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ABSTRACT  

In this work, three carbon/glass hybrid composite tubes are instrumented with eight piezoelectric 
wafer active sensors (PWAS), used as passive receivers of acoustic emission (AE) signals. A 
three point bending quasi-static loading is conducted, either in a single cycle until failure or 
incrementally through multiple loading/unloading cycles. In the first instance, AE signal features 
such as maximum amplitude, peak frequency, signal duration, and energy are used to distinguish 
between different damage mechanisms such as matrix cracks, delamination, and fibre breakage. 
The group velocity of the longitudinal modes – L(0,1) and L(0,2) – is obtained experimentally in a 
pitch-catch configuration between the PWAS network using the time of flight (ToF). The time of 
arrival (ToA) method is then used to calculate damage source locations from the received AE 
signals. To involve more signal features for data classification, an unsupervised clustering 
algorithm is applied to the datasets. Optimisation of the number of clusters is completed by 
maximising the robustness and minimising the uncertainty of the final result. It is found that the 
temporal evolution of clusters indicate the ability to distinguish between the initiation and growth 
of damage, as well as identifying non-damage related signals caused by extraneous noise or 
related to the test set-up.  
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1. INTRODUCTION  

Composite materials have become attractive for use in structural applications over recent years, 
since their properties can be tailored according to needs, but assessment of damage remains a 
challenge. Periodic non-destructive inspections (NDI) of components can give an insight into their 
performance but the complexity of these techniques often results in significant down-time and 
increased labour costs. The cost of inspection in aerospace composites, for example, can 
represent up to a third of the lifecycle costs [1]. Since composite materials allow for the integration 
of sensors, with negligible effect on their mechanical properties, permanent structural health 
monitoring (SHM) systems have sparked a great deal of interest [1]. Piezoelectric transducers are 
particularly used for their low cost, small size, durability, and low power consumption [2]. 

In this work, quasi-static three point bending of carbon/glass hybrid composite tubes has been 
completed. By monitoring acoustic emission (AE) signals during loading, it is possible to estimate 
damage source locations and speculate about different damage modes [3], [4] via signal analysis. 
The effort is in distinguishing between matrix cracking, delamination, and fibre breakage. An 



 

 
 

 

unsupervised pattern recognition algorithm – an extension of [5] – has been applied to AE data 
to understand the initiation and progression of damage when the data is separated into clusters. 

 

2. MATERIALS AND METHODS 

2.1 Instrumentation of composite tubes 

The composite tubes (60.3 mm internal diameter and 1.6 mm thick) presented in this work are a 
hybrid of unidirectional (UD) carbon fibres oriented in the axial (0°) direction and UD glass fibres 
in the hoop (90°) direction (supplied by Easy Composites Ltd.). The lay-up order of fibers is [0, 
90, 0, 90, 0]. Each specimen was cut to a length of 1 meter prior to instrumentation with sensors.  

Three specimens were tested, each instrumented with piezoelectric wafer active sensors (PWAS) 
[6] supplied by PI ceramic – PIC255 with 10 mm diameter and 0.5 mm thickness [7]. Eight PWAS 
were surface mounted on each specimen for AE monitoring during loading. On specimen 1, 32 
PWAS were also bonded for pitch-catch excitation of guided waves. The arrangement of PWAS 
is shown in Figure 1. 

 

Figure 1. Schematic showing the approximate positions of PWAS used for AE (green) and guided waves 
(blue) on specimen 3.  

2.2 Experimental set-up 

The experimental set-up for flexural three point bending is shown in Figure 2. Three specimens 
were tested in total: specimen 1 was first subjected to a low velocity impact with approximately 5 
J (resulting in an axial crack of approximately 7 cm length [8]), followed by three point bending 
over five cycles of loading/unloading; specimens 2 and 3 were subjected to bending until failure. 
The low frequency cycling of specimen 1 was introduced to encourage the progression of damage 
through repeated loading. The load vs. time curves are shown in Figure 3.  

 

Figure 2. Experimental set-up for three point loading of specimen 1.  



 

 
 

 

 

Figure 3. (a) Load vs. time for all cycles on specimen 3; (b) Load vs. extension for specimens 2 and 3. 

 

2.3 AE data acquisition and processing 

During loading, AE activity was recorded via eight channels on a PCI-2 based acquisition system 
supplied by Mistras. Discrete AE waveforms (hits) were recorded using the ‘AEwin’ software 
package. The threshold amplitude was set to 55 dB to eliminate sources of extraneous noise, and 
to account for the 20 dB of pre-amplifier gain per channel. The sampling rate was set at 10 MHz 
(5 MHz on 2 channels due to hardware limitation) and AE timing parameters set to: peak definition 
time (PDT) = 200 µs, hit definition time (HDT) = 800 µs, hit lockout time (HLT) = 1 ms, maximum 
signal duration = 100 ms. Using subsets of 4 from a total of 17 features (as extracted through 
‘AEwin’) per AE hit an unsupervised pattern recognition algorithm (based on the Gustafson-
Kessel algorithm [9]) was applied to the full dataset for each specimen. For specimen 1, the five 
cycles are concatenated in time to form one large dataset. The optimal number of clusters for 
each dataset is found by maximizing the normalized mutual information criterion (NMI) [10].  

 

3. RESULTS AND DISCUSSION 

The time of arrival (ToA) method available within ‘AEwin’ is used to calculate AE source locations 
in order to track the growth of damage in the specimens during each loading cycle of specimen 1 
(Figure 4). The presence of signals during earlier cycles of loading correlates well with the damage 
locations observed in the final cycle of loading, suggesting that it may be possible to estimate the 
failure location before reaching 70% of the breaking strength of the specimen.  

 

Figure 4 (to be continued). Calculated damage locations during each loading of specimen 1: (a) cycle 1 
(blue ˅), (b) cycle 2 (green ˄), (c) cycle 3 (purple ˃), (d) cycle 4 (lime green ˂), (e) cycle 5 (turquoise □). 



 

 
 

 

Figure 4. Estimated damage locations during loading of specimen 1: (a) cycle 1 (blue ˅), (b) cycle 2 
(green ˄), (c) cycle 3 (purple ˃), (d) cycle 4 (lime green ˂), (e) cycle 5 (turquoise □). Dashed lines indicate 

locations of the through-thickness final failure cracks. Red arrows indicate the top of the specimen. 

 
Application of the unsupervised clustering algorithm on AE hits from specimen 1 results in 
separation of the data into 9 clusters. The initiation and evolution of signals within each cluster, 
over the five cycles of loading are shown in Figure 5. A noteworthy observation is that, though the 
data are separated into these 9 clusters, all clusters do not initiate at the beginning. In the present 
work, a criterion related to the onset time of different clusters ensures that they are always spread 
out in time. The reasoning being that damage in composites tends to be decomposed into different 
phases with cascades during loading. Based on this, it is possible to develop a classification of 
damage types, for each cluster. It is argued that AE data belonging to cluster 1 are likely to arise 
due to friction between the specimen and test equipment: this cluster represents the largest group 
of data points, and data are acquired almost continuously during loading. Similarly, the data in 
clusters 2 and 3 does not result in a significant change in cumulated energy. AE data belonging 
to clusters 8 and 9 are more likely related to the final failure of the specimen: an abrupt increase 
in energy is observed, indicating high energy, catastrophic damage events during these last few 
seconds of loading. The final failure of the specimen took the form of two longitudinal cracks on 
either side of the tube – a compression-type failure rather than true bending. This is due to the 
high proportion of axial fibres greatly enhancing the flexural stiffness of the tube. Clusters 4-7, 



 

 
 

 

therefore, likely represent damage signals arising from a combination of mechanisms such as 
delamination, axial matrix cracking, and breakage of the hoop-oriented glass fibrils and/or fibres. 

 

Figure 5. Number of AE hits recorded by all channels, separated into clusters, for specimen 3. 

 

When the clustering algorithm is applied to specimens 2 and 3, both tested in a single cycle until 
failure, the data is separated into 8 and 15 clusters, respectively. The behaviour of clusters in 
these two specimens is shown in Figure 6. Although the specimens are assumed to be almost 
identical, the AE signals recorded during loading can be affected by small variations in: material 
properties, specimen geometry, sensor placement, sensor bonding, positioning with respect to 
the machine, and noise in the environment. Number of clusters aside, the most obvious difference 
when comparing the plots is the behaviour of clusters 2 and 4 on specimen 2. The exponential 
increase in signals at around 400 s likely result from extraneous noise since the change in 
cumulated energy is negligible. The envelope of each damage profile provides an assessment of 
uncertainty related to the final clustering result. 

 

Figure 6. AE hits from all channels separated into clusters for (a) specimen 2 and (b) specimen 3. 



 

 
 

 

4. CONCLUDING REMARKS 

In the present work, the potential for the use of acoustic emission is demonstrated as a tool for 
detecting, localising, and classifying damage mechanisms arising during quasi-static loading. The 
use of an unsupervised clustering algorithm eliminates any operator bias and reduces the time 
taken to obtain a final result. Further work is required to develop a means of linking data clusters 
to individual damage modes in the composite, by means of destructive and non-destructive 
validation via, for example, x-ray computed tomography. Identifying the location, size and type of 
damage is of great importance in the effort to estimate residual life and long term performance of 
the composite tube [11]. 
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