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Abstract

The fusion of multiple segmentations aims to improve their accuracy in order

to make them exploitable. However, conflicts may appear. In this paper, two

conflict-management models are proposed for the fusion of complementary seg-

mentations. This conflict-management and fusion procedure, integrated into the

SAIAD project, carries out the fusion of deformed kidneys and nephroblastoma

using the combination of six independent methods. These methods are based on

different criteria, like the adjacent segmented slices, the variation of information,

the Dice, the neighbouring labels, the pixel intensity by scanner images, and the

fully connected CRFs. The performances of our fusion models was evaluated on

139 scans for three patients with nephroblastoma, and the results demonstrate

its effectiveness and the improvement of the resulting segmentations.
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1. Introduction

Nephroblastoma, also called Wilms tumour, is the abdominal tumour the

most frequently observed in children (generally 1- to 5-years-old boys and girls).

This cancer disease represents 5% to 14% of malignant paedriatric tumours. As
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indicated by its name, this type of tumour is situated in the kidney. Most5

of the time, its initial diagnosis is based on imaging. Generally, ultrasound

observations are planned first in order to confirm its existence and approximate

its position. Then, a medical scanner provides its position, and the healthy

tissues and organs are reached with higher accuracy. Radiologists and surgeons

need 3-dimensional (3D) representation of the tumour and the border organs10

in order to establish the diagnosis, plan surgery (estimated quantity of blood,

specialized equipment required, estimation of the duration of the surgery, etc.),

and also guide the actions of the surgeon during the surgery.

This 3D representation is currently done through manual segmentations,

which is a time-consuming task. The French-Swiss border project SAIAD (Au-15

tomated Segmentation of Medical Images Using Distributed Artificial Intelli-

gence) aims at obtaining automatic segmentations of the kidney tumours and

nephroblastoma through artificial intelligence methods. There is a lot of re-

search in publications on automatic segmentation using AI like Deep Learning

with Convolutional Neural Networks (CNNs) (Long et al. (2015); Ronneberger20

et al. (2015)), Random Markov Fields (Kato et al. (2012)), and also the Fully

Connected Conditional Random Fields (CRFs) Krähenbühl & Koltun (2011)

coupled with CNNs to refine segmentations Chen et al. (2018); Noh et al. (2015);

Kamnitsas et al. (2017), genetic algorithm (Tosta et al. (2017); Khan & Jaffar

(2015)), and Case Based Reasoning (CBR) (Marie et al. (2018); Kausar et al.25

(2016); Frucci et al. (2008)). But a single method is not efficient enough to

achieve a correct segmentation of all structures on an image. Each structure

can be calculated using one optimal method of its own in order to obtain its

best segmentation. Thus, in the SAIAD project, a method based on CBR and

region growing is used in order to segment the kidney deformed by nephrob-30

lastoma on each of the patients’ 2D images (Marie et al. (2018)), and the OV
2

ASSION method, based on CNN, is used to segment nephroblastoma (Marie

et al. (2019)).

The next step is the fusion of the nephroblastoma and kidney segmenta-

tions in order to obtain the final segmentation of a scanner image. This fusion35
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can cause conflicts between pixels, and a conflict-management protocol must

determine the true labels. Most of the conflicts are found at the intersection

of the pathological kidney and the nephroblastoma. These border zones are

the most difficult to label because there are no clear and/or visible boundaries

on the scanned images. Only advanced algorithms or an experienced expert40

(radiologist or surgeon) could succeed in determining these boundaries. In our

approach, we consider all the segmentations of deformed kidneys and nephrob-

lastoma calculated for one patient in order to resolve the conflicts using a fusion

and conflict-management model based on several combined methods.

After the study of works related to segmentation fusion in Section 2, this45

paper presents, in Section 3, the fusion and conflict-management model we

have designed for kidney and nephroblastoma segments. Section 4 explains the

experiments for our methods and the discussions around the results.

2. Related work

Information fusion has emerged in order to manage data from multiple50

sources. The fusion of information can also be applied to the fusion of im-

ages. Image fusion is applied in a wide scope of applications, including remote

sensing (Ghassemian (2016)), surveillance (Jin et al. (2017)), photography (Ma

et al. (2015)), and medicine (James & Dasarathy (2014); Liu et al. (2014)). Sev-

eral fusion techniques are used, such as the wavelet transform (Li et al. (1995)),55

image pyramids decomposition (Mertens et al. (2007)), etc. These methods are

categorized according to different fusion levels : pixel-level fusion, feature-level

fusion, and decision-level fusion (Pohl & Van Genderen (1998)). However, there

are also other methods specific to the merging of multiple segmentations.

The main strategy for segmentation consists in determining the best algo-60

rithm with optimal parameters, but these algorithms can be costly and complex.

Another strategy aims at combining several segmentations into a single, consen-

sual one. The best strategy or the best criterion for fusion is then applied to the

consensual segmentation. Multiple segmentations are then calculated applying
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different segmentation methods or using the same method but with different65

parameters. Many techniques use the over-segmentation method in order to

obtain a large number of regions and a large amount of information about each

segmentation (Huang et al. (2016); Li et al. (2012)). Other fusion methods are

applied to the multi-atlas based segmentation (Aljabar et al. (2009); Nguyen

et al. (2015)). The atlas, which contains a set of images and corresponding70

segmentations, is used to determine the images that are the most similar to

the target image and fuse the segmentations of the images chosen to obtain the

segmentation of the target image.

It is possible to group most of these fusion strategies into different ap-

proaches. The first and most intuitive approach is the democratic approach75

with fusion voting techniques like majority vote, global weighted vote, local

weighted vote, and so on (Artaechevarria et al. (2009)). Another approach is

the morphological approach, which uses contours and shapes of the elements

in the segmentations. The Shape-Based Averaging (SBA) method (Rohlfing &

Maurer (2007)) uses the signed Euclidean distance maps in order to determine80

the segmentation contours of each possible label. F-Measure Martin et al. (2004)

is a criterion used in Mignotte & Hélou (2014) which evaluates the quality of

the resulting contours and uses the notions of precision and recall.

Many other methods are based on probabilistic approaches, like the STAPLE

method (Warfield et al. (2004)), which estimates the optimal combination of seg-85

mentations to fuse, weighting each segmentation according to the estimated per-

formance level using the Expectation-Maximization algorithm (Dempster et al.

(1977)). Mignotte (2010) used a method based on the Probabilistic Rand Index

(PRI) criterion (based on pairwise relationships), as well as the method based

on the Variation of Information (VoI) criterion (Mignotte (2014)). This method90

uses mutual information metrics and entropies in order to measure the amount

of information lost or gained when turning one label into another. Another

VoI-based fusion procedure is used in Nguyen et al. (2018) in order to merge

multiple atlases of X-ray images. This method is successfully applied to complex

bone regions like the patella, talus, and pelvis.95
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The Global Consistency Error (GCE) criterion is used in Khelifi & Mignotte

(2017c) for the fusion of multiple segmentations. This method measures the

extent to which one segmentation can be viewed as a refinement of another

segmentation, based on segmentation regions. The K-Mean method (Mignotte

(2008); Harrabi & Braiek (2012)) aggregates pixels with similar characteris-100

tics. A method using weakly supervised trace-norm multi-task learning (Liang

& Huang (2018)) consists of considering the segmentation fusion problem as

a weakly supervised learning problem, in order to use the information from

superpixels. In this method, the multiples segmentations are treated as mul-

tiple closely related tasks and utilise multi-task learning methods to evaluate105

the reliability of the segmentations. The segmentation maps obtained are then

aggregated according to a fusion strategy. Finally, another approach uses the

spatial and intensity information of an image (i.e. using the 2D information) for

the fusion of the MR-T2 brain images segmentation map (Feng et al. (2017)).

Furthermore, a recent multi-objective methods combines several criteria like110

the combination of the VoI criterion with the F-Measure criterion and the GCE

criterion with the F-Measure criterion (Khelifi & Mignotte (2017a,b)), and then

a new classification is proposed: mono-objective methods and multi-objective

methods.

However, most of these approaches have not been implemented on medical115

images, and they fuse concurrent segmentations of the same initial image. Only

Nguyen et al. (2018) and Feng et al. (2017) use medical images and merges

the corresponding segmentations. Our approach aims at carrying out fusion

of complementary segmentations, i.e. the fusion of kidney segmentations and

tumour segmentations together, and resolving the pixels in conflict (labelled as120

belonging to the kidney and the tumour in the fused segmentation) by retrieving

the patient’s 3D information (i.e. all other segmented slices of the patient). Two

conflict-management models are defined and presented in the next section of this

paper and are based on the set of combined methods using the informations

from the Adjacent Segmented Slices (ADS2) method, a method based on VoI125

(Mignotte (2014)), on Dice, on the spatial and intensity information of one
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image (renamed here NandI for Neighbours and Intensity) (Feng et al. (2017)),

on a 3D-NandI method which is an improvement of the NandI method and on

the Fully Connected CRF (Krähenbühl & Koltun (2011)).

3. Proposed method130

The general architecture of the system designed in the SAIAD project is

described in Figure 1. It is composed of three layers. The first one is the data

layer, which contains a database for each segmentations system. Each database

has access to all the scanned images and corresponding manual segmentations

and expert knowledge like the information from scanner images in Dicom files135

but they have their own case base. The definition of a case can be different from

one segmentation system to another. The second layer is the segmentation layer,

where images are segmented by artificial intelligence systems. For example,

the deformed kidney can be segmented by a CBR system coupled with region

growing (Marie et al. (2018)), and the tumour can be segmented by a Deep140

Learning system (Marie et al. (2019)). At the end of the segmentation process,

the system gives two complementary segmentations for each image. Finally,

the fusion layer combines the complementary segmentations and resolves the

conflicts.

This part of the paper presents our conflict-management models and our145

different methods used within our models.

3.1. Fusion of complementary segmentations

Since nephroblastoma and kidneys are segmented individually, it is necessary

to fuse them in order to obtain segmentation with both of these structures. In

order to manage the possible conflicting pixels, we need to obtain fused segmen-150

tation for all methods used except the method based on the Fully Connected

CRF.

As shown in Figure 2, during this first step of fusion, each structure is merged

and a new temporary label is assigned to the pixels in conflict (i.e. the pixels

labelled as belonging to different structures the complementary segmentations).155
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Figure 1: General schema of the SAIAD project.

3.2. Adjacent segmented slices information

The segmentations of adjacent slices may give information about a pixel

in conflict. Indeed, we assumed that the segmentations of adjacent slices are

relatively similar, since the structures presented have more or less the same

shapes and positions. For that reason, we have designed the Adjacent Segmented160

Slices (ADS2) method for the resolution of conflicts. This method examines the

labels of each conflicting pixel in the adjacent slices.
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Figure 2: Merging of deformed kidney and nephroblastoma segmentations.

Algorithm 1: ADS2-based conflict resolution method.

for each segmented slice s do

for each conflicted pixel p with label lps do

if lps−1 and lps+1 do not conflict then

if lps−1 == lps+1 then

lps = lps−1 = lps+1;

end

end

end

end

The pseudo-code of the ADS2 method is shown in Algorithm 1. Considering

a conflicting pixel p labelled with lps in slice s, if the labels lps−1 and lps+1 of p in165

the adjacent slices of s are equal to l (i.e lps−1 = lps+1 = l), then we assume that

lps is equal to l.
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Unfortunately, this method cannot resolve all the conflicts. Indeed, ADS2

can only be applied in specific situations where adjacent pixels are not in conflict.

For this reason, we have also designed and implemented other methods.170

3.3. Method based on the variation of information criterion

The Variation of Information (VoI) criterion (Meilă (2003)) is based on an

information theory that compares two samples in a set of data. It is also used in

order to compute the similarity between two segmentations and thus to quantify

the quality of a segmentation regarding its ground truth given by an expert175

(Sathya & Manavalan (2011); Mobahi et al. (2011)). Its formula is based on

a probabilistic approach using the entropy and the mutual information of the

segmentations to be compared. The VoI score is between 0 and 1, and the

lowest scores indicate similar segmentations. The highest scores indicate mostly

different segmentations.180

In the case of the comparison of two segmentations S and S′, the VoI is defined

as:

V oI(S, S′) = H(S) +H(S′)− 2 ∗ I(S, S′) (1)

whereH(S) andH(S′) represent the entropy of S and S′, and I(S, S′) represents

the mutual information between the two segmentations.

The entropy is defined as:185

H(S) = −
R∑
i=1

P (i)logP (i) = −
R∑
i=1

ni
n
log

ni
n

(2)

where R is the number of regions of S, and P (i) is the probability that a pixel

belongs to the class i based on the total number n of pixels in the segmentation.

In imagery, the entropy can be calculated by the normalized histogram of the

considered image.
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The mutual information is also defined as:190

I(S, S′) =

R∑
i=1

R′∑
j=1

P (i, j)log(
P (i, j)

P (i)P (j)
) =

R∑
i=1

R′∑
j=1

nij
n
log(

nij

n
ni

n
nj

n

) (3)

where P (i, j) is the probability that a pixel belongs to the class i of S and to

the class j of S′.

In this method, considering a set of L segmented slices {Sk}k≤L, the com-

parison of S to {Sk}k≤L is based on the computation of the mean VoI:

V oI(S, {Sk}k≤L) =
1

L

L∑
k=1

V oI(S, Sk) (4)

The theoretical consensus segmentation is simply the segmentation having195

the weakest V oI among all the possible labels of each pixel:

ŜV oI = argmin
S∈Sn

V oI(S, {Sk}k≤L) (5)

We could use the mean VoI metric (see Eq. 4) for conflict management

but the computation time would be excessive. Consequently, we use its local

expression derived ∆V oI in Eq. 6 used in Mignotte (2014) and Nguyen et al.

(2018) where s : m→ x is the pixel at position s with label m replaced by the200

label x in S, Ll
s is the pixel label at position s in the segmentation Sl ∈ {Sk}k≤L,

and nmLl
s

is the number of pixels which have the same label m in S and the

label Ll
s at position s in Sl. In contrast to the mean VoI metric, the maximum
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value for the derived mean VoI is searched for.

∆V oI(S, {Sk}k≤L)s:m→x =L ·
{
−nm
n

log
(nm
n

)
− nx

n
log
(nx
n

)
+
nm − 1

n
log

(
nm − 1

n

)
+
nx + 1

n
log

(
nx + 1

n

)}
− 2 ·

L∑
l=1

{
nmLl

s

n
log

(
nmLl

s

n
· n
nm
· n

nLl
s

)

+
nxLl

s

n
log

(
nxLl

s

n
· n
nx
· n

nLl
s

)

−
(
nmLl

s
− 1
)

n
log

((
nmLl

s
− 1
)

n
· n

nm − 1
· n

nLl
s

)

−
(
nxLl

s
+ 1
)

n
log

((
nxLl

s
+ 1
)

n
· n

nx + 1
· n

nLl
s

)}
(6)

205

The maximization of the Eq. 6 can be realized by an ICM algorithm Besag

(1986) (Iterative Conditional Modes) an iterative steepest local energy descent.

Like the pseudo-code of the VoI-based method shown in Algorithm 2, for each

conflicting pixel, the derived mean VoI is calculated for each possible label. The

final label will be the one with the highest value. As the adjacent slices are sim-210

ilar, this method only takes into account the segmentations of the nn adjacent

slices of S. For example, for nn = 2 and S = 4, segmentations {2, 3, 4, 5, 6}) are

taken into account. This step is repeated until p < Tmax and for each segmented

slice.
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Algorithm 2: VoI-based conflict resolution method.

Data:

{Sk}k≤L: The set of L segmented slices

nn: The number of adjacent slices taken into account

ε: The set of possible labels for a pixel

Tmax: The maximal number of iterations

for each segmented slice S in {Sk}k≤L do

{Sk}k∈{k−nn,...,k+nn}: Set of neighbor fused segmentations to S

segmentation of one patient with conflicting pixels

while i < Tmax do

for each conflicted pixel p with label lps of segmentation S do
Compute

V oIMax = arg maxx∈ε ∆V oI(S, {Sk}k∈{k−nn,...,k+nn})l
p
s→x

Replace label lps by label x of V oIMax at the segmentation S

end

i = i+ 1

end

end

215

3.4. Method based on the dice criterion

The Dice-based method is inspired by the VoI-based one: the VoI criterion

is replaced by the Dice. This metric is commonly used in the medical field. The

F-Measure (Martin et al. (2004)) is also based on the Dice for the segmentation

fusion (Mignotte & Hélou (2014)) at the region level. In the present approach,220

the Dice criterion is used for the segmentation fusion at the pixel level. The

Dice is defined as:

Dice(S, S′) =
2 ∗ TPS,S′

2 ∗ TPS,S′ + FPS,S′ + FNS,S′
(7)

where TPS,S′ is the number of true positive pixels between S and S′(pixels

labelled true in both of the segmentations). FP is the number of false positive
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pixels (pixels labelled true in S and false in S′) and FN the number of false225

negative pixels (pixels labelled false in S and true in S′).

Like the VoI-based method, the mean Dice of Si is computed considering a

set of L segmented slices {Sk}k≤L. In addition, a weight is associated to each

slice in order to give a bigger Dice to the nearest slices. The equation then

becomes:230

Dice(Si, {Sk}k≤L) =
1

L

L∑
k=1

Dice(Si, Sk) ∗ ri,k (8)

with weight ri,k:

ri,k = 1− | i− k |
nn ∗ 2 + 1

(9)

where nn is the number of adjacent slices taken into account at each side of Si.

With this method, The fused segmentation is the one which obtains the

biggest Dice:

ŜiDice = argmax
S∈Sn

Dice(Si, {Sk}k≤L) (10)

Finally, the pseudo-code of the Dice-based method is the same as Algorithm235

2 where ∆V oI is replaced by Dice.

3.5. 2D and 3D method based on neighbouring information

3.5.1. NandI method

The method based on neighbouring information, like the pixel’s grey level

and the neighbour’s labels, is used in Feng et al. (2017) for the fusion of brain-240

images segmentation. This method, known as NandI (Neighbours and Inten-

sity), calculates a similarity index between two pixels p and q of the same slice,

defined as:

Sim(p, q) = exp

(
−d

2(p, q)

2α2
− dif2(p, q)

2β2

)
(11)

where d(p, q) = ‖p− q‖ is the Euclidean distance between p and q, and dif(p, q) =

|I(p)− I(q)| is the difference of intensity between them. α and β are two weights.245
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A set of coherent neighbours must then be determined for each conflicting

pixel p in order to determine their final label. Let Er
p be the set of an effective

neighbourhood of p. A pixel q must satisfy the next three conditions in order

to become an effective neighbour of p:

1. d(p, q) < r: The Euclidean distance between p and q must be smaller than250

radius r,

2. lq ∈ S = lq ∈ S′: q is not a conflicting pixel,

3. lq ∈ ε: The label of q belongs to the set of possible labels, i.e the tumour

label or the kidney label.

The new label of p is also obtained by:255

lp =

tumour if
∑

q∈Er
p ,l

q=tumour Sim(p, q) >
∑

q∈Er
p ,l

q=kidney Sim(p, q),

kidney else

(12)

Finally, the pseudo-code of the NandI method for the conflict resolution of

the set of segmented slices for one patient is shown in Algorithm 3.

Algorithm 3: The NandI-method algorithm.

Data:

{Sk}k≤L: The set of L segmented slices

r: The radius

for each segmented slice S in {Sk}k≤L do

for each conflicted pixel p of segmentation S do
Compute Er

p

Compute lps

end

end

3.5.2. 3D-NandI method

In order to manage the conflicts of a slice, the NandI method only uses the260

information from this slice. However, as we are working on a set of segmented

slices corresponding to a patient’s abdomen, 3D information can also be taken
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into account. The 3D-NandI method is an evolution of the NandI method, in

which a 3D effective neighbourhood and a 3D Euclidean distance are calculated.

3.6. Fully connected CRF based method265

The fully connected CRF (Krähenbühl & Koltun (2011)) is mainly used as

CNN post-processing, from the generated probability maps, in order to refine

the calculated segmentations (Chen et al. (2018); Noh et al. (2015); Kamnitsas

et al. (2017)). Indeed, they refine the edges of the structures while taking into

account the possible dependencies through fast and accurate inferences. Unlike270

the widespread use of Fully Connected CRF to refine segmentation results, we

use them here to resolve the conflicts generated by the fusion of complementary

segmentations.

Figure 3 shows the process of this method. At first, the probability maps of

the CNN segmentations of each structure of the image are used and modified.275

These values, between 0 and 1 and corresponding to the percentage of mem-

bership in each class, are adjusted to 0 or 1 for non-conflicting pixels. On the

contrary, the values of the conflicting pixels stay in this interval. These modified

probability maps are given as input to the Fully Connected CRF (in addition to

the corresponding scanner images), which will determine the labels of the pixels280

in conflict by outputting consensus segmentation without conflicts.

3.7. Conflict-management model

Figures 4 and 5 show our two versions of the conflict-management process

based on the combination of all the methods described above. The set of calcu-

lated complementary segmentations and the corresponding scans are the inputs285

for the entire process. In the first version in Figure 4, the conflicts are first

positioned and treated with all the methods presented above in parallel.

The results of all the methods can then be aggregated in two different ways.

The first is based on a majority vote for the association of the final labels of

each pixel in conflict. However, with the majority vote, there may be a tie for290

pixels that can be resolved by the ADS2 method because there is then an even
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Figure 3: Fusion and conflict management of segmentations with the Fully

Connected CRF-based method.

number of results to be processed. In this case, several choices are possible, such

as choosing the final label determined by a certain method, or deciding that the

pixels in the tie be labelled as belonging to the tumour or the kidney.

The second method resulting in segmentation fusion uses the CRF. During295

the CRF algorithm, probability maps are generated. For each conflicting pixel,

the value of this pixel in the probability maps is the number of times that this

label is chosen divided by the total number of results. For example, if there are

two possible labels (kidney and tumour), four results in favour of the kidney

label and two in favour of the tumour label, then the value of this pixel in the300

probability map of the kidney label will be 4/6 and 2/6 in the probability map

of the tumour label.

The second version of the conflict-management process is described in Figure

5. The ADS2 method performs a pre-treatment in order to obtain an odd result.

Then, the other methods are applied, and a majority vote or a decision based on305

the CRF probability map is launched in order to obtain the final segmentations.
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Figure 4: First version of the conflict-management model, for the fusion of

tumorous kidney segmentations.

Figure 5: Second version of the conflict-management model, with a pre-

treatment, for the fusion of tumorous kidney segmentations.
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4. Experiments

4.1. Generation of segmentation set

We have tested the performance of our models over a set of 139 segmented

scans of three patients. Patients 1, 2, and 3 have 47, 62, and 30 scans, respec-310

tively. All of the scans and calculated segmentations have the same size: 512

x 512. The pathological kidney and the nephroblastoma of each patient were

segmented by Deep Learning (the convolutional neural network FCN-8s first

trained with the PASCAL VOC 2012 database in Everingham et al. (2015))

enhanced with the OV
2

ASSION (Marie et al. (2019)) with 10000 iterations for315

training. The learning protocol OV
2

ASSION is adapted to small learning sets.

We also have the ground truth segmentations of our three patients, carried

out by experts (surgeons and radiologists) at the Centre hospitalier Régional

Universitaire de Besançon. These ground truths are used in order to verify the

reliability of our processes and the resulting fused segmentations.320

4.2. Results

4.2.1. Optimal parameters

We first determined the optimal parameters for each fusion method. In

particular, we determined the optimal number of adjacent slices for the VoI-

based and the Dice-based methods. Figure 6 shows the results obtained for the325

VoI and Dice-based methods regarding the number of adjacent slices taken into

account. For all the patients, the best average performance of the VoI-based

method and Dice-based method is obtained with two adjacent slices at each side

of the considered segmentations for Tmax = 3. Three loops were sufficient to

become stable because the initial image is very close to the expected image, and330

there are only a few pixels in conflict (compared to the total number of image

pixels).

The performance of the NandI and the 3D-NandI methods have been evalu-

ated according to the size of the chosen radius. The results of both methods are

shown in Figure 7. The average performance of the 3D-NandI method stagnates335
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Figure 6: Evolution of the performance of the VoI-based method and the Dice-

based method regarding the number of adjacent slices at each side of the con-

sidered segmentations.

after a radius of 5. Consequently, a radius of 3 has been retained for the NandI

method and a radius of 5 for the 3D-NandI one.

Figure 7: Evolution of the performance of the NandI method and the 3D-NandI

method regarding the size of the chosen radius.

4.2.2. Results of both of the versions

Table 1 shows the performance of the ADS2 method for three patients. This

table presents the number of conflicting pixels that have been correctly classified340

and, in between brackets, the number of conflicting pixels that were correctly

classified by the total number of conflicting pixels that could be resolved by this

method. We obtained 88.87% of good resolution for Patient 1 (1.749 correctly
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classified pixels for 1.968 pixels that could be resolved), 92.11% for Patient 2,

and 86.82% for Patient 3. An average of 89.56% of good resolution was obtained,345

which makes ADS2 a good method for a little less than a quarter of the pixels

in conflict. However, this method cannot be applied to all conflicting pixels.

Indeed, we must be in the favourable case where the pixels of adjacent slices

have the same non-conflicting label for the conflicting pixel. Table 2 shows the

percentage of conflicting pixels that can be resolved by the ADS2 method, which350

represents on average of 23.30%.

Patient 1 Patient 2 Patient 3 Total Mean

ADS2
0.8887

(1749/1968)

0.9211

(1004/1090)

0.8682

(448/516)
0.8956

Table 1: Average performance on different patients and for the ADS2 method.

Patient 1 Patient 2 Patient 3 Mean

ADS2 31.2% 26.3% 12.5% 23.3%

Table 2: Percentage of conflicting pixels that can be resolved by the ADS2

method for three patients.

Table 3 shows the average performance in the first version for each of the

methods, in parallel to the ADS2 method. We have 67.32% of correct resolu-

tion for the VoI-based method, 74.39% for the Dice-based method, 73.31% and

78.49% for the NandI and 3D-NandI methods, and 75.03% for the CRF-based355

method. The final results are shown in regards to the type of fusion applied in

Table 4.

Applying the first method shown in Figure 4, when the fusion of results is

realized by a majority vote (MV in the table) and, if in case of a tie, the kidney

label is chosen, the conflicting pixels are correctly resolved at 78.61%. On the360

contrary, if the tumour label is chosen in case of a tie, our system gets 78.59%
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Patient 1 Patient 2 Patient 3 Total Mean

VoI
0.7159

(4946/6909)

0.6910

(3203/4635)

0.5906

(2703/4577)
0.6732

Dice
0.7497

(5180/6909)

0.7292

(3380/4635)

0.7501

(3433/4577)
0.7439

NandI
0.7140

(4933/6909)

0.7070

(3277/4635)

0.7885

(3609/4577)
0.7331

3D-NandI
0.7493

(5177/6909)

0.7931

(3676/4635)

0.8305

(3801/4577)
0.7849

CRF
0.7234

(4998/6909)

0.7458

(3457/4635)

0.7955

(3641/4577)
0.7503

Table 3: Average performance on different patients and for each method with

the first version of the conflict-management model.

Patient 1 Patient 2 Patient 3
Total

Mean

MV with kidney

in case of a tie

0.7746

(5352/6909)

0.7737

(3586/4635)

0.8160

(3735/4577)
0.7861

MV with tumour

in case of a tie

0.7752

(5356/6909)

0.7730

(3583/4635)

0.8149

(3730/4577)
0.7859

CRF-based

method

0.7658

(5291/6909)

0.7663

(3552/4635)

0.8193

(3750/4577)
0.7812

Table 4: Average performance measurements on different patients for the first

model with different methods of fusion.

of correct resolution. The system also gets 78.12% of correct resolution with the

CRF-based method.

For the second version of our method described in Figure 5, the performance

of the ADS2 method is the same as the first model shown in Table 1. For the365

other methods, the performances are shown in Table 5, where the results are
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Patient 1 Patient 2 Patient 3 Total Mean

VoI
0.6446

(3185/4941)

0.6285

(2228/3545)

0.5696

(2313/4061)
0.6157

Dice
0.6871

(3395/4941)

0.6697

(2374/3545)

0.7355

(2987/4061)
0.6979

NandI
0.6912

(3415/4941)

0.6894

(2444/3545)

0.7870

(3196/4061)
0.7217

3D-NandI
0.6936

(3427/4941)

0.7540

(2673/3545)

0.8239

(3346/4061)
0.7528

CRF
0.7051

(3484/4941)

0.7255

(2572/3545)

0.7936

(3223/4061)
0.7395

Table 5: Average performance on different patients and for each method with

the second version of the conflict-management model.

Patient 1 Patient 2 Patient 3
Total

Mean

MV
0.7681

(5307/6909)

0.7786

(3609/4635)

0.8184

(3746/4577)
0.7854

CRF-based

method

0.7678

(5305/6909)

0.7769

(3601/4635)

0.8217

(3761/4577)
0.7857

Table 6: Average performance measurements on different patients for the second

model with different methods of fusion.

lower than the first version (Mean between 61.57% and 75.28%) because the

easiest conflicts have already been solved by the ADS2 method. Table 6 shows

the final results of this second method. The final results of the two models are

similar but remain superior to the result of each method individually (except for370

the fusion using the CRF-based method in the first model, which is less efficient

than the 3D-NandI method alone).

Table 7 shows the average Dice of segmentations for each patient before and
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Type of Fusion
Mean Dice

Patient 1

Mean Dice

Patient 2

Mean Dice

Patient 3

Before 0.8535 0.8491 0.8477

CRF-based

method
0.8568 0.8503 0.8501

MV with kidney

in case of a tie
0.8569 0.8504 0.8500

After V1 model
MV with tumour

in case of a tie
0.8569 0.8504 0.8499

CRF-based

method
0.8568 0.8505 0.8502

After V2 model
MV 0.8567 0.8505 0.8501

Table 7: Presentation of the average Dice before and after the conflict manage-

ment.

after the different conflict-management processes. The values in bold correspond

to the maximum values obtained for each patient. We can see that the average375

Dice increased for each patient, with an average increase of 0.24%, taking into

account the maximum Dice after conflict management. We can justify the slight

improvement by the fact that the number of conflicting pixels is minimal com-

pared to the total number of pixels of each image. Indeed, the conflicting pixels

represent 0.06%, 0.03%, and 0.06% of pixels for Patients 1, 2, and 3 respectively.380

Nevertheless, the conflict-management protocol improves the segmentations in

the most important areas (the edges of the different touching structures).

The result of one segmentation is presented in Figure 8. The initial seg-

mentation on the left has conflicts (light colour) at the intersection between the

kidney and the tumour, and inside the tumour. The latter conflict is quite easy385

to solve, because they are mostly due to artefacts during the segmentation pro-

cess. These artefacts are unique to the current slice. In addition, it is possible

to simply determine the correct labels of these pixels by their grey intensity in
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the scanner image. The two models of conflict management then give the same

result, as is the case on the right image. However, the former type of conflict is390

more difficult to resolve, and this is where the propositions of the different mod-

els diverge. Our different methods, which use various information like grayscale

of the corresponding scanner image and of the neighbouring scanner images, as

well as the labels of current segmentation and of the neighbouring segmentations

are not enough in all cases to resolve the conflicts correctly.395

Figure 8: Example of a segmentation fusion result with the initial segmentation

with conflicts (shown in light colour) on the left and the resulting segmentation

on the right.

Figure 9 shows the conflict resolution between the two structures. Four pixels

(shown by the arrows) were labelled ”tumour” by the fusion through majority

vote in both of the models and also labelled ”kidney” by the fusion through the

CRF-based method in both of the models.

4.2.3. Discussion400

The results show that the combination of several fusion methods produces

better results than each method individually. Indeed, the best way is to obtain

complementary methods. The performance of the conflict management meth-

ods are different since they exploit different types of information (localization,

statistics, probabilities, similarities between slices) and a different number of405

images (the slices in conflicts only, adjacent slices in addition).
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Figure 9: Focus on conflict resolution at the kidney-tumour intersection in Fig-

ure 8 with the initial segmentation with conflicts (shown in light colour) on the

left and the resulting segmentations superimposed on the right.

The Dice-based method performs better than the VoI-based method because,

even if exploit all the neighbouring segmentations, the Dice-based method as-

sociates weighting to the segmentations. The NandI, 3D-NandI, and the CRF-

based methods also use the scanner images themselves as inputs for their con-410

flict management (and thus exploit more information). In addition, the 3D-

NandI method is an improvement to the NandI method since it integrates all

the neighbouring-slice (segmentations and scanners) information. As with the

NandI method, the CRF-based method uses the information on the current

slice. For that reason, the CRF-based method is outperformed by the 3D-NandI415

method. In any manner, the CRF-based method is the only fusion method that

uses the probability map of the segmentation, which is another source of infor-

mation for the segmentation fusion.

The ADS2 method is a particular method since its strength is also its weak-

ness. Indeed, it uses the information in adjacent segmentations only if they are420

equal and consistent. Thus, statistically and logically, it is the most efficient

method because of its precautionary principle. However, this method cannot be

used on all conflicting pixels: the conflict can be resolved when, and only when,

pixel labels in adjacent slices match.
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The performance of the two proposed conflict management models are more425

or less equivalent; there is no model that stands out. Two fusion methods are

proposed in the models but are questionable because they give close results.

However, using the CRF-based method makes it possible not to be blocked a

tie in the case of an even number of results (as is the case using the majority

vote).430

Prioritizing the ADS2 method in the second model does not seem to have

a significant impact on the results. We can also imagine weighting each of the

methods used as functions of the data. For example, if the scanned images

are too noisy, it would be better to give more importance to the methods that

exploit only the segmentations. Conversely, with segmentations very far from435

the ground truths, it would be better to give more important weighting to the

methods exploiting the scanner images.

In addition, conflicting pixels within a structure are often easy to solve, but

those within a boundary between two structures are more ambiguous. Even

radiologists and surgeons use their experience to delimit these areas manually.440

Sometimes, the information on the scanned images and on the segmentations

does not make it possible to find a clear delimitation. More powerful methods

must be found to provide other types of information and improve the efficiency

of our models for these particular cases. Some artificial intelligence methods us-

ing experience, such as the radiologists’ and surgeons’ experiences, may achieve445

better results on these borders.

Finally, these models are easily flexible, and our results could be enriched

by adding other methods which exploit other information, such as patient data.

The models must now be tested over a larger set of patients. Indeed, at this

point, we managed to have a dataset composed of 139 slices and three patients.450

5. Conclusion and further work

In this paper, we have presented new conflict-management strategies for

complementary segmentations of pathological kidneys with cancerous tumours.
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Our methods allow the resolution of conflicts and thus improve the accuracy

of segmentations. Actually, these protocols are based on the intelligent asso-455

ciation of single strategies for conflict management. These strategies use very

different tools: the 3D information provided by the adjacent slices, neighbouring

labels, the pixel intensity in scanner images, use of probability maps provided

by CNN training, and criteria dedicated to the measurement of the accuracy of

segmentations.460

These fusion strategies are also adaptable and flexible to each case, since the

different parameters can be modified according to the type of segmentation and

conflicting pixels encountered.

Finally, in our case of the fully automatic segmentation of tumorous kidneys,

these processes for fusion improve the Dice accuracy of the calculated segmen-465

tations by 0.24% on average and thus increase the robustness of the general

system of the SAIAD project.

Further work will focus on the measurement of the robustness of the pro-

cesses. In addition, we wish to add artificial intelligence methods in our sys-

tems to improve the resolution of conflicting pixels. We also wish to extend the470

method to other anatomical structures appearing on the scans, such as arteries,

veins, and excretory cavities.
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Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully connected crfs

with gaussian edge potentials. In Advances in neural information processing

systems (pp. 109–117).

Li, H., Manjunath, B., & Mitra, S. K. (1995). Multisensor image fusion using555

the wavelet transform. Graphical models and image processing , 57 , 235–245.

doi:10.1109/ICIP.1994.413273.

Li, Z., Wu, X.-M., & Chang, S.-F. (2012). Segmentation using superpixels:

A bipartite graph partitioning approach. In Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on (pp. 789–796). IEEE. doi:10.560

1109/CVPR.2012.6247750.

Liang, X., & Huang, D.-S. (2018). Image segmentation fusion using weakly

supervised trace-norm multi-task learning method. IET Image Processing ,

12 , 1079–1085. doi:10.1049/iet-ipr.2017.1061.

30

http://dx.doi.org/10.1016/j.engappai.2016.08.006
http://dx.doi.org/10.1016/j.engappai.2016.08.006
http://dx.doi.org/10.1016/j.engappai.2016.08.006
http://dx.doi.org/10.1016/j.asoc.2015.03.029
http://dx.doi.org/10.1016/j.inffus.2017.03.001
http://dx.doi.org/10.1109/TIP.2017.2699481
http://dx.doi.org/10.1109/TSMC.2016.2531645
http://dx.doi.org/10.1109/TSMC.2016.2531645
http://dx.doi.org/10.1109/TSMC.2016.2531645
http://dx.doi.org/10.1109/ICIP.1994.413273
http://dx.doi.org/10.1109/CVPR.2012.6247750
http://dx.doi.org/10.1109/CVPR.2012.6247750
http://dx.doi.org/10.1109/CVPR.2012.6247750
http://dx.doi.org/10.1049/iet-ipr.2017.1061


Liu, Z., Yin, H., Chai, Y., & Yang, S. X. (2014). A novel approach for multi-565

modal medical image fusion. Expert systems with applications, 41 , 7425–7435.

doi:10.1016/j.eswa.2014.05.043.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition (pp. 3431–3440). doi:10.1109/CVPR.570

2015.7298965.

Ma, K., Zeng, K., & Wang, Z. (2015). Perceptual quality assessment for multi-

exposure image fusion. IEEE Transactions on Image Processing , 24 , 3345–

3356. doi:10.1109/TIP.2015.2442920.

Marie, F., Corbat, L., Chaussy, Y., Delavelle, T., Henriet, J., & Lapayre, J.-C.575

(2019). Segmentation of deformed kidneys and nephroblastoma using case-

based reasoning and convolutional neural network. Expert Systems with Ap-

plications, . doi:10.1016/j.eswa.2019.03.010.

Marie, F., Corbat, L., Delavelle, T., Chaussy, Y., Henriet, J., & Lapayre,

J.-C. (2018). Segmentation of kidneys deformed by nephroblastoma us-580

ing case-based reasoning. In ICCBR 2018, 26th International conference

on Case-based reasoning (pp. 351–365). Stockholm, Sweden. doi:10.1007/

978-3-030-01081-2_16.

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect natu-

ral image boundaries using local brightness, color, and texture cues. IEEE585

transactions on pattern analysis and machine intelligence, 26 , 530–549.

doi:10.1109/TPAMI.2004.1273918.
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