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Abstract

The fusion of multiple segmentations of different biological structures is in-

evitable in the case where each structure has been segmented individually for

performance reasons. However, when aggregating these structures for a final

segmentation, conflicting pixels may appear. These conflicts can be solved by ar-

tificial intelligence techniques. Our system, integrated into the SAIAD project,

carries out the fusion of deformed kidneys and nephroblastoma segmentations

using the combination of Deep Learning and Case-Based Reasoning. The perfor-

mances of our method were evaluated on 9 patients affected by nephroblastoma,

and compared with other AI and non-AI methods adapted from the literature.

The results demonstrate its effectiveness in resolving the conflicting pixels and

its ability to improve the resulting segmentations.
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1. Introduction

The Wilms tumour, also called Nephroblastoma, is one of the most frequent

abdominal tumours observed in children (generally in 1 to 5 years of age), rep-

resenting 5 to 14% of malignant paediatric tumours. This type of tumour is

situated in the kidney. Most often, its initial diagnosis is based on imaging.5

Generally, ultrasound observations are first planned in order to confirm the tu-

mour’s existence and to approximate its position. A medical scan then locates

it with greater accuracy, along with affected organs and healthy tissues. Radiol-

ogists and surgeons need 3-Dimensional (3D) representations of the tumour and

the border organs in order to establish the diagnosis, plan the surgery (estimated10

quantity of blood, specialised equipment required, estimation of the duration of

the surgery, etc.) and also guide the actions of the surgeon during the surgery.

This 3D representation is currently done through manual segmentations, which

is a long and time-consuming task.

The French-Swiss border project SAIAD (Automated Segmentation of Med-15

ical Images Using Distributed Artificial Intelligence) aims at obtaining auto-

matic segmentations of the nephroblastoma and other structures of the ab-

domen, through Artificial Intelligence (AI) methods. In the SAIAD platform,

each structure is segmented separately by a technique of its own. Currently,

the tumour is segmented by Deep Learning (DL) and more specifically by a20

Convolutional Neural Network (CNN) (Marie et al. (2019)), and the pathologi-

cal kidney is segmented by Cased-Based Reasoning (CBR) coupled with region

growing technique (Marie et al. (2018)), or by the same approach used for the

segmentation of the tumour. However, once the segmentation step is done for

each structure, the different segmentations must be aggregated together to ob-25

tain a final consensus segmentation. This aggregation is not obvious to realise,

because when the different segmentations are superposed, some areas of conflict-

ing segmentations can appear on the labelled pixels belonging to the different

structures.

In this paper, we propose an original approach based on the use of AI tech-30
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niques to achieve the fusion of complementary segmentations of scanner images

of deformed kidneys and tumours. The initial hypothesis we assumed in this

study and the particular application domain of SAIAD is that similar segmen-

tations lead to similar fused segmented images. Consequently, we evaluated the

possibility of using a reasoning technique based on analogy (CBR) in order to35

enhance the fusion by deep learning, and introduce a hierarchical scheme on the

set of cases to be used during the CNN’s learning stage.

The following sections of the paper are organised as follows. Section 2 dis-

cusses related works in the field of segmentations fusion by mathematical and

AI techniques. Section 3 presents our method of fusion of complementary seg-40

mentations by DL coupled with CBR approach and Section 4 explains the ex-

periments and performances of our method. Finally, Sections 5 and 6 presents

the discussions and the conclusions of the paper.

2. Related works

The combination of multiple segmentations can be done in different ways.45

It is, most of the time, used to achieve a better segmentation through the

combination of multiple coarse segmentations, instead of using a more expensive

and complex segmentation method. Intuitive methods can be realised for the

combination of these segmentations, such as the use of majority vote (Rohlfing

et al. (2004)) or the intersection and the union (Cabria & Gondra (2017)).50

However, these methods are limited. Many methods have emerged with the use

of different metrics, via an iterative algorithm, for merging segmentations, such

as using the Variation of Information (VoI) criterion (Mignotte (2014); Nguyen

et al. (2018)), the F-Measure (or precision-recall criterion)(Mignotte & Hélou

(2014)), the Global Consistency Error (GCE) (Khelifi & Mignotte (2016)) or55

the Probabilistic Rand Index (PRI) measure (Mignotte (2010)). More recently,

other fusion approaches use the combination of multiple metrics like the VoI

and the F-Measure criteria and the GCE and the F-Measure criteria (Khelifi

& Mignotte (2017a,b)). Another approach is the use of spatial and intensity
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information (like the pixel’s grey level and the neighbour’s labels) of an image60

and its segmentations for the fusion of MR-T2 brain images segmentation map

(Feng et al. (2017)).

Segmentations fusion is also often employed in another field of image pro-

cessing tasks, such as saliency detection. Saliency detection aims to highlight

and segment the most important or visually distinctive objects or regions in an65

image by extracting its discriminative features and then compute their impor-

tance in the image. The neural networks, deep or not, and more particularly

the convolutional neural networks (whose notions are presented in the article

of LeCun et al. (2015)) are increasingly used in saliency detection due to their

ability to extract high-level features from an image. They, therefore, could the-70

oretically outperform conventional saliency detection methods that are based

on low-level saliency features. The result of saliency detection is a saliency map

containing the segmentation of salient objects from an image. Thus, saliency

detection can also be classified as an image segmentation task.

Many saliency detection methods have been proposed by combining two or75

more saliency maps in order to capture more diverse types of information and

thereupon improve the segmentation in the final saliency map. Zhao et al. (2015)

proposed a saliency detection method in which complimentary segmentations

in two saliency maps are fused by a fully connected layer. This method falls

within the category of region-level saliency detection in which an input image80

is first segmented into regions and its features are then extracted from these

regions. On the other hand, pixel-level saliency detection approaches extract

features directly from the pixels of an image. Li & Yu (2016) proposed a saliency

detection approach that combines the segmentations from a pixel-level saliency

map and a region-level saliency map using a single convolutional layer with a85

1 × 1 kernel. The same fusion system is also proposed by Tang et al. (2016) to

fuse segmentations from five saliency maps.

Increasingly deep networks are also proposed. A network is considered deep

when it has several hidden layers. Thus, in the saliency detection method pro-

posed by Tang & Wu (2016), the fusion of two segmentations, each from a pixel-90
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level saliency map and a region-level saliency map, is also used. The authors

also incorporate the original image in the fusion process in view of providing

more information and correcting the segmentation in the final saliency map.

The fusion system’s architecture consists of one concatenation layer and three

convolutional layers.95

Xiao et al. (2018) developed another saliency detection method that uses

Recurrent Convolutional Neural Network to extract four saliency maps from

an image that are later concatenated and fused by three convolutional layers

where each one of them is followed by a Rectified Linear Unit (ReLU) layer.

Another saliency method proposed by Qu et al. (2017) fuses multiple saliency100

feature maps by a more complex convolutional neural network and the resulting

segmentation is passed through a Laplacian propagation to enforce a better

spatial consistency in the final saliency map.

Some image segmentation methods also incorporate the fusion of two or

more feature maps to achieve better segmentation results. A deep convolutional105

neural network consisting of seven convolutional layers, five ReLU layers, and

two pooling layers is used to combine two feature maps in an image segmentation

method proposed by Hu et al. (2019).

The merge processes shown above are either included in segmentation net-

works or are independent but used in the saliency maps fusion. Our approach110

is to create a deep neural network allowing to aggregate different structures

between them and to indirectly manage the possible conflicts that could have

happened by simply superimposing the segmentations. Also, our network is cou-

pled to a simple CBR technique, allowing it to recover different segmentations

from the case base for its learning process.115

3. Proposed method

This part of the paper firstly presents the general architecture of the SAIAD

project, and then the DL coupled with CBR system designed for the fusion of

multiple complementary segmentations.
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3.1. Overview of the general architecture of SAIAD project120

Figure 1 shows the general architecture of the system designed in the SA-

IAD project. It is composed of three layers. The first one is the data layer,

which contains a database for each segmentation system, and which is attached

to a specific and secure server, called the COVOTEM collaborative platform

(Maincare (2019)). When a new patient performs an examination, the slices of125

her/his abdomen are stored on the platform by the hospital that performed

these examinations (Atlas part). These are scanned images in Dicom format.

Experts then add the ground truths on the platform (Expert knowledge part).

These ground truths allow us to measure the accuracies of the segmentations

and fusions performed by our methods. Each database has access to all the130

CT scan images and expert knowledge. The second layer is the segmentation

layer, where CT scan images are segmented by artificial intelligence systems,

specifically by a CBR system coupled with region growing technique for the

pathological kidney (Marie et al. (2018)) and by a Deep Learning segmenta-

tion, and more particularly by the FCN-8s for the nephroblastoma (Marie et al.135

(2019)). At the end of the segmentation processes, the system gives two com-

plementary segmentations in two different images and the fusion layer combines

them with a neural network coupled with a CBR technique planned for the

fusion of the two segmentations.

3.2. DL coupled with CBR system140

As summarised in Figure 2, the DL coupled with CBR system has several

parts. CBR itself is a problem-solving method based on analogy relying on its

past experiences to solve a new problem. Our fusion system has a case base

allowing the storage of known cases, a retrieval phase allowing the recall of

similar cases, a specific pre-processing for a case before being passed to the145

neural network input and finally the neural network for the fusion process. The

details of each part are presented below. The principle of the system is as

follows. When a new case (the two segmentations to fuse and the corresponding

CT scan) is added, the system calculates its similarity value to each stored case
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Figure 1: General schema of the SAIAD project.

and, during the retrieval phase, extracts a certain number of source cases with150

the highest similarities. Then, these cases are prepared for the input of the

neural network and used for its training. Once the network is trained, the new

case (previously prepared) is given at the input of the network for the calculation

of the final result. The final result is then the final segmentation where tumour

segmentation and pathological kidney segmentation are concatenated. This155

new case, with the solution, can be stored in the case base if the resulting

segmentation is deemed relevant.

The input of the system (the input case) is the information of a transversal

slice of a patient. Several transversal slices must be treated in order to obtain all

the information about the patient’s nephroblastoma. Thus, in order to achieve160

fusion of the kidney and nephroblastoma segmentations in their entirety, our

process must be repeated on each segmented slice of the patient. Indeed, the

segmentation techniques used segment the structures slice by slice. This allows
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Figure 2: Overview of the DL-CBR system.

us, by superimposing these segmentations, to obtain the 3D segmentation con-

taining all these structures.165

3.2.1. Case model approach

A case is composed of a Problem part and a Solution part. The Problem

part describes the characteristics of the problem to be solved and the Solution

part describes the way to solve it. In our study, the Problem part contains

the segmentations of each structure, where the superposition of these structures170

leads to conflicting pixel problems. The Solution part has the original CT scan

image of the segmentations, and the ground truth of the segmentations (i.e. the

true segmentations carried out by experts of the field). All these images will be

used to train the neural network.
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3.2.2. Retrieval phase175

This section describes how the retrieval phase is performed using a similarity

calculation between a new case and the stored cases. The case base is composed

of two types of data: CT scan images and segmentation images. The similarity

formula used, presented in Equation 1, is a mean between the Dice, which calcu-

lates the similarity between two segmentations S and S′, described in Equation180

2, and the MSSIM (Mean Structural SIMilarity) (Wang et al. (2004)) calculating

the similarity between two CT scan images I and I ′, presented in Equation 3.

The Dice metric is commonly used in the medical field and the MSSIM criteria is

an improvement of the SSIM (Structural Similarity) criteria that are commonly

used in image compression. MSSIM uses an iterative windowing to increase185

the capacity of structural comparison on images (i.e. each window describes a

Region Of Interest which is compared independently).

s(S, S′, I, I ′) =
1

2
(Dice(S, S′) +MSSIM(I, I ′)) (1)

The Dice is defined as:

Dice(S, S′) =
2 ∗ TPS,S′

2 ∗ TPS,S′ + FPS,S′ + FNS,S′
(2)

where TPS,S′ is the number of true positive pixels between S and S′, FPS,S′

is the number of false positive pixels and FNS,S′ the number of false negative

pixels. The Dice’s score ranges between 0 and 1. A score of 0 denotes that the190

two segmentations are completely different, whereas a score of 1 indicates that

they are identical.

The MSSIM is defined as:

MSSIM(I, I ′) =
1

M

M∑
i=1

SSIM(Ii, I
′
i) (3)

where M is the number of windows and SSIM is:

SSIM(I, I ′) =
(2µIµI′ + C1) + (2σII′ + C2)

(µ2
I + µ2

I′ + C1)(σ2
I + σ2

I′ + C2)
(4)
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where µ is the mean, σ is the standard deviation and C1 = 0.01 ∗ L and

C2 = 0.03 ∗L with L = 255. The values of C1 and C2 are the values used in the195

paper of Wang et al. (2004) and L is the range of possible pixel values.

As a case represents the segmentation of the tumour, the segmentation of the

kidney and the CT scan image of the same slice, it is not possible to use Equation

1 directly, because it takes into account only one calculated segmentation (which

will be compared to its ground truth). The two segmentations are then combined200

into a single segmentation with the addition of a new label for conflicting pixels.

Likewise, their ground truths are also combined to obtain one ground truth

that includes both structures. The Dice is then calculated globally on all the

structures.

For the fusion of a new case, three known cases will be retrieved from the205

case base and will be used for the training of the neural network. This number

has been defined by experimentation for the good learning of the network.

3.2.3. Pre-processing of the learning set

For the neural network to be able to process all three images (tumour seg-

mentation, kidney segmentation, and CT scan image), they are concatenated210

into a three-channel image, where each channel corresponds to one image. This

provides the network with all the information it needs in a single image.

3.2.4. The DL network

Architecture. For the specific purpose of fusing multiple complementary seg-

mentations, a Deep Learning based system has been designed. The neural net-215

work, whose general architecture is presented in Figure 3, is inspired by the

CNN used for image segmentation and more particularly by the networks used

in Long et al. (2015). The network is composed of 8 convolutional layers and 2

pooling layers. It consists of the application of two 3x3 convolutions, each fol-

lowed by a rectified linear unit (ReLU) and a 2x2 max pooling with a stride of 2220

for downsampling, the whole repeated twice. Then, two other 3x3 convolutions

without padding with ReLU are applied and followed by a 1x1 convolution in
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order to obtain the desired number of classes. Finally, a 20x20 up-convolution

(or deconvolutional layer) is used to get a result with the same size as the input

of the network.225

Figure 3: Overall architecture of the proposed network.

At the end of the predication phase, an argmax function is used in order to

obtain a final segmentation fused with one channel.

Training stage. The training of the neural network is also specific to our

DL-CBR system. For each case chosen during the retrieval phase (the two

segmentations to fuse and their corresponding CT scan image), training is per-230

formed with a batch size of 1 and an automatic calculation of the number of

iterations according to the similarity calculated between the new case and the

chosen case (see Equation 1). The trainings are done in the increasing order of

the similarities obtained. Thus, the chosen case with the lowest similarity will

be used for the 1st training, with the network’s weights initialised randomly,235

and the most similar case will be used at the end of the training process. We

have chosen to use the most similar known case for the last training of our

neural network, in order to specialise and focus our training on the case that is

the most similar to our new case. Thus, with training for each known case, one

iteration is equivalent to one epoch.240

More precisely, the retrieval phase using the CBR technique gives a list of 3
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known cases (C1, C2 and C3) where C1 is the most similar case, C2 is the second

most similar case, and C3 is the third most similar case retrieved. These cases

are given to the Deep Learning part of our method with their similarity values

respectively equal to S1, S2 and S3. These values are computed according to245

Equation 1. Then, the neural network’s training is performed using the images

of C3 with the number of iterations fixed to S3 ×NBMaxIt, where NBMaxIt

corresponds to a constant number of iterations fixed to 3 000. Then, this trained

neural network is trained again using the images of C2, with S2 × NBMaxIt

iterations. Finally, this two-timed trained network is trained for the third time250

using the images of C1, with S1 ×NBMaxIt iterations.

This method of general training allows us to indirectly add the notion of

weight on the whole learning set. The more a known case is similar to the new

case to be fused, the higher the number of iterations of the neural network’s

training on that particular known case will be.255

4. Experiments

4.1. Generation of segmentation set

We have tested the performance of our system over 9 patients with a mean

of 109 slices per patient. All of the CT scan images and calculated segmenta-

tions have the same size: 512 x 512 pixels. The pathological kidney and the260

nephroblastoma were segmented on each slice of each patient by Deep Learning

(the convolutional neural network FCN-8s first trained with the PASCAL VOC

2012 database in Everingham et al. (2015)) enhanced with the OV
2

ASSION pro-

tocol (Marie et al. (2019)) with 10000 training iterations. The learning protocol

OV
2

ASSION is a protocol specifically designed for small learning sets, because265

the neural network is trained only on certain spaced slices of a patient and then

it is tested on all the remaining slices.

A Conditional Random Field (CRF) post-processing (Krähenbühl & Koltun

(2011)) is also applied after the Deep Learning segmentations. And before
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the fusion process, the segmentation labels are modified to improve the neural270

network’s efficiency.

The pixels belonging to the tumour in the tumour segmentation and the

pixels belonging to the pathological kidney in the pathological kidney segmen-

tation are initially labelled at a value of 1. They are then adjusted to 255 to

compensate for the higher pixel values in the CT scan images.275

We also have the ground truth segmentations of all the patients, carried

out by experts (surgeons and radiologists) at the Centre Hospitalier Régional

Universitaire de Besançon (University hospital of Besançon). These ground

truths are used in order to verify the reliability of our processes and the resulting

fused segmentations.280

4.2. Training

For the fusion of all the segmentations of one patient, the case base is filled

with slices from all the other patients, as well as some slices spaced from the

current patient (with a gap of 4), which were used for training thanks to the

OV
2

ASSION protocol.285

The deep neural network was trained on a maximum of 3000 iterations per

case and a batch size of 1. It uses 3 cases for its training and a learning rate of

1e-9.

4.3. Results

Table 1 presents the percentage of conflicting pixels that have been correctly290

classified by the different tested approaches and the standard deviation for each

approach. On average, the pixels in conflict on a slice correspond to 1.70% of

its total number of pixels. Table 1 allows us to compare the performance of

our DL-CBR method with other methods of fusion by neural networks (Our

neural network with a classical training, three convolutional layers as proposed295

by Tang & Wu (2016), three convolutional layers each followed by a ReLU layer

as proposed by Xiao et al. (2018) and a deep neural network as proposed by

Qu et al. (2017)) and more classical methods by similarity (Feng et al. (2017))
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and VoI-criterion (Mignotte (2014)). All other fusion methods based on neural

networks have been subjected to classical trainings. They were trained on seg-300

mentation slices from all the other patients in order to fuse the segmentations of

the current patient, with a learning rate of 1e-10 and the number of iterations

is fixed at 20000.

Table 1: Percentage of correctly resolved conflicting pixels for each patient with

different methods. The values in bold correspond to the best values obtained.

From left to right: The different patients; The results of our DL-CBR sys-

tem; The results of our DL system with a classical training; The results by the

network of three convolutional layers; The results by the network of three con-

volutional layers followed by ReLU layers; The results by a deep neural network;

The results by the use of similarity; The results by the use of VoI-criterion.

Patient
DL-CBR

method

DL

method

Network by

Tang & Wu (2016)

Network by

Xiao et al. (2018)

Network by

Qu et al. (2017)

Method by

Feng et al. (2017)

Method by

Mignotte (2014)

P1 0.7119 0.6635 0.6324 0.5989 0.6493 0.6062 0.6782

P2 0.7316 0.7623 0.6839 0.6338 0.7371 0.5834 0.6681

P3 0.8589 0.4232 0.8963 0.7510 0.8050 0.6556 0.5104

P4 0.7158 0.6062 0.7269 0.3503 0.7855 0.6549 0.6650

P5 0.6391 0.5523 0.5699 0.5767 0.6195 0.5907 0.7089

P6 0.5123 0.6153 0.5228 0.5867 0.5392 0.6201 0.6044

P7 0.7089 0.5737 0.5653 0.6145 0.4696 0.3868 0.2846

P8 0.5484 0.6214 0.5083 0.5193 0.6371 0.5746 0.4759

P9 0.6146 0.5751 0.6310 0.6177 0.3983 0.6114 0.5697

Mean 0.6713 0.5992 0.6374 0.5832 0.6267 0.5871 0.5739

Std Dev (%) 10.52 9.08 12.08 10.70 13.89 8.03 13.44

First of all, we can see that there is no clear supremacy of one method

over the others. Three methods give the best arbitration of conflicting pixels305

twice (the DL-CBR method, the network proposed by Tang & Wu (2016) and

the network proposed by Qu et al. (2017)). Three other methods give the best

arbitration once (the DL method, the method proposed by Feng et al. (2017) and

the method proposed by Mignotte (2014)). Nonetheless, our DL-CBR method

is one of the three best methods for seven of the nine patients. The performance310

of the DL-CBR method is relatively poor for patients P6 and P8 which are the
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patients for which the segmentation system had the most difficulties to segment

the pathological kidney correctly. Currently, for these two patients, on some of

the slices, the pathological kidney is importantly deformed and thus, makes an

automatic segmentation very difficult. Also, even if for each patient, our method315

is not necessarily the best, on average, it is superior to the other methods with

67.13% of correct resolution. The standard deviation of the DL-CBR method

is 10.52%, which corresponds to the lowest value of the three methods giving it

the best arbitration.

Tables 2 and 3 show the Dice scores obtained (between calculated segmen-320

tation and ground truth) for tumour and kidney, before and after the fusion

according to the different methods and for each patient. This Dice score per

patient is obtained by calculating the average of the Dice scores of all of the

patient’s slices. In both of the structures, most patients achieve better Dice

(bold values) with our DL-CBR method. Evidently, for five of the patients, the325

final fused segmentation obtained with our method is the best one (patients P1,

P4, P5, P6 and P9 for the tumour and patients P1, P3, P4, P7 and P9 for the

kidney). DL-CBR method improves the Dice score before fusion of about 0.8%

for the tumour (from 0.9120 up to 0.9193) and 1.2% for the kidney (from 0.8745

up to 0.8850). For the kidney, considering the mean Dice, the DL method out-330

performs the DL-CBR one (global mean Dice respectively equal to 0.8860 and

0.8850), but the DL-CBR method gives the best results for five patients and the

DL method for only three patients. This supremacy of the DL-CBR and the

DL methods can be explained by the fact that these methods (and methods by

neural networks in general) do not only affect the set of pixels in conflict (As is335

the case for the methods by Feng et al. and by Mignotte), but all the pixels of

a considered segmentation slice. These two methods (DL-CBR and DL) have

the behaviour of an effective post-treatment on the entire slice. For that reason,

even if one of the other methods gives a better arbitration strictly on the set

of pixels in conflict (Table 1), the DL and DL-CBR methods can finally offer a340

better fused and final segmentation of each structure (Tables 2 and 3).
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Table 2: Dice of the tumour before the fusion and obtained after the fusion for

each patient according to different methods.

Patient
Dice before

fusion

DL-CBR

method

DL

method

Network by

Tang & Wu (2016)

Network by

Xiao et al. (2018)

Network by

Qu et al. (2017)

Method by

Feng et al. (2017)

Method by

Mignotte (2014)

P1 0.9422 0.9493 0.9422 0.9419 0.9403 0.9441 0.9427 0.9430

P2 0.8876 0.8930 0.8957 0.8751 0.8837 0.8903 0.8856 0.8866

P3 0.8298 0.8435 0.8245 0.8300 0.8288 0.8543 0.8273 0.8261

P4 0.9554 0.9606 0.9489 0.9527 0.9518 0.9560 0.9553 0.9554

P5 0.9338 0.9436 0.9403 0.9151 0.9080 0.9349 0.9336 0.9338

P6 0.9317 0.9344 0.9383 0.9324 0.9327 0.9355 0.9330 0.9330

P7 0.9233 0.9269 0.9255 0.9243 0.9225 0.9257 0.9225 0.9223

P8 0.9456 0.9465 0.9475 0.9447 0.9455 0.9476 0.9457 0.9455

P9 0.8585 0.8758 0.8721 0.8605 0.8676 0.8691 0.8606 0.8603

Mean 0.9120 0.9193 0.9150 0.9085 0.9090 0.9175 0.9118 0.9118

Std Dev (%) 4.35 3.96 4.28 4.30 4.13 3.68 4.40 4.43

Table 3: Dice of the pathological kidney before the fusion and obtained after

the fusion for each patient according to different methods.

Patient
Dice before

fusion

DL-CBR

method

DL

method

Network by

Tang & Wu (2016)

Network by

Xiao et al. (2018)

Network by

Qu et al. (2017)

Method by

Feng et al. (2017)

Method by

Mignotte (2014)

P1 0.8690 0.8918 0.8861 0.8692 0.8661 0.8781 0.8694 0.8707

P2 0.9226 0.9246 0.9269 0.9245 0.9246 0.9243 0.9241 0.9245

P3 0.9422 0.9442 0.9429 0.9436 0.9431 0.9431 0.9424 0.9424

P4 0.9240 0.9352 0.9207 0.9254 0.9152 0.9257 0.9258 0.9259

P5 0.8581 0.8762 0.8772 0.8701 0.8552 0.8763 0.8597 0.8605

P6 0.8144 0.8263 0.8493 0.8184 0.8057 0.8321 0.8147 0.8134

P7 0.9081 0.9103 0.9078 0.9099 0.9094 0.9101 0.9086 0.9084

P8 0.6993 0.7084 0.7181 0.7067 0.7105 0.7185 0.7004 0.6986

P9 0.9331 0.9476 0.9448 0.9313 0.9448 0.9429 0.9335 0.9332

Mean 0.8745 0.8850 0.8860 0.8777 0.8750 0.8857 0.8754 0.8753

Std Dev (%) 7.79 7.66 7.04 7.55 7.67 6.61 10.52 10.72

Finally, Table 4 shows the mean Dice for each patient across the two struc-

tures (Dice obtained between the calculated segmentation and the ground truth).

Again, our system provides better Dice scores for five patients and the final mean

Dice. On average, a Dice for a patient increases by 0.88% with our method.345
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Table 4: Result of mean Dice (tumour and pathological kidney) before the fusion

and obtained after the fusion for each patient according to different methods.

Structure
Dice before

fusion

DL-CBR

method

DL

method

Network by

Tang & Wu (2016)

Network by

Xiao et al. (2018)

Network by

Qu et al. (2017)

Method by

Feng et al. (2017)

Method by

Mignotte (2014)

P1 0.9056 0.9206 0.9141 0.9055 0.9032 0.9111 0.9061 0.9069

P2 0.9051 0.9088 0.9113 0.8998 0.9042 0.9073 0.9049 0.9056

P3 0.8860 0.8938 0.8837 0.8868 0.8860 0.8987 0.8849 0.8843

P4 0.9397 0.9479 0.9348 0.9390 0.9335 0.9409 0.9401 0.9407

P5 0.8959 0.9099 0.9088 0.8926 0.8816 0.9056 0.8967 0.8972

P6 0.8731 0.8804 0.8938 0.8754 0.8692 0.8838 0.8739 0.8732

P7 0.9157 0.9186 0.9167 0.9171 0.9160 0.9179 0.9156 0.9154

P8 0.8225 0.8274 0.8328 0.8257 0.8280 0.8430 0.8231 0.8221

P9 0.8958 0.9117 0.9085 0.8959 0.9062 0.9060 0.8971 0.8968

Mean 0.8933 0.9021 0.9005 0.8931 0.8920 0.9016 0.8936 0.8936

Std Dev (%) 6.41 6.17 5.85 6.17 6.23 5.44 9.29 9.44

Figure 4 shows the results of the segmentation fusion with conflict manage-

ment of the DL-CBR system. It shows, in particular, the results obtained on

five slices belonging to different patients. All pixels in conflict are labelled as

belonging either to the tumour, kidney or background. The segmentations are

also slightly improved, smoothed, and filled.350

5. Discussion

The presented DL-CBR fusion system achieves the highest percentage in

terms of conflicts management and segmentations improvement. But, the per-

centage of conflicting pixels that are correctly resolved, for each patient, is not

relatively high, because of the difficulty of the conflicts to be solved. Most con-355

flict zones are located at the intersection of the different structures. These areas

remain very ambiguous and there is not always a clear delimitation between two

structures, even for a radiologist, who then realises the contours by experience.

Similarly, segmentation and fusion performed by neural networks are also based

on the experience that they gained during their training. Nevertheless, it be-360

comes very difficult to obtain a relatively high average percentage of correct

resolution of conflicting pixels because of these many difficult areas.
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Figure 4: Results of the segmentations fusion. From left to right: CT scan

images; Ground truths; Segmentations with conflicts; Result of the segmenta-

tions fusion by the DL-CBR system. For the three columns representing the

segmentations, the pixels from darkest to brightest represent: the background;

the pathological kidney; the tumour; and finally, the conflicting pixels in the

third column.
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The methods using neural networks achieve on average slightly higher results

(cf. Table 1) than the conventional methods. This is because these methods

can label a conflicting pixel as part of the background, which is not possible for365

the other two non-AI methods. Some pixels in conflict, find themselves labelled

as background in the ground truth. These methods can also slightly modify the

segmentations (smoothen and refine the edges of the segmented structures) as

post-processing because they realise a new segmentation from the current seg-

mentation. A deep neural network will then improve segmentations effectively.370

This also explains why in some cases, the percentage of correctly labelled pixels

of our proposed method is low (and even lower than other methods) but that

the Dice scores are better because the post-treatment has been very beneficial.

The depth of the neural network does not seem to have an impact on the con-

flicts management, as can be seen with the method of Tang (Tang & Wu (2016))375

which gets a better percentage of correctly resolved pixels than the other neural

networks based methods, with only three convolutional layers. However, deeper

neural networks allow for better Dice scores, due to the general improvement of

the segmentations.

The deeper neural network proposed by Qu et al. (2017) may seem more in-380

teresting compared to our neural network, especially for the Dice score obtained.

However, for conflict management, the standard deviation is the highest com-

pared to other methods, so it is the method with the most dispersed results.

Moreover, if this network is coupled with our CBR technique, the system be-

comes much more time-consuming (about 24 hours for the fusion of a patient,385

against 7 hours for our current system). We, therefore, favoured a less com-

plex network allowing a quicker fusion, while at the same time still obtaining

significant results.

Neural network methods are more complex and time-consuming in terms

of their execution times compared to more alternative approaches. Also, the390

deeper the networks, the more complex they are. The DL-CBR method is also

a little longer due to the retrieval phase using the CBR technique that adds a

few minutes of execution time. However, the calculation time of our method
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is quite acceptable in our context. Even if the methods using neural networks

process all the pixels of the images against only the conflicting pixels for the395

alternative mathematical methods, the differences in time and complexity are

not proportional to the number of pixels to be processed in the segmentation.

Thus, the neural networks that we tested perform a fusion in a few hours for

the training and the validation on one patient (with images of 512x512 pixels),

against ten minutes for the management of conflicts of one patient using alter-400

native mathematical methods, only changing the conflicting pixels label (which

represents less than 0.01 % of all pixels in the image).

For more precision and on the basis of He & Sun (2015), the complexity of

our CNN can be summarized as the complexity of all the convolution layers, i.

e:

O

(
d∑

l=1

ml−1.s
2
l .ml.n

2
l

)
(5)

Where l is the current convolutional layer, d the total number of convolutional

layers, ml is the number of output channels of the convolution l, and ml−1 the

number of input channels of convolution l. sl is the size of the filter, and nl is405

the size of the output feature map. In this case, the complexity can be simplified

in relation to the input image size n: O
(
n2.b

)
, with b corresponding to the set

of parameters which do not depend on the image size.

The execution times of these systems may seem long, but it must be taken

into account that experts (surgeons and radiologists) are not monopolized by410

this calculation time. They can indeed devote themselves to other tasks and let

the supercomputer carry out the segmentations and fusions. Moreover, we are

not in a state of absolute emergency and experts believe that it is reasonable

to obtain a numerical representation of one patient’s abdomen in a few days or

even a week. Currently, the presented patient segmentation process is done in415

8 hours and this fusion process in 7 hours.

Regarding the problems in detecting the borders between different struc-

tures, our system could be improved by modifying the CT scan images. Specifi-

cally, it may be interesting to add filters on these images to bring out or highlight
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the contours of their different structures. These modified CT scan images could420

then be used instead of the basic CT scan images to offer more information to

the segmentation system.

As a general observation, our fusion method based on analogy is sometimes

outperformed by other fusion methods. Consequently, it would be interesting

to also take into account these other methods and find a way to select the most425

adapted one to each slice. The possibility of our system to automatically select

the best fusion method from a few candidates will be considered and studied in

further work.

6. Conclusion and further work

In this paper, we have presented a new DL-CBR fusion system for com-430

plementary segmentations of pathological kidneys and cancerous tumours. In

average, for our set of patients, our method gives the best fused segmentations

compared to the other fusion tested methods. The system is based on AI tech-

niques with Deep Learning allowing it to carry out the fusion by experience

thanks to the knowledge base provided by the CBR technique. In other words,435

reasoning by analogy (CBR) creates a hierarchy between the data of the CNN

learning set.

For the fully automatic segmentation of tumorous kidneys, this method of

fusion increases the robustness of the general system of the SAIAD project.

Anyway, since we observed that our method was outperformed by others in440

particular cases, we will study the possibility for the system to select automat-

ically the best fusion method for each case.

Further work will also focus on improving the system by another pre-processing

input images, improving the neural network and also adding functionalities in

view of fusing new structures appearing on the scans, such as arteries, veins,445

and excretory cavities.
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