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The nonlinear dynamic analysis of viscoelastic systems is not an easy task. In some cases, 

it is due to the difficulty in dealing with the temperature- and frequency-dependent 

properties of the viscoelastic substructure. Also, since the real-life viscoelastic treatments 

are characterized by inherent uncertainties affecting their efficiency, their handling in the 

nonlinear modeling is essential from an engineering point of view. In this contribution, a 

stochastic modeling based on the Karhunen-Loève expansion is proposed for a three-layer 

sandwich beam having nonlinear behavior using the concept of complex modulus and 

shift factor. The nonlinear frequency responses were obtained by using an approximated 

harmonic balance method with the Galerkin bases. Due to the difficulty in solving the 

resulting complex nonlinear eigenproblem with a frequency-dependent stiffness, making 

the stochastic nonlinear analyses very costly, it is proposed an iterative reduction method 

to approximate the complex eigenmodes. The influence of the forcing amplitude and 

temperature on the computed nonlinear frequency responses has been confirmed by 

performing laboratory experiments with a three-layer sandwich beam specimen placed 



inside an environmental chamber. Also, a curve-fitting has been performed to calibrate 

the deterministic nonlinear model using optimization tools. The envelopes of nonlinear 

responses demonstrate the relevance of considering the uncertainties in design variables.  

 

Keywords: Passive control, nonlinear vibrations, viscoelastic materials, stochastic finite 

element, parametric uncertainties. 

 

1. Introduction. 

 

In the open literature, a number of passive control techniques have been proposed 

to mitigate undesirable vibrations and so avoid catastrophes. Among those possibilities, 

constrained viscoelastic layers (CVLs) [1] are typically used in many applications such 

as automobiles, airplanes, communications satellites, bridges and building structures [2, 

3]. However, the resolution of the equations of motion for structures with viscoelastic 

materials are relevant aspects to be considered, since their mechanical properties depends 

on frequency and operation temperature [4]. This is a reason for which linear vibrations 

analyses of viscoelastically-damped systems have been performed [5-7] for the purposes 

of vibration attenuation. However, due to the frequent occurrence of large displacements 

in most of the practical applications of CVLs, the vibrations induced by the geometric 

nonlinearities differ significantly from those of linear approaches [8], and a nonlinear 

modeling is found to be necessary. 

For undamped nonlinear models, it is relatively common to use the asymptotic 

numerical method or the multimodal approach to perform nonlinear vibrations analyses 

[9-12]. However, for nonlinear structures containing viscoelastic materials, the nonlinear 



vibration analysis, especially in the frequency-domain, is not an easy task, owing to the 

supplementary difficulty in dealing with the frequency- and temperature-dependent 

behavior of the viscoelastic substructure.  

Among the fundamental early studies regarding the nonlinear vibration analysis 

of sandwich structures, the work by Kovac et al. [13] is of great relevance. They have 

performed numerical and experimental studies with a three-layer sandwich beam having 

geometric nonlinearities by using a Kelvin-Voight model to account for the frequency-

dependent behavior of the damping. In the sequence, Hyer et al. [14] have developed 

approximate dynamic equations for nonlinear analyses of an axially restrained sandwich 

beam using the concept of hereditary integrals and the complex modulus. Iu et al. [15] 

have proposed the incremental harmonic balance method for the nonlinear analysis of 

multilayer sandwich beams containing soft viscoelastic cores. Xia and Lukaziewicz [16, 

17] have addressed the nonlinear vibrations of sandwich plates by using a Kelvin-Voigt 

model for the viscoelastic core. Lee [18] have developed a finite element (FE) formulation 

combined with a viscoelastic material model for the nonlinear analysis in time-domain of 

sandwich beams under large displacements. Daya et al. [19] have conducted numerical 

studies with a sandwich beam having nonlinear behavior by means of the one-mode 

Galerkin method and the harmonic balance approach to obtain a frequency-amplitude 

relationship. Jacques et al. [8] have implemented a refined zig-zag model to deal with 

nonlinear vibrations of sandwich beams. The results have been compared with those 

obtained by Kovac et al. [13].  

More recently, there have also been continued effort in the proposition of efficient 

FE modeling strategies of viscoelastic systems to handle both geometrical nonlinearities 

and/or viscoelasticity. As an example, Bilasse et al. [20] have used the harmonic balance 



method with the Galerkin bases to study the nonlinear vibrations of a three-layer sandwich 

beam incorporating a soft viscoelastic core. Mahmoudkhani and Haddadpour [21] have 

investigated the influence of narrow-band random excitations on the nonlinear responses 

of sandwich plates with incompressible viscoelastic cores. They have applied a fifth-order 

perturbation method in conjunction with the Galerkin bases in order to construct a phase-

amplitude equation to be solved using a difference method. 

In summary, it can be seen that, many researches on the nonlinear vibrations of 

viscoelastic sandwich structures have been conducted by some authors using the FE 

method in conjunction with the harmonic balance approach and Galerkin bases. However, 

since for more realistic applications, the parameters that control the efficiency of CVLs 

are characterized by inherent uncertainties [22-24], a natural extension of the nonlinear 

modeling capability is to account for these uncertainties, aiming at evaluating their 

influence on the nonlinear model predictions. Also, since it is too difficult to accurately 

model viscoelastic systems having geometrical nonlinearities, it is of great relevance to 

characterize them experimentally to calibrate the nonlinear FE model. Unfortunately, few 

works have dedicated to these subjects, which motivates the present study.  

Hence, it is proposed a nonlinear stochastic viscoelastic FE model based on the 

Karhunen-Loève expansion [25] combined with a parameterization scheme to assess the 

nonlinear frequency responses variability. The Latin-Hyper-Cube (LHC) sampling [26] 

is used herein as stochastic solver. However, due to the high computational cost needed 

to compute the envelopes of stochastic nonlinear responses, owing to the large number of 

samples required for convergence, performed on the full nonlinear FE model, it motivates 

the use of an efficient iterative enriched reduction method based on the works by de Lima 

et al. [22], Cunha-Filho et al. [27] and Rouleau et al. [28]. 



Also, by placing a three-layer sandwich beam under large displacements inside an 

environmental chamber, the effects of the excitation-force amplitude and temperature of 

the viscoelastic material on the linear and nonlinear behaviors of the viscoelastic beam 

can be established. Furthermore, the measured and computed frequency responses of the 

nonlinear system are compared with the aim of calibrating the nonlinear FE model.  

 

2. Background on FE modeling of sandwich beams under large displacements 

 

This section summarizes the FE modeling of a moderately three-layer symmetric 

sandwich beam with geometrical nonlinearities based on the model proposed by Daya et 

al. [19] and implemented by Bilasse [20]. Figure 1 illustrates the element composed by a 

base-beam (1), a viscoelastic core (2) and a passive constraining layer (3).  

 

[Figure 1 about here] 

 

In the development of the nonlinear deterministic FE model accounting for the 

zig-zag effects [29], the Euler-Bernoulli’s theory is assumed for the face layers and the 

Timoshenko’s theory is adopted for the viscoelastic core. The constitutive materials are 

homogeneous and isotropic, but the viscoelastic part has a frequency- and temperature-

dependent complex modulus, as discussed later in this section. The transverse bending 

displacement, , of the beam is the same for both layers and the shear strain in the 

viscoelastic core results from the difference between the in-plane displacements, 

, of the face layers, , by the relation, 

( ),w x t

( ),iu x t

1,3i = ( ) ( ) ( ) ( )1,3 , , , , 2v eu x t u x t h x t h w x t xb= ± - ¶ ¶é ùë û



, where  and  are, respectively, the axial displacement and 

rotation of the middle-plane ( ) of the viscoelastic core. 

Since, the sandwich beam is subjected to large amplitude deflections, the resulting 

geometrical nonlinearities effects can be introduced using the Von Karman’s theory [19], 

resulting in the following nonlinear strain-displacement relations [20]: 

 

                      (1.a) 

                                                                          (1.b) 

 

where ,  and  is the shear strain 

of the viscoelastic core, with  and . 

By considering the Bernoulli and Timoshenko kinematical assumptions for the 

elastic and viscoelastic layers, respectively, the virtual work principle due to a transverse 

harmonic excitation, , can be established, and the following axial equilibrium and 

flexural problems are constructed as [20]: 
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where ,  and  are the components of the virtual displacement vector,  and 

 are the axial and shear forces, respectively, and  and  represent the bending 

moments. These expressions are given in details in reference [19]. 

The exact solution of Eq. (2) cannot be obtained easily and the FE method will be 

used retained herein. The element used in the discretization contains two nodes and three 

degrees of freedom (DOFs) per node: the transverse displacement, , 

the slope, , and the rotation, . The displacement 

amplitude, , is approximated by using a cubic shape function and a linear interpolation 

function is assumed for the rotation, , resulting in the following element vector: 

 

                                                                                                 (3) 

 

where  and  represent the matrices formed by the interpolations functions, and 

, with , is the vector containing the nodal variables. 

Upon using the above listed assumptions and Eqs. (1) and (3), following standard 

analytical developments based on variational approaches [30], the elementary matrices of 

the linear contribution in the flexural problem (2.b) can be derived as fallow [20]: 
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where , , ,

 and  represent the 

parameterized elementary FE matrices.  

In this study, the parameterization of the model, which is understood as a means 

of making those design parameters to appear explicitly in the elementary FE matrices, 

enables to account for the uncertainties in a straightforward way and facilitates the 

computation of the envelopes of nonlinear frequency responses. Thus, after assembling 

the elementary matrices to generate the global equations of motion associated with the 

free vibrations of the linear viscoelastic system with  DOFs, it is possible to generate 

the following complex eigenproblem: 
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where  is the stiffness matrix of the elastic faces,  is the mass matrix 

and  is the frequency- and temperature-independent viscoelastic stiffness 

matrix for which the complex shear modulus, , has been factored-out.  and 

, are the complex eigenvectors and eigenvalues, respectively, with 

. The circular frequency, , and the modal loss factor, , can be obtained by 

the relations,  and .  
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Clearly, the difficulty in solving the complex eigenproblem (5) comes from the 

fact that, the stiffness of the viscoelastic part is frequency- and temperature-dependent. 

As a result, it must be solved iteratively. However, when large-scale FE models and/or 

uncertainties are dealt with, such procedures involve costly computations, motivating the 

proposition of the inverse iteration algorithm shown in Fig. 2 to be used in conjunction 

with a model reduction method to compute the eigenpairs, according to the main steps: 

Initialization: a basis, , is constructed to perform the reduction of 

the FE matrices (4), where the initial basis, , containing  modes is 

obtained by solving the eigenproblem (6) of the associated conservative viscoelastic 

system, and  and  are, respectively, the static residues due to the 

external excitations and viscoelastic forces, with . 

 

                                                                                      (6) 

 

The next steps, , are performed until the relations,  and , 

are satisfied, where, at the beginning, , it is assumed that, . 

Step 1: computation of the reduced dynamic stiffness matrix and its derivative 

with respect to frequency, , given by: 
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where  is the derivative of the complex modulus with respect to, . 

Step 2: solve the relation, , for, . 

Step 3: compute the new eigenpair,  and ; 

Step 4: compute the errors,  and . 
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2.1. Amplitude equation for the nonlinear FE model 

 

For the nonlinear FE model, it is assumed that, the response of the beam is periodic 

in time to a transverse loading of the form, , and parallel to a single 

linear vibration mode. However, the transverse displacement and rotation are dependent 

on the complex amplitude, , given by,  and . 

The unknown, , is determined by using the Galerkin approach, where  

is the Galerkin’s basis to be estimated using the results of the eigenproblem (5).  

Since, the interest is to solve the flexural problem (2.b) to determine the complex 

stiffness accounting for the geometrical nonlinearities, it can be done by inserting the 

previous relations for  and  into the axial problem (2.a) and assuming that, 

the nonlinear terms in the strains relations (1) induce harmonics  and , according to 

the von Karman’s theory. It enables to determine the axial responses  and  
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as functions of the amplitude, . After, by introducing these expressions into Eq. (2.b), 

with  and , one gets the amplitude equation:  

 

                                                 (8) 

 

In Eq. (8), the linear modal parameters are computed using the model described 

in Section 2 by the relations, , ,  and , 

where  and  are the eigenvectors of the reduced system obtained by the method 

shown in Fig. 2.  and the frequency- and temperature-

independent nonlinear modal stiffnesses are given as: 
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where , with , symbol indicates matrix assembling 

and  is the value of the complex modulus in the low frequency range [22]. 

Since the stiffnesses coefficients appearing in Eq. (8) are frequency-dependent, to 

solve it for a given temperature, , in the vicinity of any circular frequency, , these 

coefficients are writing in a complex form, as suggested by Bilasse et al. [20]. Thus, after 

some mathematical manipulations, it leads to the generalized equation (10), which can be 

solved, for instance, by using the solve function available in MATLAB®. 
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where , , ,  

.  and  represent the 

storage modulus and loss modulus of the viscoelastic material, respectively. 

 

3. Stochastic nonlinear FE model. 

 

In the quest for the stochastic modeling, in practical applications of CVLs, the 

uncertainties are primarily those associated to the thicknesses of the layers and to the 

temperature of the viscoelastic part [15]. Thus, the choice of these variables as uncertain 

in this study is an important aspect to be considered. Within this aim, the Karhunen-Loève 

(KL) expansion is used to represent the random fields [25]. For example, the stochastic 

elementary mass matrix is computed as, , where the 

random field, , can be expressed by its mean, , and its 

covariance, , where  is the 

random process, , is the spatial dependence of the random field and  is the 

expectation operator.  
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If, , is a homogeneous Gaussian random process with a symmetric and 

positive-definite covariance defined in a physical domain, , it is possible to find a 

unique projection of it on an orthonormal truncated random basis as follows [25]: 

 

                                                             (11) 

 

where  and  are the eigenfunctions and eigenvalues of the covariance. 

Hence, for the sandwich beam element shown in Fig. 1, the analytical solution to 

the eigenproblem proposed by Ghanem and Spanos [25] and implemented by Guedri et 

al. [23] for the KL into the elementary FE domain , is given as: 
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In Eq. (12), for  ( ) odd, ,  

and  is the solution of the transcendental function, , defined into 

the domain, . However, for  ( ) even, , 

, and  is the solution of, , defined 

into the domain, .  is the correlation length. 

Thus, based on the KL expansion detailed previously, the stochastic elementary 

FE matrices of the linear sandwich viscoelastic beam are found as follow:  
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where ,  and  are defined in Eqs. (4), and , 

,  are the random matrices. 

Hence, after assembling the stochastic FE matrices, the random modal parameters 

can be obtained by the relations, , , 

,  and , 

where  are the random eigenvectors of the eigenproblem (5) at each sample, . In 

the same way, the random nonlinear coefficients,  and , can be computed by 

introducing the relation, , in Eq. (9). 

Hence, the random amplitude equation to be solved for the stochastic nonlinear 

viscoelastic beam subjected to a deterministic excitation can be expressed as: 
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where . 

The thicknesses of the layers have been considered as uncertain parameters using 

the KL expansion based on the stochastic FE method. However, since the temperature 

does not appear explicitly in the FE matrices, but in the complex modulus, , the 

related uncertainties are introduced by the relation, , where  

is a Gaussian random variable and  and  are, respectively, the mean value of the 

temperature and its dispersion level. Also, for the purposes of the present study, the 

stochastic problem (14) is solved using the LHC sampling method [31]. 

 

4. Numerical applications with the deterministic nonlinear FE model 

 

An academic example formed by a clamped-free three-layer sandwich beam has 

been used herein to highlight the main features and capabilities of the deterministic FE 

formulation. The model is composed by 100 finite elements to ensure the convergence of 

the FE method, where the base-beam and constraining layer are made of steel (Young’s 

modulus, , mass density, , Poisson ratio, ), 

with a core of 3M ISD112™ material [32] ( , ), whose properties 

are given by Eq. (15) for frequency and temperature intervals of,  and 

 [27]. The geometrical characteristics of the mean model are given 

below: the beam has a length of, , a width of, , and thicknesses of the 

elastic and viscoelastic layers of,  and , respectively. 
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where  is the shift factor function 

and  is the so-called reduced frequency [4]. 

 

4.1. Influence of the excitation-force amplitude on the frequency response. 

 

This first application is intended to evaluate the influence of the excitation-force 

amplitude on the nonlinear responses of the beam by solving the amplitude equation (9) 

for the nonlinear deterministic FE model. The computations consisted in plotting the 

amplitudes, , corresponding to a transverse displacement, , at the tip of the beam due 

to a transverse loading applied at the same point. The nominal value of the temperature 

of the viscoelastic material is adopted as, 30°C. 

Figure 3 shows the amplitudes of vibrations corresponding to the first flexural 

mode of the beam for different forcing amplitudes. It is interesting to observe that, as the 

amplitude of the excitation increases, the vibration becomes larger, showing the nonlinear 

characteristics of the beam for these loading conditions. Clearly, such nonlinearities can 

have strong influence on the stiffness and damping properties of the viscoelastic system, 

which can be verified by comparing the linear and nonlinear frequency response curves 

corresponding to the forcing amplitudes of,  and , respectively. 
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4.2. Influence of the complex eigenmodes on the frequency response. 

 

Another aspect of great relevance to be discussed here is the complex eigenmodes 

used in the computation of the nonlinear frequency responses of the viscoelastic beam. In 

this study, the complex eigenmodes have been obtained by solving Eq. (5) for a reduced-

order FE model, according the method depicted in Fig. 2. Figure 4 shows that, at, 

, the imaginary parts of the complex eigenmodes, which are frequently disregarded in 

some eigenvalue approaches for constant viscoelastic laws [20], are essential to account 

for the whole temperature- and frequency-dependent viscoelastic damping effects. Since, 

the nonlinear vibrations are underestimated by taking into account only the real parts of 

the complex eigenmodes for the viscoelastic frequency-dependent law used herein. 

 

[Figure 4 about here] 

 

Also, it is demonstrated the effectiveness of the proposed reduction basis, , in 

approximating the nonlinear frequency responses of the beam. Figure 5 enables to 

compare the nonlinear responses computed for the full and reduced-order models using 

the following bases:  (10 eigenmodes of CAS, , 1 static residual due to 

the external excitation, ), and  (10 eigenmodes of CAS, , 1 static 

residual due to the external excitation, , and 8 static residuals due to the viscoelastic 

damping forces, , after SVD filtering). It is evident that, the first-order static residuals 

associated to the viscoelastic damping forces are essential to give reasonable accurate 
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nonlinear frequency response approximations, as demonstrated by the agreement between 

the frequency responses amplitudes of the full and reduced-order FE models for, . 

 

[Figure 5 about here] 

 

In the quest for efficiency, Fig. 6 shows that, as the number of elements in the FE-

mesh increases, the reduction method provides a significantly computational gain of 

approximately 90% in the computations of the approximated nonlinear responses. Thus, 

it motivates its use to deal with large-scale nonlinear models or stochastic problems, as 

addressed later in this work, where the simulations using the full stochastic nonlinear FE 

model can be unfeasible, even for a simple academic example. 

 

[Figure 6 about here] 

 

5. Updating the deterministic nonlinear FE model using experiments. 

 

Figure 7(b) reveals that, the correlation between the measured and computed 

responses of the beam displaying nonlinear behavior for, , is not satisfactory. 

Clearly, it is difficult to accurately model higher order nonlinear behaviors, even if the 

FE model predicts, with reasonable accuracy, the frequency and amplitude of resonance 

of the beam displaying linear behavior, as shown in Fig. 7(a). In this case, the differences 

observed in the regions outside the resonance frequency may be associated with the 

difficulty in achieving a perfect mechanical boundary condition of the cantilever beam, 

2T
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contributing to an increasing in its damping capability, even if the it is mounted in a heavy 

rigid fixture, as shown in Fig. 8. 

Hence, before considering the uncertainties through the stochastic nonlinear FE 

model, firstly, it is interesting to perform a curve-fitting to update the nonlinear stiffness 

experimentally to correctly capture the viscoelastic beam’s dynamics. Also, it is verified 

experimentally the influence of the forcing amplitude and temperature of the viscoelastic 

material on the frequency responses of the beam. 

 

[Figure 7 about here] 

 

The experimental results shown in Fig. 7 for the linear and nonlinear behaviours 

have been measured using the experimental setup depicted in Fig. 8(a). The tests consisted 

in using the stepped-sine approach [33], to measure the frequency responses of the beam 

for various values of forcing amplitude and operation temperature. The strategy consists 

in increasing/decreasing the excitation frequency step-by-step, while the amplitude of the 

excitation and operation temperature are kept constant for all the forcing frequencies. To 

control the operation temperature, the sandwich beam specimen has been mounted inside 

an environmental chamber, model 877-GO-ESPEC, as indicated in Figs. 8(a) and 8(b). 

Then, the displacement of the system at each excitation frequency is acquired after the 

transient responses disappear and the frequency response curves can be constructed for 

the specific excitation-force amplitude in a frequency band of interest. 

In all tests, the beam tip is subjected to a harmonic excitation through the Shaker, 

model TMS® K2007E01, connected to the free end of the cantilever sandwich beam by a 

stinger (see Fig. 8(a)). A load cell is placed between the beam tip and the stinger to 



monitor the input loading to the beam and the acceleration responses are measured with 

a piezoelectric accelerometer, model 352C22 PCB®, placed at the same point. For data 

acquisition and processing, a LabView® code was developed to generate the excitation 

signal and to acquire the acceleration responses through National Instrument systems NI® 

9269 and NI® 9233, respectively. The code waits, at least, 10 seconds for the response to 

reach its steady-state prior to recording/exporting it to another MATLAB code to compute 

the amplitude versus frequency. Also, a feedback control has been implemented with the 

aim of monitoring/controlling the excitation force amplitude during the whole experiment 

to avoid disturbances. 

 

[Figure 8 about here] 

 

The interest is to adjust the nonlinear stiffness of the beam model until it has the 

same resonance peak as the experimental measure depicted in Fig. 7(b). Within this aim, 

it is used the following relation, , where the unknown variable, 

, has been identified by using the well-known Differential Evolution (DE) algorithm [34] 

to solve the following unconstrained objective function: 

 

                                                                           (16) 

 

where  and  are, respectively, the measured and computed amplitudes at 

frequency, , and  is the number of points considered in the frequency bandwidth 
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of, 20-50 Hz, which comprises the first flexural vibration mode of the sandwich beam 

with a frequency resolution of 0.01Hz. 

In the optimization problem, the admissible variation of the continuous parameter 

is of, , since the resonance amplitude of the beam displaying nonlinear behavior 

is overestimated by the model (see Fig. 7(b)). Only this range is considered as lateral 

constraints, where the control variables of the DE algorithm are: number of generations, 

50; population size: 50; crossover probability, 0.9; and weighted factor, 0.8. 

Figure 9 compares the nonlinear responses predicted by the adjusted model using 

the optimal value of, , and the measured frequency response curves for 

various values of forcing amplitudes. In all tests, the temperature was kept constant at, 

30°C, by using the chamber. Now, the experimental measures are approximated quite 

accurately by the numerical predictions, even when the beam displays nonlinear behavior 

at higher values of forcing amplitude, since the shape of the resonance peak changes 

strongly from, , to, . Also, the measured frequency responses confirm 

the numerical results that, at higher values of excitation-force amplitudes, the viscoelastic 

beam displays nonlinear behaviors for a fixed temperature. 

 

[Figure 9 about here] 

 

Since, the temperature can be controlled by using the environmental chamber, it 

is also important to evaluate its degree of influence on the beam displaying nonlinear 

behavior at, . It can be done by varying the temperature of the environmental 

chamber from 10°C to 35°C. By examining Fig. 10, one can conclude that, the agreement 

between the frequency responses predicted by the adjusted model and those obtained by 
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measurements is considered very satisfactory. Also, it reveals that, as the temperature of 

the viscoelastic part increases, the resonance peak increases accordingly. It is expected, 

since for the 3M ISD112™ material, the temperature range of interest is characterized by 

having a loss factor that decreases rapidly with increasing temperature, as shown in Fig. 

11, at fixed resonance frequency value of, 35Hz.  

In particular, for the temperature range between 10°C and 25°C, the beam displays 

linear behaviors, even for the forcing amplitude of, . But, for temperature values 

between 30°C to 35°C, the nonlinear characteristics become clearly more pronounced, as 

indicated by the changes on the resonance peaks. In this temperature range, the hardening 

nonlinearity affects significantly the properties of the viscoelastic beam, resulting in an 

augmentation of its resonance frequency. It can be better visualized by examining Fig. 

12, which compares the measured and computed resonance characteristics as functions 

of temperature. It is evident that, as the temperature increases, the resonance amplitude 

increases, and the resonance frequency decreases rapidly until it reaches its minimum 

value at 25°C due to the reduction of the loss factor of the viscoelastic material, as shown 

in Fig. 11. After this point, an increase in the temperature leads to an increase in the 

resonance frequency due to the hardening nonlinearity and an increase in the resonance 

amplitude due to the loss of efficiency of the viscoelastic material.  

 

[Figure 10 about here] 

[Figure 11 about here] 

[Figure 12 about here] 
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6. Influence of the uncertainties on the response of the stochastic model. 

 

Now, the interest is to evaluate the degree of influence of the uncertainties on the 

frequency responses variabilities of the adjusted nonlinear stochastic FE model by solving 

the random amplitude equation (14) for several LHC realizations. The computations of 

the envelopes of frequency responses are performed by introducing the dispersion levels 

of 5% and 15% on the thicknesses of the layers and on the temperature of the viscoelastic 

system for a forcing amplitude of, , according to the cases defined in Table 1, 

based on the hypothesis that, all the random variables exhibit normal distributions with 

zero mean and unit variance [26].  

Firstly, the number of LHC samples, , required to assure the convergence of 

the nonlinear frequency responses variabilities must be identified. In this case, the mean-

square error [24], , was taken into consideration here, 

where, , is the amplitude of the adjusted mean FE model obtained in the previous 

section for, , and, , is the random amplitude computed for a LHC sample, 

. Figure 13 shows the evolutions of the mean-square error as a function of the number 

of samples for each uncertain parameter. It is seen that, the solutions always converge for, 

, for each uncertain parameter. Thus, this number will be used in all stochastic 

simulations that follow to assure the minimum nonlinear frequency responses dispersion. 

 

[Table 1 about here] 

[Figure 13 about here] 
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Figures 14 to 17 show the envelopes of random nonlinear frequency responses for 

a confidence level of 95% for the uncertainties affecting the design variables. It implies 

that, the nonlinear response is inside the minimum and maximum curves of the envelopes 

with a probability of, 95%. It can be noted that, as the uncertainty levels increase, the 

response variability increases accordingly, especially for uncertainties introduced on the 

thickness of the elastic faces and on the temperature of the viscoelastic material. However, 

the uncertainties on the thickness of the elastic faces have the greatest influence on the 

resonance frequency, while the uncertainties concentrated on the operation temperature 

of the viscoelastic material exert a strongly influence on the resonance peak. Clearly, the 

confidence region becomes larger when the sources of uncertainties are concentrated in 

all the design variables simultaneously.  

Hence, it helps the designer to evaluate the degree of influence of uncertainties on 

the frequency responses of a nonlinear viscoelastic system and its robustness with respect 

to random design parameters. However, the larger influence of the dispersions on the 

nonlinear responses shown in Fig. 17 reveals that, it is also important to know where the 

sources of uncertainties are concentrated in the system to improve its predictability for 

more realistic situations. 

Finally, it is worth mentioning that, the numerical efficiency in the computations 

of the nonlinear frequency responses variabilities shown in Figs. 14 to 17 is due to the 

reduced-order model implemented herein, according to Fig. 2. Also, the parameterization 

of the model defined by Eq. (4) strongly facilitates to perform uncertainty propagations 

without re-assembling the elementary matrices of the mean FE model required to compute 

the linear and nonlinear modal parameters defined in Eq. (14). 

 



[Figure 14 about here] 

[Figure 15 about here] 

[Figure 16 about here] 

[Figure 17 about here] 

 

7. Concluding remarks. 

 

In this paper, a stochastic modeling methodology has been proposed to explore 

the nonlinear behavior of viscoelastic beams subjected to large displacements, accounting 

for the dependence of the linear and nonlinear stiffnesses with respect to frequency and 

temperature. Firstly, to improve the accuracy of the deterministic nonlinear FE model in 

predicting the nonlinear responses of the viscoelastic beam, it has been performed a model 

updating for the nonlinear part using optimization tools by comparing the measured and 

computed nonlinear frequency responses. In the sequence, to demonstrate experimentally 

the influence of the forcing amplitude and temperature of the viscoelastic material on the 

behavior of the sandwich beam, experiments were conducted inside an environmental 

chamber using the stepped-sine approach. Finally, the adjusted stochastic nonlinear FE 

model was achieved by concentrating uncertainties on the thicknesses of the layers and 

on the temperature of the viscoelastic material to verify their influence on the shape bent 

resonance peaks. However, due to the high computational cost needed to compute the 

envelopes of nonlinear curves and to improve the numerical efficiency in the stochastic 

analysis, an adequate parameterization of the FE matrices combined with a reduced-order 

model were also addressed herein.  



The numerical and experimental results reveal that, for a given temperature of the 

viscoelastic beam having linear behavior, as the forcing amplitude increases, keeping the 

temperature constant, the beam displays nonlinear behavior over a range of forcing 

amplitude. It is seen that, the bent resonance peaks become more pronounced at high 

values of forcing amplitudes. However, for the situation in which the nonlinear operation 

condition is kept constant and the temperature of the viscoelastic material is decreased, 

keeping now the forcing amplitude constant, the behavior of the beam becomes linear. 

Thus, beyond the fact that the viscoelastic material has a significantly influence on the 

linear and nonlinear behaviors of the viscoelastic sandwich beam, the results enables to 

conclude about the effectiveness of the viscoelastic material in controlling nonlinear 

vibrations, even for higher values of forcing amplitudes.  

The parameterization combined with the reduced-order model, as suggested in this 

study, has proved to be an adequate strategy to compute the modal parameters required 

to construct the nonlinear frequency responses of the beam subjected to uncertainties. The 

numerical applications revealed that, the uncertainties concentrated especially on the 

thickness of the elastic layers have the greatest influence on the resonance frequency and 

the temperature of the viscoelastic material has a greatest influence on the resonance peak 

of the nonlinear viscoelastic sandwich beam.  

Hence, the envelopes of random nonlinear responses convey valuable information 

about the degree of influence of the uncertainties on design variables characterizing the 

viscoelastic sandwich beam under large displacements. However, it is of great relevance 

to know where the sources of uncertainties are concentrated in the nonlinear model in 

order to improve its predictability for more realistic situations. 
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FIGURE CAPTIONS 

 

Figure 1 – Illustration of the three-layer sandwich beam element. 

Figure 2 – Inverse iteration scheme used to predict the complex eigensolutions.  

Figure 3 – Frequency responses of the nonlinear sandwich beam for various values of 

forcing amplitudes. 

Figure 4 – Comparison between the frequency responses of the sandwich beam 

displaying nonlinear behavior at, , accounting for the real and complex 

eigenmodes. 

Figure 5 – Comparison between the frequency responses of the full and reduced-order 

models of the sandwich beam displaying nonlinear behavior at, . 

Figure 6 – Computational gain with the reduced model as a function of the mesh size. 

Figure 7 – Comparison between the measured and computed linear (a) and nonlinear (b) 

frequency responses of the sandwich beam. 

Figure 8 – (a) Schematic of the experimental nonlinear sandwich beam setup; (b) 

photography of the experimental setup. 

Figure 9 – Comparison between the measured and computed frequency response curves 

of the nonlinear sandwich beam for various values of forcing amplitude. 

Figure 10 – Comparison between the measured (a) and computed (b) frequency 

responses of the nonlinear sandwich beam for various values of operation temperature. 

Figure 11 – Variation of the loss factor of the 3M ISD112 with temperature at, 35Hz. 

Figure 12 – Comparison between the measured and computed resonance frequencies 

and resonance amplitudes of the nonlinear sandwich beam as functions of temperature. 
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Figure 13 – Convergence of the mean-square error for the uncertainties concentrated on 

the thicknesses of the layers and on the temperature of the viscoelastic material. 

Figure 14 – Envelopes of random frequency responses of the sandwich beam displaying 

nonlinear behavior at,  and , for uncertainty levels of 5%(left) and 

15% (right) concentrated on the thickness of the viscoelastic core. 

Figure 15 – Envelopes of random frequency responses of the sandwich beam displaying 

nonlinear behavior at,  and , for uncertainty levels of 5%(left) and 

15% (right) concentrated on the thickness of the face layers. 

Figure 16 – Envelopes of random frequency responses of the sandwich beam displaying 

nonlinear behavior at,  and , for uncertainty levels of 5%(left) and 

15% (right) concentrated on the temperature of the viscoelastic material. 

Figure 17 – Envelopes of random frequency responses of the sandwich beam displaying 

nonlinear behavior at,  and , for uncertainty levels of 5%(left) and 

15% (right) concentrated in all design variables. 

 

TABLE CAPTIONS 
 

Table 1 – Uncertainty levels of the nonlinear viscoelastic sandwich beam. 
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Table 1 

Variables Nominal 
Values 

Uncertainty level 
Case 1 Case 2 Case 3 Case 4 

he 1mm  5%;15% --- --- 5%;15% 
hv 1mm ---  5%;15% --- 5%;15% 
Tv 30°C --- ---   5%;15% 5%;15% 
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