)
shows the maximum displacement at the center of the microplate. By decreasing the static
pressure P0, the frequency response of the microplate starts to bend to the left and exhibits
a softening effect. For high DC voltages, the electrostatic nonlinearity is dominant over
the geometric nonlinearity. In Figure 13(b), we display the variation of the maximum net
pressure P (t) with respect to the excitation frequency. Despite the decrease of the pressure
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P0 in the gap, the maximum pressure P (t) increases due to the increase in the vibration
amplitude w(t).

In Figure 14, we simulate the frequency response of the CMUT at atmospheric condition
for different AC voltages and for Vdc = 15 V. The increase in the AC voltage leads to an
increase in the vibration amplitude without a change in the resonance frequency. In Figure
14(a), we display the maximum displacement of the microplate center with respect to the
resonance frequency. At a low AC voltage, the frequency response of the microplate is
linear. However, by increasing the AC voltage the frequency response becomes nonlinear
and exhibits a hardening behavior beyond the critical amplitude [61, 62, 63]. For instance,
when the AC voltage Vac = 15 V, the curve is tilted to the right and multiple solutions are
obtained. In Figure 14(b), we display the effect of AC voltage on the dimensional pressure
P (t). Due to the increase in the vibration amplitude, the relative pressure increases and
becomes nonlinear for Vac = 15 V. Actuating the CMUT with high voltage is very important
for several application such as High-intensity focused ultrasound (HIFU) and our model can
predict the nonlinear behavior of the CMUT operating in atmospheric conditions.

7.3. Force response analysis

In this section, we study the effect of the pressure P0 on the force response curves of
the CMUT. In Figure 15, we simulate the maximum amplitude and pressure at the center
of the microplate with respect to the forcing voltage Vac and for several pressures P0. The
microplate is actuated with a DC voltage Vdc = 31 V at a constant frequency 700 KHz. For
this DC voltage the microplate has a softening type behavior (see Figure 13). There are two
bifurcation points with unstable branch in between and two stable solutions. For Vac = 0
V, the maximum displacement of the membrane is equal to the static solution when the
membrane is forced with a DC voltage Vdc = 31 V. By increasing the pressure in the gap,
the voltage of the first bifurcation point strongly increases, whereas the second bifurcation
point slightly increases and this increases the bistability domain in the force response curves.
For this configuration, the air film is behaving as a spring. In fact, an increase in the pressure
leads to a shift in the resonance frequency, while the damping force is slightly changed, which
is illustrated in Figure 4. Therefore, to reach the first limit point, high actuation voltages
are required for high pressure P0.

8. Conclusion

In this paper, we have developed a nonlinear model for a circular microplate by taking
into account the squeeze film effects. The pressure distribution inside the gap has been
modeled using the Reynolds equation. The validity region of the Reynolds equation is ex-
tended by replacing the viscosity of the fluid with an effective one using the Veijola model.
The coupled differential equations, solid and fluid, have been discretized with DQM using
the same grid points for the solid and fluid. The resonance frequencies and the damping
coefficients of the multiphysical problem are determined by solving the linear damped sys-
tem. Another method was also presented, which is based on FEM model implemsented in
ANSYS. The two models showed a good agreement especially for a low squeeze number. For
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low pressure P0, the damping and stiffness forces of the air film are negligible and by increas-
ing the pressure, the resonance frequencies shift and the damping force increases. Several
simulations were also performed for different design parameters R and d. The squeeze film
effects depend mainly on the squeeze number σ. The advantage of DQM is that we can
determine the complex eigenvectors and eigenvalues of the solid and fluid. Also, it provides
more accurate results than ANSYS model because for this type of FEM model, the squeeze
forces are determined at the natural resonance frequencies of the microplate without taking
into account the shift in the resonance frequencies caused by the fluid. Our model has been
also validated with respect to experimental results for different static pressures.

We have also studied the nonlinear dynamic behavior of the microplate under the squeeze
film effects. The fluid can have two possible boundary conditions: (i) closed boundary con-
dition for which the relative pressure P has a static solution that can change the static
displacement of the microplate and the time response strongly depends on the initial con-
ditions of the solid and fluid at t = 0, (ii) open boundary condition which is relatively
consistent with the fabricated device due to the pad channel.

For open boundary condition, we have plotted the frequency responses of the CMUT at
different pressures P0 using DQM. It has been shown that the decrease in the pressure leads
to an increase in the vibration amplitude, a shift in the resonance frequency and a nonlinear
behavior of the microsystem. At atmospheric pressure, the nonlinear regime can be reached
by applying high DC and AC voltages to conquer the damping force. In the force response
curves, the increase in the pressure leads to an increase in the bistability region.

The proposed approach is very efficient in predicting the nonlinear behavior of capac-
itive resonators, such as CMUT, operating in atmospheric conditions. This model can be
exploited by MEMS designers in order to enhance the performances of CMUTs, enabling
the generation of acoustic waves with high intensity.
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Figure 10: The effect of the DC voltage on the resonance frequencies and damping coefficients for several
pressures P0: (a) and (c) the first axisymmetric mode, (b) and (d) the second axisymmetric mode.
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(c) (d)

Figure 11: Time response of the microplate for Vdc = 30 V, Vac = 1 V, P0 = 1 bar at the dimensionless
frequency ω = 13 with the physical parameters defined in Table 1: (a) time response of w(t), (b) the steady
state solution of w(t), (c) time response of P (t), (d) the steady state solution of P (t).
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Figure 12: Dimensionless static response of w and P for several static pressures P0 and Vdc = 30 V. The
static solution is determined at the center of the microplate using the Runge-Kutta method and for the
initial conditions w(t = 0) = 0 and P (t = 0) = 0.
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Figure 13: Frequency responses of (a) w(t) and (b) P (t) for Vdc = 31 V and Vac = 1 V, at the center of
the microplate for several static pressures P0. The physical parameters used in the simulations are defined
in Table 1. The solid and dashed lines represent the stable and unstable solutions respectively and the star
(*) represents the bifurcation point.
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Figure 14: Frequency responses of (a) w(t) and (b) P (t) for Vdc = 15 V and P0 = 1 bar, at the center
of the microplate for several voltages Vac. The physical parameters used in the simulations are defined in
Table 1. The solid and dashed lines represent the stable and unstable solutions respectively and the star (*)
represents the bifurcation point.
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Figure 15: Force responses of the maximum displacement and pressure at the center of the microplate, for
Vdc = 31 V and at the frequency 700 KHz. The physical parameters used in the simulations are defined in
Table 1. The solid and dashed lines represent the stable and unstable solutions respectively and the star (*)
represents the bifurcation point.
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