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• Inverse identification of a  bi-material human skin’s parameters under
uniaxial extension test.

• Benchmark validation of arterial walls response to an inflation test.
• An  FE open-source framework to simulate the hyperelastic behavior

of soft tissues.

• Understanding the intimal hyperplasia process induced by hand-arm 
vibrations.

• Development of  prevention system against keloid growth.
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The artery exhibits a hyperelastic,
nearly incompressible and anisotropic
behavior.

Anisotropy is due to the orientation
and distribution of collagen fibers
inside the arterial wall. and can be
expressed using energy-strain
equation introduced by Holzapfel [3] :

where 𝐼4 describes the orientation of collagen fibers, 𝐼1 is a
model invariant and 𝑐10, 𝑘1, 𝑘2 are material parameters.

Figure 6. Arterial wall inflation modelled using different hyperelastic laws implemented
in FEniCS (Experimental data and pameters values taken from [4]).

An inflation test of the artery was simulated using different
hyperelastic laws. As shown in figure 5, the Yeoh model is the
best to reproduce the experimental data.

𝜓𝑌 𝐼1 = 𝑐10 𝐼1 − 3 + 𝑐20 𝐼1 − 3 2 (4)

The displacements 𝒖 over nodes of a structure under constraints (loads or prescribed
displacement) are the solutions of the variational problem (1). Even if the geometrical
non-linearity is taken in account, we still need to implement a hyperelastic constitutive
law to model the nonlinear behavior of the soft tissues.
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Figure 1. The framework process
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We aim to characterize the
biomechanical behavior of soft tissues by
comparing experimental data with
simulation. In this work, we present
applications of the implementation of
different hyperelsatic models in FEniCS [1],
an open-source FE code, on human skin
and artery. For that purpose, uniaxial
extension and inflation tests have been
studied.

Figure 2. Keloid scar

The first application consists in
simulating the mechanical response of a
bi-material skin. The latter is composed of
a healthy region and a benign tumor,
called ‘keloid’ (figure 2). Previous studies
showed that the keloid growth is linked to
the mechanical properties of the skin [2].

Figure 3. Mechanical stress field as an output 
of the framework

We simulate the uniaxial
extension test to identify the
stress field over the keloid
medium, the healthy region
and on their interface (figure
3). A challenging task must be
done first : recognize the
suitable hyperelastic model.

As a first trial, we have implemented an alternative form of
the compressible Neo-Hookean materials (2).

Figure 4. The estimated parameters of the Neo-Hookean
model

Estimated parameters :
𝝁𝒌𝒆𝒍𝒐𝒊𝒅 = 1.022 𝑀𝑃𝑎
𝝀𝒌𝒆𝒍𝒐𝒊𝒅 = 0.715 𝑀𝑃𝑎
𝝁𝒉𝒆𝒂𝒍𝒕𝒉𝒚 = 0.051 𝑀𝑃𝑎

𝝀𝒉𝒆𝒂𝒍𝒕𝒉𝒚 = 0.011 𝑀𝑃𝑎

Exact parameters :
𝝁𝒌𝒆𝒍𝒐𝒊𝒅 = 1.0 𝑀𝑃𝑎
𝝀𝒌𝒆𝒍𝒐𝒊𝒅 = 0.7 𝑀𝑃𝑎
𝝁𝒉𝒆𝒂𝒍𝒕𝒉𝒚 = 0.05 𝑀𝑃𝑎

𝝀𝒉𝒆𝒂𝒍𝒕𝒉𝒚 = 0.01 𝑀𝑃𝑎

were 𝝁 and 𝝀 are Lamé
parameters and 𝐽 the
jacobian of the
deformation gradient.
Additionally, the FEM
solver has been
integrated into a FEMU
problem to find back
the real parameters of
an artifical data set
(figure 4).

Neo-Hooke : 𝜇 = 0.1376 𝑀𝑃𝑎
Yeoh : 𝐶10 = 0.001 𝑀𝑃𝑎

𝐶20 = 0.27 𝑀𝑃𝑎
Holzapfel: 𝐶10 = 0.003 𝑀𝑃𝑎

𝑘1 = 0.02363 𝑀𝑃𝑎
𝑘2 = 0.8393

Figure 5. Artery layers [3]


