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Bessel beams are becoming a very useful tool in many areas of optics and photonics,

because of the invariance of their intensity profile over an extended propagation range.

Finite-Difference-Time-Domain (FDTD) approach is widely used for the modeling of

the beam interaction with nanostructures. However, the generation of the Bessel

beam in this approach is a computationally challenging problem. In this work, we re-

port an approach for the generation of the infinite Bessel beams in three-dimensional

FDTD. It is based on the injection of the Bessel solutions of Maxwell’s equations from

a cylindrical hollow annulus. This configuration is compatible with Particle In Cell

simulations of laser plasma interactions. This configuration allows using a smaller

computation box and is therefore computationally more efficient than the creation

of a Bessel-Gauss beam from a wall and models more precisely the analytical infinite

Bessel beam. Zeroth and higher-order Bessel beams with different cone angles are

successfully produced. We investigate the effects of the injector parameters on the

error with respect to the analytical solution. In all cases, the relative deviation is in

the range of 0.01-7.0 percent.
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I. INTRODUCTION

A Bessel beam refers to a family of solutions for the wave equation in which the

amplitude of field is expressed by the Bessel function of the first kind1. It has at-

tracted great interest in various branches in optics because its intensity profile is invari-

ant as it propagates. Bessel beams are mainly utilized as optical traps2–4, for optical

manipulation5, optical acceleration6–8, light-sheet microscopy9,10, nonlinear optics, ultra-

short pulse filamentation11–13, and laser-material processing14–18. Our main interest here is

that Bessel beams can be used to generate long plasma rods with quasi-uniform density19,20.

Particle-In-Cell (PIC) simulation21,22 is a conventional pathway to self-consistently model

the interaction between laser beams with plasmas. It uses the Finite-Difference-Time-

Domain (FDTD) algorithm to advance the electric and magnetic fields. A specific challenge

arises for the simulation of Bessel beams in FDTD because of their high aspect ratio. Bessel

beams are an interference field in which the propagation length ZB is defined by the trans-

verse extent W and the cone angle θ, i.e. the angle made by the interfering waves with the

optical axis: ZB ∼ W/ tan θ23,24. Hence, long propagation distances require a wide trans-

verse extent. However, the central spot radius (r0 = 0.383λ/ sin θ for a zeroth-order Bessel

beam) is generally much smaller than the beam transverse extent. It is therefore computa-

tionally extremely demanding to investigate the laser-plasma interaction within the central

lobe with high spatial resolution. This problem is illustrated in Fig. 1, where we show the

time-integrated fluence distribution for a finite-energy zeroth-order Bessel-Gauss femtosec-

ond pulse over a distance of only ≈ 20µm, injected from the left wall of the simulation box.

The detail of this simulation is provided in Section II.

Our objective is to replace the simulation box with a smaller one, as shown by transparent

white color box in Fig. 1. This is possible because in a Bessel beam, energy flows from

the sides with a conical structure and because of the longitudinal invariance of both the

diffraction-free Bessel beams and the uniform plasma distribution. Therefore, we will use a

cylindrical annulus injecting the electromagnetic fields and use periodic boundary condition

for the surfaces parallel to the optical axis to reproduce the longitudinal invariance.

Bessel beams have been previously generated in FDTD using two different approaches.

In25, Wu et al have simulated the generation of Bessel beam sources in FDTD, using total-

field/scattered-field method26. In this approach, the computational domain is split into
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total-field and scattered-field regions. The electromagnetic wave is injected using the surface

which separates the two regions. In27, arbitrary order Bessel beams were generated using the

scattered-field approach26. In this case, the total fields are decomposed into known incident

fields and unknown scattered fields. The incident fields at all grid points are evaluated using

the analytical expression at each time step.

Previous techniques of Bessel beam generation have inherent limitations. Indeed, both

total-field/scattered-field and scattered-field methods are inappropriate for implementation

in PIC codes. In the scattered-field approach, there is no direct access to the total field

which is required in PIC codes. Moreover, the incident field is needed at any point in the

grid. The total-field/scattered-field needs an extra computational region for the scattered

field. In this technique particle and field boundaries would be defined in different places

because particles are in interaction with the total fields. In contrast with these approaches,

injecting the electromagnetic fields using an antenna has several advantages: (1) there is

direct access to total field, (2) incident field is needed only at the antenna points, (3) no

extra computational region is needed for the scattered fields (because PIC approach entirely

works with total field), and (4) particle and field boundaries are set in same place.

In the present work, a cylindrical annulus which we call Bessel antenna is inscribed in

the FDTD box and emits the Bessel solutions of Maxwell’s equations. In comparison with

Bessel-Gauss FDTD simulation, it significantly reduces the size of the three-dimensional

(3D) computational box. It has been successfully tested for different orders of Bessel beam,

different cone angles, different antenna thicknesses, and different antenna radii. The relative

deviation between the fields from the Bessel antenna and those from the analytical solution

is in the range of 0.01-7.0 percent. We readily note that the more straightforward approach

consisting of injecting the Bessel solutions from the computational walls (square symmetry)

does not yield satisfactory results in terms of beam symmetry.

The paper is organized as follows. We first generate Bessel-Gauss beam in FDTD simu-

lation for reference. Then, we derive in Section III the Bessel solutions of the Hertz vector

potential. We also provide in this section the analytical model of Bessel pulse to which we

will compare our numerical simulations. The Bessel antenna implementation is detailed in

Section IV. The results of the simulations are discussed in Section V, where we investigate

the influence of the antenna parameters.
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II. BESSEL-GAUSS BEAM

In this section, we implement the generation of a Bessel-Gauss beam in FDTD. Experi-

mentally, a Bessel-Gauss beam can be created by focusing a Gaussian beam using an axicon

lens23,24,28,29. The axicon applies a phase Φ(r) = −kr sin θ onto the Gaussian beam, where

r is the radial distance in the cylindrical coordinate, k = 2π/λ is the wavenumber with λ

the laser central wavelength and θ is the cone angle.

For this example, we utilize a computational box of 15×15×28µm3. Using a normaliza-

tion in terms of wavelength, it can be expressed as 8λxy×8λxy×32λz where λxy = λ/ sin θ, and

λz = λ/ cos θ. We inject from the zmin wall a Gaussian beam polarized along x direction and

propagating in the the positive z direction, on which we apply the cylindrically-symmetric

phase Φ(r). We set the wavelength and cone angle 0.8 µm, 25◦, respectively. The temporal

amplitude profile of the beam is a Gaussian function of width 100 fs Full Width at Half

Maximum (FWHM). The Gaussian beam waist is w0 = 6µm. We run the simulation up to

trun = 266 fs.

The fluence distribution (
∫ trun
0

S dt where S is the magnitude of the Poynting vector) for

the resulting Bessel-Gauss beam at the end of the simulation is shown in Fig. 1. As one

can see, a Bessel-Gauss beam with a propagation distance of only ≈ 20µm already requires

a window width of ≈ 15µm. In this example, the ratio between the central lobe radius and

the transverse dimension is about 0.1. The interaction of this beam with a nanoscale plasma

rod will typically drive electron plasma waves on a spatial scale of ∼ 0.05λ. If we resolve

the wavelength of the excited plasma waves with 20 grid cells, a PIC simulation will need a

grid of 7500×7500×14100 which is computationally very expensive. We have implemented

the Bessel antenna as an alternative approach that can create a Bessel beam in a smaller

box (transparent white color box in Fig. 1).

III. MATHEMATICAL MODEL

A. Bessel’s solutions

Using the antenna, we will generate ideal Bessel beams by injecting the solution of the

electromagnetic wave equation in cylindrical coordinates. Several authors have derived the

Bessel solutions for Maxwell’s equations in a homogeneous, isotropic, and unmagnetized
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FIG. 1. A Bessel-Gauss beam from FDTD simulation. Fluence distribution in zx plane at y = 0

(left), and yx plane at location of the maximum for I(0, 0, z) (right). We aim to create a Bessel

beam in the white box with a computational box of 4λxy × 4λxy × 2λz which is smaller than

Bessel-Gauss one by a factor of 64.

medium30–32. But their solutions were not fully general in terms of polarization states. We

briefly recall here the general formulas and then provide handy normalized forms. We start

with the Hertz vector potential Π which reads33:

∇2Π− µ ǫ ∂2
tΠ = 0 (1)

There are generally two solutions (related to TE and TM modes in cylindrical symmetry)

for the electromagnetic fields satisfying Eq. (1). These solutions take the following forms

for a harmonic function as exp(−iωt):

(E1,E2) = (∇×∇× Π, i ω µ∇× Π) (2a)

(H1,H2) = (−i ω ǫ∇× Π,∇×∇× Π) (2b)

The solutions can be determined using two functions given by:

(Q,R) = (∇× Π,∇×∇× Π) (3)

Hence:

(E1,E2) = (R, i k0 Q) (4a)

(ηH1, ηH2) = (−i k0 ǫrQ,R) (4b)
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here k0 = ω/c denotes the wavenumber in the vacuum, η = µ0 c the impedance of free

space, and ǫr the relative permittivity of the propagating medium. For Bessel’s solutions of

Eq. (1), one of the following Hertz potentials is usually employed30–33.

Πx = x̂Jm(K r)eimφ ei(ω t−β z) (5a)

Πy = ŷJm(K r)eimφ ei(ω t−β z) (5b)

Πz = ẑJm(K r)eimφ ei(ω t−β z) (5c)

where K is the transverse component (in xy plane) of the wave vector, β the axial

component (along the z axis) of the wave vector, m order of Bessel function, φ the azimuth

angle, and (x̂, ŷ, ẑ) are unit vectors of cartesian coordinates. We have, therefore, β2 +

K2 = ǫr k
2
0 = k2. To link with the cone angle θ described in the previous section, we have

K = k sin θ and β = k cos θ.

Substituting Eq. (5) into Eq. (3) and after some algebra, we can obtain (Q,R) vectors

associated with the three potentials (Πx,Πy,Πz). In Cartesian coordinates, they are given

by:

1. Πx

Q = ei(ω t−β z) eimφ

x̂ 0

ŷ i β Jm(K r)

ẑ K
2 i

[

Jm+1(K r) ei φ + Jm−1(K r) e−i φ
]

(6a)

R = ei(ω t−β z) eimφ

x̂ k2+β2

2
Jm(K r) + K2

4

[

Jm+2(K r) e2 i φ + Jm−2(K r) e−2 i φ
]

ŷ i K2

4

[

Jm−2(K r) e−2 i φ − Jm+2(K r) e2 i φ
]

ẑ i β K
2

[

Jm−1(K r) e−i φ − Jm+1(K r) ei φ
]

(6b)
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2. Πy

Q = ei(ω t−β z) eimφ

−x̂ i β Jm(K r)

ŷ 0

−ẑ K
2

[

Jm+1(K r) ei φ − Jm−1(K r) e−i φ
]

(7a)

R = ei(ω t−β z) eimφ

x̂ i K2

4

[

Jm−2(K r) e−2 i φ − Jm+2(K r) e2 i φ
]

ŷ k2+β2

2
Jm(K r)− K2

4

[

Jm+2(K r) e2 i φ + Jm−2(K r) e−2 i φ
]

−ẑ β K
2

[

Jm+1(K r) ei φ + Jm−1(K r) e−i φ
]

(7b)

3. Πz

Q = ei(ω t−β z) eimφ

x̂ i K
2

[

Jm+1(K r) ei φ + Jm−1(K r) e−i φ
]

ŷ K
2

[

Jm+1(K r) ei φ − Jm−1(K r) e−i φ
]

ẑ 0

(8a)

R = ei(ω t−β z) eimφ

−x̂ i β K
2

[

Jm+1(K r) ei φ − Jm−1(K r) e−i φ
]

−ŷ β K
2

[

Jm+1(K r) ei φ + Jm−1(K r) e−i φ
]

ẑK2 Jm(K r)

(8b)

The first two solutions, Πx and Πy, specify Bessel beams with linear, and more generally

elliptical polarizations (because the field has in general a z component), while the solution

Πz generate the purely radial or azimuthal polarizations for m = 0 (using respectively E1

and E2 solutions of Eq. (4a)). One can exactly reproduce Eqs. (7), and (8) in32 from Πy in

Eqs. (7) and Eqs. (12a) and (12b) in31 from Πz in Eqs. (8).

For implementation, we modify the above solutions based on cone angle θ and the am-

plitude of the electric field E0. We note that E0 corresponds, in the case m = 0, to the

modulus of the electric field on the optical axis (r = 0). The corresponding (E,H) fields for

TE, and TM modes are given in Eq. (9a), and Eq. (9b), respectively.

(E,H) = k−2
0 (E0k0Q, H0R) ei(ω t−β z) eimφ (9a)

(E,H) = k−2
0 (E0R, H0k0Q) ei(ω t−β z) eimφ (9b)

where H0 = n/η E0 (in terms of the energy density µ0H
2
0 = ǫ0 ǫrE

2
0), and n = ǫ

1/2
r is the

optical refractive index.

7



FIG. 2. Bessel pulse from Fourier spectrum integration. Eq. (11) integration is calculated for cone

angle of θ = 17◦ (left panel), θ = 25◦ (middle panel), and θ = 30◦ (right panel). In all cases,

m = 0, T = 60 fs, T0 = 180 fs, and ω0 = 2.4PHz. The red dashed lines show ±c/ sin θ velocities.

We show the amplitude of Ey field in log-scale to enhance the X-shape of the pulse propagation.

B. Bessel pulse

For the validation of the antenna-generated Bessel pulse, we will need a reference based on

an analytical expression. Here, we express the Bessel pulse using the monochromatic field de-

rived in section IIIA. We work hereafter with the vector potential polarized along the x axis

(Πx) to generate a linearly y polarized Bessel pulse of arbitrary order. A pulse in time-domain

is obtained by performing the integral over the pulse spectrum F (ω). We choose F (ω) as

a Gaussian function that inverse Fourier transform gives F (t) = exp(−iω0t) exp(−t2/T 2)

function in time domain. Hence:

F (ω) =
T

2
√
π
e−

T
2(ω−ω0)

2

4 (10)

The y component of the electric field then reads:

Ey(x, t) = − cos θ eimφ

∫ ∞

−∞

dωF (ω)Jm(
ω sin θ

c
r)eiω(t−T0−z cos θ/c) (11)

Where T0 corresponds to the time of the peak intensity.

We calculate the Eq. (11) integration for m = 0, 1, 2, T = 60 fs (FWHM = 2T
√
ln 2 =

100 fs), T0 = 180 fs, and ω0 = 2.4PHz. Three different cone angles of θ = 17◦, θ = 25◦,

and θ = 30◦ are considered. Shown in Fig. 2 is the absolute value of Ey (normalized to

the maximum value) extracted from Eq. (11) for m = 0. The y coordinate is scaled with
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FIG. 3. Concept of the Bessel antenna in the FDTD simulation box. The yellow annulus with

a thickness of δs shows the cylindrical antenna which has an outer radius RB = N⊥λxy, and a

length 2N‖λz. There are NPML grid cells in each transverse direction where the CPML boundary

condition is applied.

the transverse wavelength λxy = λ/ sin θ. It, therefore, increases as the cone angle decreases

from 30◦ to 17◦. In all cases, one sees two propagating waves coming from the bottom

(t = 0), interfere around y = 0, and then propagate away. The interfering waves propagate

with velocities of ±c/ sin θ (red dashed lines). In Section V, the Ey of the antenna generated

Bessel pulse will be compared with the corresponding Eq. (11) integration. We note again

that the width over which we see the pulse propagation is much larger than the width of

the central lobe.

IV. BESSEL ANTENNA IMPLEMENTATION

To model the propagation of a plane wave in FDTD, we inject E and B solutions of the

wave equation from one wall into the computational box. We use a similar methodology

for the propagation of the Bessel beam. Since a Bessel beam has a cylindrical symmetry,

we inject the Bessel solution presented in Section IIIA from a cylindrical antenna into the

simulation box.

We implement the antenna in EPOCH code, which is a Particle-In-Cell (PIC) code for

laser-plasma simulation34. The FDTD algorithm in EPOCH uses a modified version of the

leapfrog scheme in which the fields are updated at both the half time-step and the full
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TABLE I. Sets of simulation parameters for Bessel antenna.

Run A B C D E F G H I

m 0 1 2 0 0 0 0 0 0

θ◦ 30 30 30 25 17 25 25 25 25

δs [λ] 1 1 1 1 1 2 3 1 1

N‖ 1 1 1 1 1 1 1 1 1

N⊥ 4 4 4 4 4 4 4 3 2

time-step. The full detail of the EPOCH code is presented in34. The standard second order

Yee’s FDTD scheme is used in the present work, although higher-order schemes (4th- and

6th-order) are also available.

The Bessel antenna is inscribed in the simulation box as illustrated in Fig. 3. The cylinder

has an outer radius RB and a thickness δs. To avoid reflection of the outgoing waves from

the (xmin, xmax) and (ymin, ymax) boundaries, perfectly matched layers (PML) are used in

these surfaces as shown in Fig. 3. A PML is an artificial absorbing layer. It is commonly

used to truncate computational regions in numerical methods to simulate problems with

open boundaries, particularly in the FDTD26. In practice, we used the convolutional PML

(CPML) method, as presented in26,35. The current CPML implementation in EPOCH uses

a number of PML layers ranging between 6 and 16. We use NPML = 6 in the current work.

1gray!30white

We define the sampling of our computational box with the following procedure. We

sample the laser wavelength with ns grid cells. Here, we use ns = 20. We set the transverse

width of the box, excluding the PML boundary layers, as an even number 2N⊥ of the

transverse period of the field λxy = 2π/K. The number of points of the computational

box is then defined as Nxy = int(2nsN⊥/ sin θ) + 2NPML in the transverse plane. The

longitudinal size of the box, including the PML boundary layers, is an even number of the

period λz = 2π/β and the corresponding number of points isNz = int(2nsN‖/ cos θ)+2NPML.

This ensures that the wave propagation is accurately sampled in both longitudinal and

transverse directions. The cell size is also same in both directions so that the mesh is cubic.

(We note, for EPOCH users, that in EPOCH input parameter file, the number of grid points

and length of the computational box have to be reduced by the number of CPML layers and
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corresponding width of the CPML conditions.)

We will focus on the generation of linearly polarized Bessel beams of order m with a

Gaussian temporal profile. Hence, we use the vector potential polarized along the x axis.

As shown in section IIIA, this will generate a linearly y polarized Bessel beam. Since the

Fourier transformation operation cannot be straightforwardly implemented in EPOCH, we

use the zeroth-order approximation to the integration of Eq. (11), which corresponds to

multiplying the (E,B) solutions of Eq. (9a) or Eq. (9b) a Gaussian time profile peaked at

time T0: f(t) = exp[−(t− T0)
2/T 2]. Therefore, our input fields are defined by:

EB = k−2
0 ℜ{E0f(t)k0Q ei[ω (t−T0)−β z] eimφ} (12a)

HB = k−2
0 ℜ{H0f(t)R ei[ω (t−T0)−β z] eimφ} (12b)

Here we note that the zeroth-order approximation we performed is equivalent to neglect-

ing the time needed by an illuminating temporally Gaussian pulse to reach the extremity of

the cylinder in front of the pulse duration. In other words, we consider that the Gaussian

pulse illuminates at the same time the front side (zmin) and the rear side (zmax). This is

necessary to obtain the periodic boundary conditions between these two planes. This ap-

proximation is fully justified if the computational box size is much smaller than the pulse

duration divided by the speed of light.

Finally, we need to define the procedure with which the fields will be updated at the

antenna points. In the common source implementation, which is referred to as hard source26,

the fields are defined in source points from predefined functions (like Eqs. 12) and the FDTD

update equations do not apply to them. This kind of source implementation, however,

scatters all incident waves on the source. In our case, however, the fields emitted out of a

plasma placed inside the cylindrical antenna should not bounce back.

Therefore, we use the soft source scheme36 which drastically reduces the scattering of the

incoming waves. We update the points in the antenna by the sum of the values from the

FDTD Maxwell’s curl equations and the values dictated by the Eqs. 12. Hence
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FIG. 4. Different-order Bessel beams. The amplitude of the y component electric field and the

intensity of generated Bessel beams are plotted on xy plane at z = 0: Run A (top row), Run

B (middle row), and Run C (bottom row). The first three columns show the y component of

the electric field at different times, t = 26.7 [fs], 106.8 [fs], and 213.5 [fs] from left to right. The

rightmost column shows the intensity distribution at t = 213.5 [fs], the corresponding time of the

peak intensity (T0+RB/c sin θ). The white circle in the right column shows the inner radius of the

Bessel antenna .

Et+δt
i (i+ δi/2, j, k) =Et+δt

i (i+ δi/2, j, k) + Et+δt
Bi (i+ δi/2, j, k) (13a)

Ht+δt
i (i, j + δj/2, k + δk/2) =Ht+δt

i (i, j + δj/2, k + δk/2)+

Ht+δt
Bi (i, j + δj/2, k + δk/2)

(13b)

with cyclic permutation of the indices i, j, and k corresponding to x, y, and z, respectively.

Here, δi is the cell size in direction i.

We note that we have independently investigated the opportunity of implementing a

transparent source36, which is based on subtracting impulse response of the grid. However,

given the high sampling of our grid (ns = 20 grid cells per wavelength) and introducing the

source with a smoothly increasing envelope, it appeared that the difference between the soft
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source and the transparent one would be less than 5 percent. In contrast, the calculation

of the convolution of the injected fields with the impulse response at all times would be

computationally very expensive, this is why we discarded this technical solution. All results

presented afterwards were obtained using the soft source defined in Eq. (13).

V. RESULTS

In this section, we present our results and compare them to the analytical one from Eq.

(11). The antenna is tested for Bessel order of m = 0, 1, and 2, and the cone angle of

θ = 17◦, θ = 25◦, and θ = 30◦. The different sets of parameters are summarized in Table I.

For all cases, T = 60 fs, T0 = 180 fs, and λ = 0.8µm.

We show in Fig. 4 in the three leftmost columns the amplitude of Ey in xy plane at

different times in the pulse for the FDTD generated Bessel beams of order m = 0, 1, and

2. These are calculated for a cone angle of θ = 30◦. The rows correspond respectively to

runs A, B, C where the order m was varied. We observe that the cylindrical symmetry is

well preserved for m = 0 and that during the pulse build-up, the fields propagate inwards.

The interference progressively takes place at the center to create the Bessel beams of order

m. For the cases of m = 1, 2, the pattern effectively rotates with time. (We remark that

maxima have the same orientation in the 3 times because they are separated by integer

number of temporal periods.)

In the rightmost column of Fig.4, we show the intensity distribution at a time t = 213.5 fs,

i.e. which corresponds to the time of the peak intensity. The intensity is calculated using

1/τ
∫ t+τ

t
dt S where τ is the period and S is the magnitude of the Poynting vector. The

intensity distribution shows the expected transverse map for the different order Bessel beams.

There is a high-intensity core in the zeroth-order Bessel beam while one can see the low-

intensity core for the first-order and the second-order beams. The cylindrical symmetry is

highly apparent, confirming the quality of the injection.

In Fig. 5 we show the intensity distribution in xz plane at a time t = 213.5 fs. The

intensity is actually invariant with z within ±2 percent, confirming the ”non-diffracting”

behaviour.

In Fig.6, we quantitatively compare the FDTD generated Ey field with the analytical

expression of Eq. (11). The top row compares the absolute values of the fields at time
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FIG. 5. Different-order Bessel beams. The intensity map of generated Bessel beams in xz plane at

y = 0: Run A (left), Run B (middle), and Run C (right). All snapshots are taken at 213.5 fs.

FIG. 6. Different-order Bessel beams. Comparisons between the y component electric field from

the Bessel antenna (blue solid line) and from the Eq. (11) (red dashed line). Run A (left column),

Run B (middle column), and Run C (right column). The bottom row shows the relative deviation.
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t = 213.5 fs for the different orders m = 0, 1, 2. The bottom row shows the relative deviation

defined as χ = |Ey −Eana
y |/Eana

y in log-scale. In this expression, Ey is the FDTD generated

field and Eana
y is from the analytical expression. The relative deviation lies in the range of

0.01-7.0 percent over the full computation window. Interestingly, the error is reduced to less

than 3 percent in the central region of the three main lobes which is obviously of higher

interest. Since the deviation increases toward the antenna location, we expect that better

agreement might be achieved using a larger annulus radius.

FIG. 7. Bessel beam with different cone angles. The amplitude of the y component electric field

and the intensity of generated Bessel beams are plotted on xy plane at z = 0: Run E (top row),

Run D (middle row), and Run A (bottom row). The first three columns show the time evolution of

the y component electric field at three different times from left to right. As the simulation box is

different for each row, the corresponding time for each column is different. The rightmost column

shows the intensity distribution. The white circle in the right column shows the inner radius of

the Bessel antenna.

We have also investigated the quality of the beam generation for different cone angles.

The results are shown for zeroth-order Bessel beam in Fig. 7. The radius of the antenna

was scaled according to the transverse period (see Table 1), while using an identical antenna

thickness of 1λ. The increase in radius required longer computation time to let the pulse
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FIG. 8. Bessel beam with different cone angles. Comparisons between the y component electric

field from the Bessel antenna (blue solid line) and from the Eq. (11) (red dashed line). Run E (left

column), Run D (middle column), and Run A (right column). The bottom row shows the relative

deviation.

reach the central region. In all cases, the beams remain of high quality. Fig. 8 compares

quantitatively the FDTD generated beam to the analytical one. We observe that while the

error remains small - and even decreases - for lower cone angles at the center, it increases

on the edges. More precisely, the number of constructed lobes decreases as the cone angle

is reduced. This issue is still under investigation.

We have investigated the effect of antenna thickness δs for a fixed cone angle of θ = 25◦.

We show the results in Fig. 9 (top row) for three different thicknesses. As one can observe

on the figure, the deviation is reduced to about 1.5 percent when the antenna thickness

increases.

Finally, the radius of the Bessel antenna RB is another important parameter since this is

directly related to the computational effort. The bottom row of Fig.9 shows the deviation

when the radius of the Bessel antenna is varied from 2 to 4 transverse wavelengths λxy,

while maintaining the antenna thickness fixed. More lobes are obviously generated inside

the antenna (with the same transverse period) for the larger box, but there is not a major

difference for the three central lobes. In fact, the deviation for the three central lobes is
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similar in the three cases, but we note that the deviation increases for the outer lobes for the

largest box. Therefore, the case of 2λxy offers an excellent compromise between accuracy in

the central lobes and computational effort.

FIG. 9. Effects of the antenna thickness and radius on the Bessel beam. The top row shows the

relative deviation for different antenna thicknesses: Run D (top left), Run F (top middle), and

Run G (top right). The bottom row shows the relative deviation for different antenna radii: Run

I (bottom left), Run H (bottom middle), and Run D (bottom right).

We have investigated other components of the electric fields (Ex, Ey) as well. The relative

deviation for the Ez component is similar as the deviation for Ey. The Ex component

which is zero in the injected solutions is four orders of magnitude smaller than the main

component Ey. Therefore, the electromagnetic fields generated by the Bessel antenna well

satisfy Maxwell’s curl equations.
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VI. CONCLUSIONS

The generation of Bessel beams in FDTD is an essential and challenging task to enable

the investigation of the Bessel beam-plasma interaction with PIC codes. A common imple-

mentation is using the so-called Bessel-Gauss beam in which a Bessel beam is generated by

focusing a Gaussian beam using an axicon lens, which has been demonstrated here for ref-

erence. However, due to its computational cost, we have developed an alternative approach

that is computationally more efficient. This solution is based on using a cylindrical antenna

emitting electromagnetic fields inwards and using the periodic boundary conditions along

the optical axis.

We have first provided the full set of Bessel’s solutions of Maxwell’s equations. The so-

lutions have been then injected into the FDTD grid through the cylindrical antenna. We

have validated our approach by comparing the field from the FDTD simulation with that

from the analytical solution. We have shown that different orders of Bessel beams can

be successfully generated, with small deviations with regard to the analytical solution, for

different beam cone angles. Better agreement was found for the higher angles. We have

investigated the effect of the different antenna parameters on the deviation and shown that

thicker antenna provide a better result, while the radius of the antenna impacts negligibly

on the accuracy of central lobes. The electromagnetic fields generated by the Bessel antenna

well satisfy Maxwell’s curl equations. In conclusion, using a computational box with a full

length of two longitudinal periods and a full width of four transverse periods provides good

accuracy. In comparison with the already short Bessel-Gauss beam that was generated,

the computational effort has been decreased by a factor 64. Despite restricted to study

longitudinally periodic objects or longitudinally periodic particle distributions, we believe

that our work will find applications in the field of laser-particle scattering37, particle trap-

ping, nonlinear plasmonics38 and specifically in laser-particle acceleration and laser-plasma

interaction6,8,13,19,20.
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