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Abstract Self-adaptive systems have to implement adaptation policies described by
sets of rules, that express how the components are reconfigured within the system,
the priority of a given reconfiguration to happen, when a given (sequence of) event(s)
occurs and when specific conditions on the system state are satisfied. However, when
this priority is given by a fuzzy value (e.g. high, medium, low) depending on exter-
nal and internal events, it has to be implemented inside the software with particular
implementation choices made.

This paper is dedicated to the validation of adaptation policies, using a model-
based testing approach, and a verdict establishment that is based on both the runtime
verification of temporal properties, and the detection of inconsistencies between the
adaptation policy and the reconfigurations implemented in the self-adaptive system.
We propose a means to establish a test verdict based on the respect of the adaptation
policy by the implementation, along with coverage measures of the rules. This provides
an interesting feedback on the adaptation policy rules, allowing to detect reconfigu-
rations that should not have occurred, high-priority reconfigurations that are never
triggered, or low-priority reconfigurations that are too frequently executed, potential
inconsistencies in the rules, or wrong interpretation of priorities. The test verdict is
made based on the analysis of the execution traces of the system, which is stimulated
using a usage model that describes the probabilities of external events to occur. An ex-
periment, performed on a Vehicular Ad-hoc Network of autonomous vehicles, illustrates
the interest of the approach.

1 Context and Motivations

Recent years have seen the increase of cyber-physical systems which include a large scale
of examples such as medical devices and systems, aerospace systems, transportation
vehicles and intelligent highways with their associated problems such as security, safety
and validity as mentionned in [28]. These systems are made of individual components
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that communicate together and react to changes in their execution environment by
reconfiguration operations. Thus, the components can be activated or deactivated on-
the-fly (i.e., during the system’s execution) in order to adapt systems to the evolution
of their execution context, measured by sensors. For example, a connected car may
choose to rely on a WiFi signal, rather than on a GPS connection to save battery.

Dynamic reconfigurations modify the architecture of self-adaptive [9] component-
based systems. To happen in suitable circumstance, reconfiguration operations are
used in adaptation policies. Each policy is composed of reconfigurations and of rules
that specify priorities of reconfigurations, that are guarded by specific (sequences of)
events that may either exploit a state property, or involve temporal logic properties.
Additionally, in order to ensure the system consistency throughout the successive re-
configurations that may occur, temporal properties can also be designed to be checked
at run-time, and to be enforced by the system.

As mentionned in [17], during the development of the self-adaptive system, this
formal model of an adaptation policy has to be implemented and, on this occasion,
choices can be arbitrarily made. Indeed, the reconfigurations are triggered by sequences
of external events that may occur, and guarded by a condition on the internal state of
the system. Finally, the priorities on the reconfigurations can be expressed using fuzzy
values (e.g. high, medium, low or with the notion of emergency), for which different
interpretations can be made during the development. Thus, the conformance of the
actual system reconfigurations w.r.t. the adaptation policy has to be established, to
ensure that the system adheres to the defined reconfiguration priorities.

Usually, Model-Based Testing (MBT) approaches rely on the use of a behavioral
model that describes how the system behaves and from which tests can be computed to
ensure that the implementation conforms to the model [36]. Adaptive systems represent
a challenge in the sense that, depending on the actual implementation of the adaption
policy, a large set of system implementations is admissible, and it is irrelevant to settle
a behavioral model (amongst all the possible ones) and require the implementation
to stick to it. Similarily, it is not realistic to define a single model that captures all
possible implementations of such a system. Thus, the validation procedure of such
systems should rely on the analysis of relevant execution traces. It is thus mandatory
to dispose of (i) a way to generate relevant test cases (and a way to determine the
relevance of a test case, e.g. using coverage criteria), and (ii) a means to evaluate if
the observed execution of the system conforms to its admissible behavior.

To address these issues we propose to employ a model-based testing approach that
relies on the use of a probabilistic model that represents the environment in which the
adaptive system is executed. We propose to establish the test verdict, resulting from
the execution of the test cases, by relying on both the runtime verification of temporal
properties that have to satisfied by the system, and the observation of the adaptation
rules that are triggered w.r.t. the rules that were enabled. In addition, we propose to
measure the coverage of the rules of the adaptation policy, in order to identify which
rules have been triggered during the test, and at which frequency, so as to compare
them to the fuzzy values they intent to represent. This approach aims to detect differ-
ent situations that reflect a possibly-incorrect implementation of the adaptation policy,
such as: (i) a high-priority rule that is never triggered whilst being applicable, (ii) a
low-priority rule that is systematically applied while other rules with greater prior-
ity were applicable, and (iii) never-occurring rules which originate from inconsistent
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guards or unreachable triggering events.

Among this diversity of examples of adaptive systems, we have chosen the Vehicular
Adhoc Network [20] case study which is a representative example of such systems.
Besides, this example presents the difficulty of having multiple instances of vehicles
that may appear or disappear dynamically, contrary to other systems in which the
existing components are set initially and their number does not evolve. Our approach
is experimented on this case study, for which we aim to evaluate: (i) the relevance of
the coverage criteria that we have proposed, regarding the coverage of properties or
the coverage of the reconfiguration rules, and (ii) the ability to produce tests that can
detect errors.
This article describes three contributions.

1. We propose original coverage criteria, tailored to adaptive systems, based on the
coverage of temporal properties, written using patterns, and adaptation policy
rules.

2. We introduce a test verdict establishment that combines the run-time verification
of temporal properties and the analysis of the reconfiguration traces w.r.t. the
adaptation policy.

3. We present the evaluation of a random test generation process for validating adap-
tive component software based on a usage model of the component system.

This article is organized as follows. Section 2 describes the background of this
proposal, namely self-adapting software component systems, and the associated for-
malism for describing adaptation policies and the temporal properties language. Then,
the model-based testing process is described in Sect. 3, along with the definition of
the coverage criteria that we propose. Section 4 presents the test generation approach
that we develop, based on a usage model of the system’s environment. Then, Sec-
tion 5 explains how the test verdict is established, based on the execution traces that
were previously generated, and describes the coverage measure that we perform on the
adaptation policy rules. An experiment on a network of autonomous vehicles case study
is reported in Sect. 6. Section 7 presents related works on testing adaptive systems.
Finally, Section 8 concludes and presents future directions of this work.

2 Background

The section presents the framework of the self-adaptive component systems, for which
we introduce a running example and provide basic formal definitions.

2.1 Component Systems on a Running Example

Let us start with a running example of a Cycab vehicle location controller. Cycab is an
autonomous vehicle developed by Inria, whose first version has been used to compose
an autonomous platoon of vehicles. We focus here on the localization part, the vehicle
has a WiFi and a GPS signal receptors. The position is more accurate when both WiFi
and GPS signals are activated but it consumes more battery. A component system is
designed to reconfigure the activation of WiFi and GPS signals depending on the level
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of battery and the area of the Cycab. For example, if the Cycab is inside a WiFi area,
the GPS component may be deactivated depending on the actual level of battery.

The developed Cycab component system is summarized in Fig. 1. The two compo-
nents WiFi and GPS collect the location data. The Merger component retrieves these
data and merges them with a trust coefficient. The Location component requests the
merged data to the Merger component by the intermediate of the Controller component.

Let us now introduce our notion of component systems in relation with this ex-
ample. In this paper, we follow the definition in [22] inspired by [33]. Components are
compositions of entities that can be assembled to create an application. Components
are independent and can be implemented independently as such. A same component
can be instantiated several times. The component-based systems under consideration
are hierarchical, with two types of components. Primitive components are basic com-
ponents providing data or services, while composite components contain other com-
ponents. Only primitive components can have some attributes used as configuration
variables. In our example, the Location component is a composite component as it
contains the Merger, Controller, GPS and WiFi components, which are in their turn
primitive components.

Required and provided interfaces are interaction points between components. A
provided interface is an interface that the component realizes, whereas a required in-
terface is an interface that the component needs to be able to run. To facilitate the
readability, an interface displayed on the left (resp. on the right) of a component is a
provided interface (resp. required interface). In our example, the GPS component pro-
vides a gpsPosition interface used by the Merger component with the required interface
getGpsPosition. Let V = {v1, . . . , vn} be a set of variables taking values from their
respective domains D1, . . . ,Dn

1. The variables values and status of components can
pass through the interfaces if the provided interface has access to them.

Bindings (or client-server links) and delegations link component interfaces. In the
Cycab example displayed in Fig. 1, components Merger and GPS are in a (well-known)
client-server relationship via their respective interfaces gpsPosition and getGpsPosition.
Linking provided (resp. required) interfaces to provided (resp. required) interfaces puts
them in a delegation relationship. In Fig. 1, Location and Controller components both
have a required interface, securePosition for Location and position for Controller. This
way Location component delegates his required interface to Controller component.

In the rest of the paper the state of a component system is called a configuration. As
in [11], a configuration is a set of above-mentioned architectural elements (components,
interfaces, and variables) together with their types and relations to structure and to
link them. Let C = {c, c1, c2, . . .} be a set of configurations. We introduce a set CP
of configuration propositions on the components and the relations between them. In

1 Notably B4 = {>,>p ,⊥p ,⊥} and B2 = {>,⊥} where > (resp. ⊥) stands for true (resp.
false) and >p (resp. ⊥p) stands for potentially true (resp. potentially false).

Fig. 1 Example of a component architecture in Fractal
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particular, configuration propositions are used to define consistent configurations. An
interpretation function l : C → CP gives the largest conjunction of cp ∈ CP evaluated
to true on c ∈ C which is used to characterize the current state in the most precise
way.

Reconfigurations make the component-based architecture evolve dynamically. They
are combinations of primitive operations such as instantiation/destruction of compo-
nents; setting components on/off; binding/unbinding of component interfaces; start-
ing/stopping components; setting variable values of components. The normal running
of different components also changes the architecture, e.g., by modifying variable values
or stopping components. Let Rrun = R ∪Θ ∪ {run} be a set of evolution operations,
where R is a finite set of reconfiguration operations, Θ is the set of operations trig-
gered by external events, and run is the name of a generic action used to represent
all the running operations of the component-based system. In this definition we as-
sume, similarly to [21], that external events are captured by the system and processed
immediately by triggering an internal method from the Θ set.

Definition 1 (Reconfiguration model) The operational semantics of component-
based systems with reconfigurations is defined by the labelled transition system S =
〈C ,C 0,Rrun ,→, l〉 where C is a set of configurations, C0 ⊆ C is a set of initial con-
figurations, Rrun is the set of evolution operations (including internal actions that do
not perform a reconfiguration), → ⊆ C ×Rrun ×C is the reconfiguration relation, and
l : C → CP is a total interpretation function.

Let us note c
ope→ c′ for the transition (c, ope, c′) ∈→, also called a step.

Example 1 (Reconfigurations on the running example) On the Cycab example, one of
the possible reconfigurations consists in adding the GPS component to the current
configuration. The addgps reconfiguration operation is the sequencing of the following
primitive operations:

add(gps); bind(gpsPosition, getGpsPosition); start(gps)

in which add is the operation that sets a component on (here the gps component in
parameter), bind is the operation that binds together the two interfaces gpsPosition
and getGpsPosition in parameter, and start is the operation that starts the component
in parameter.

Definition 2 (Reconfiguration path) Given a reconfiguration model S , a reconfig-
uration path (or a path for short) σ of S is a sequence of configurations c0, c1, c2, . . .
such that ∀ i ≥ 0, ∃ opei ∈ Rrun . (ci , opei , ci+1) ∈→. The trace of σ, written tr(σ), is
the word ope0ope1 . . . opei . . . composed of observed operations ope0, ope1, . . . , opei , . . ..

We write ci or σ(i) to denote the i-th configuration of σ. The notation σi denotes the
suffix path σ(i), σ(i+1), . . ., and σj

i the segment path σ(i), σ(i + 1), . . . , σ(j − 1), σ(j ).
Let Σ denote the set of paths, and Σf (⊆ Σ) the set of finite paths. A configuration
c′ is reachable from c when there is a path σ = c0, c1, . . . , cn in Σf s.t. c = c0 and
c′ = cn . An execution is a path σ in Σ s.t. σ(0) ∈ C0 in which C0 is the set of initial
configurations.
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2.2 Temporal Properties

In this section, we briefly recall the FTPL2 logic patterns introduced in [11]. In addition
to configuration properties (cp) in CP mentioned above, the proposed logic contains
external events (ext), as well as events from reconfiguration operations, temporal prop-
erties (temp) together with trace properties (trace) embedded into temporal properties.
Let PropFTPL denote the set of the FTPL formulae obeying the FTPL grammar in
Fig. 2.

<FTPL> ::= <temp> |<events> | cp
<temp> ::= after <events> <temp>

| before <events> <trace>
| <trace> until <events>

<trace> ::= always cp
| eventually cp
| <trace> ∧ <trace>
| <trace> ∨ <trace>

<events> ::= <event>,<events> |<event>
<event> ::= ope normal

| ope exceptional
| ope terminates
| ext

Fig. 2 FTPL syntax

The FTPL semantics from [22]
is summarized below. It is ba-
sic for events and configura-
tion propositions, and runtime-
oriented for other properties.
External events (like events in
[21]) occur instantaneously and
can be seen as invocations of
methods performed by (exter-
nal) sensors when a change is de-
tected in their environment. For
each external event ext that may occur on a given execution path σ, we define a) a
guard cpext , which is a first-order logic formula over the parameters specified in the
invocation of the method ext , and b) an assertion evalσ, valued in B2. Intuitively, if,
at or before the i-th and after the i − 1-th state (or, if i = 0, at the first state)
of an execution path σ, there is at least one occurrence of ext s.t. cpext = > then
evalσ(cpext , i) = >, otherwise evalσ(cpext , i) = ⊥.

Definition 3 (FTPL semantics) Let σ ∈ Σ. The FTPL semantics Σ×PropFTPL →
B2 is defined by induction on the form of the formulae as follows:

For configuration properties:
σ(i) |= cp if l(σ(i))⇒ cp

For the event(s):
σ(i) |= ope normal if i > 0 ∧ σ(i − 1) 6= σ(i) ∧ σ(i − 1)

ope→ σ(i) ∈→
σ(i) |= ope exceptional if i > 0 ∧ σ(i − 1) = σ(i) ∧ σ(i − 1)

ope→ σ(i) ∈→
σ(i) |= ope terminates if σ(i) |= ope normal ∨ σ(i) |= ope exceptional
σ(i) |= ext if evalσ(cpext , i) = >
σ(i) |= event, events if σ(i) |= event ∨ σ(i) |= events

For the trace properties:
σ |= always cp if ∀ i.(i > 0 ⇒ σ(i) |= cp)
σ |= eventually cp if ∃ i.(i > 0 ∧ σ(i) |= cp)
σ |= trace1 ∧ trace2 if σ |= trace1 ∧ σ |= trace2
σ |= trace1 ∨ trace2 if σ |= trace1 ∨ σ |= trace2

For the temporal properties:
σ |= after event temp if ∀ i.(i > 0 ∧ σ(i) |= event ⇒ σi |= temp)
σ |= before event trace if ∀ i.(i > 0 ∧ σ(i) |= event ⇒ σi−1

0 |= trace)
σ |= trace until event if ∃ i.(i > 0 ∧ σ(i) |= event ∧ σi−1

0 |= trace)

A reconfiguration model S satisfies a property φ ∈ PropFTPL, denoted S |= φ, if
∀σ.(σ ∈ Σ(S) ∧ σ(0) ∈ C0 ⇒ σ |= φ).

2 FTPL stands for TPL (Temporal Pattern Language) prefixed by ‘F’ to denote its relation
to Fractal-like components and to first-order consistency constraints over them.
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2.3 Adaptation Policies

Adaptation policies are defined by: 1. architectural reconfiguration operations to spec-
ify the possible modifications of the architecture; and 2. adaptation rules to link the
properties concerning the component-based system and the need3 to activate a recon-
figuration.

In our approach, reconfigurations in adaptation policies are guarded by specific
(sequences of) events that may either exploit a configuration proposition, or involve
temporal logic properties. We adapt definitions in [6,22] to fit in with our component-
based system model semantics, when aiming to test adaptation policies applications.

Definition 4 (Adaptation policy) Let S be a reconfiguration model, and Ftype
a set of fuzzy types. Given σ(i) ∈ C, an adaptation policy for σ(i) is defined as
A = 〈RN ,RR〉, where:

– RN ⊆ R is a finite (non-empty) set of reconfiguration names,
– RR = {〈F ,B ,G, I 〉} is a finite (non-empty) set of adaptation rules, where

– F ∈ Ftype is a fuzzy type,
– B ⊆ {φσ(i) = value | φ ∈ PropFTPL ∧ value ∈ B2} is a set of properties in

PropFTPL evaluated in B2 on σ(i),
– G ⊆ {cpσ(i) = value | cp ∈ CP ∧ value ∈ B2} is a set of configuration

propositions in CP evaluated in B2 on σ(i),
– I ⊆ RN × F is a relation between reconfigurations and fuzzy values.

Let AP = {A,A′, . . .} denote a finite set of adaptation policies for σ(i). Let us denote
Bσ(i) (resp. Gσ(i)) the conjunction of the properties evaluations in B (resp. guards
evaluations in G) on σ(i).

In practice (see e.g. [6,24]), an adaptation policy can be described as a set of rules
of the syntactic form:

when trigger b
if guard g
then utility of reconfiguration R is priority p

in which: trigger b = ∧bj∈Bbj is a condition on the value of a FTPL property, that
designates the piece of the system’s execution during which the reconfiguration may
be performed; guard g = ∧gl∈Ggl is a condition on the value of a first-order logic
predicate on the current configuration of the system, which expresses the conditions
under which the reconfiguration may occur; reconfiguration R ∈ RN is the name of
the reconfiguration that may occur, with a priority level designated by priority p.

Example 2 (Adaptation policy rules) On the Cycab example, the following rule

when (after start, exit (TRUE until entry)) = TRUE
if (gps in Components and wifi in Components) = TRUE
then utility of removegps is high

specifies that, after entering a Wi-Fi zone (in which the GPS signal is not available), if
both the GPS and WiFi components are active, then it is relevant to remove the GPS.
This rule is based on the occurrence of a given external event.
The second rule

3 As in [6,10], fuzzy values (e.g. in {low, medium, high}) are used to express this need.
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when (power < 33) = TRUE
if (gps in Components and wifi in Components) = TRUE
then utility of removegps is high

specifies that when the battery of the Cycab is below a given threshold it is interesting
to remove the GPS if both GPS and WiFi components are set on. Contrary to the
previous rule, this latter is not triggered by an external event but rather by the constant
evolution of the battery level over time.

The adaptation policy represents a model of how the system should behave de-
pending on the events raised by the environment and the current configuration. This
behavior has to be implemented when the system is built. Nevertheless, it is possible
that the developer makes arbitrary choices on the priority of the rules, or incorrectly
implements the detection of the applicable reconfigurations. This may cause the sys-
tem to reconfigure when it should not, or to skip relevant reconfigurations that would
prevent certain properties from being violated. The testing process described in the
following sections aims to validate that the adaptation policy is correctly implemented
by detecting such errors.

3 Model-Based Testing Process for Component Systems

In this section, we first present the Model-Based Testing approach (MBT) that we pro-
pose to validate component systems under adaptation policies. After having introduced
the general approach, we present the dedicated coverage criteria that we propose, based
on the two available artifacts: temporal properties in FTPL, and adaptation policies.

3.1 Overall approach

The overall approach can be seen as a model-based testing approach [3], as depicted
in Fig. 3 In MBT, the model is used to generate test cases and/or establish the test
verdict that concludes on the conformance of the system under test (1), namely the
implementation under adaptation, w.r.t. the model.

In this approach, several models are considered. As a first novel contribution, we
propose to use an usage model (2) that describes the behaviour of the system, by
formalizing possible sequences of events using a probabilistic automaton. This latter
is used to generate the test cases as a set of traces, namely of sequences of external
events. The temporal properties (3) are verified at runtime during the system’s execu-
tion to ensure that this latter satisfies the properties, contributing to the test verdict
establishment. This step is made by employing the monitoring technique proposed in
a previous work [23].

Finally, it is mandatory to check that the adaptation policy rules (4) have been
faithfully implemented, and especially, that the priorities have been respected, to ensure
the conformance. To achieve this last part, we propose, as a novel contribution, several
conditions that can be used to establish the test verdict related to the compliance of the
system to the adaptation policy. We propose to evaluate, at each step of the execution,
which reconfigurations were eligible, and compare them to the actual reconfigurations
that are observed on the system. Our last contribution is the computation of metrics
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Fig. 3 MBT approach for validating adaptation policies

regarding the occurrences of reconfigurations and the triggering of associated rules
which provides an interesting feedback to the developer.

In the rest of this section, we first define the test cases and their executions. We
then define the coverage criteria that we define, based on the reconfiguration paths and
the considered artifacts: the FTPL properties and the adaptation policy.

3.2 Test Cases and Reconfiguration Paths

In order to analyze the execution results of the test cases that we produce–to either
establish a verdict or provide a test coverage measure, it is mandatory to be able to
observe what happens on the implementation when the tests are run.

In our approach, a test case is defined as a finite sequence of external events that
are sent to the adaptive system. As we consider time-sensible systems, we add a special
event denoted by δ which represents the fact that no action is performed on the system
for a given period of time. δ defines a controllable quiescence. In the case of real-time
systems, it can be suffixed by the number of time units the tester waits. For example,
δ2s indicates that the absence of external events lasts 2 seconds before considering the
next test step. In the case of a discrete event system, the quiescence corresponds to one
step. Similarly, a suffix can be specified to additionally indicate the number of steps
(e.g. δ2 for 2 steps).

Definition 5 (Test case) Let Θ be the set of external events to which the system
reacts, a test case tc is defined as a sequence of events which can be either (i) an
external event ev ∈ Θ, or (ii) a controllable quiescence δ.
A non-empty set TS of test cases is called a test suite.

When executed, a test case is mapped onto a reconfiguration path of the model, in
Def. 2. Notice that the controllable quiescence δ does not appear in the reconfiguration
paths of the model.Thus, the controllable quiescence notion in the considered paradigm
(real-time or discrete event systems) and reconfiguration path notion can be seen as
independent.
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Fig. 4 A reconfiguration path (below) and a test case (above)

In practice, a test case can be seen as a log trace which records the activity w.r.t.
the various interactions between the system and its environment. Thus, the detection
of an external event by the adaptive system may lead to several cases. This event may
update the internal state of the system, which will be mapped to a run in the path.
Such an update may possibly be followed by a reconfiguration that is triggered by
the implementation. This is mainly the case of δ events which let the system evolve
when no external events occur. Otherwise, the external event may directly trigger a
reconfiguration in response.

Let tc be a test case, as in Def. 5. We denote by exec(tc) the reconfiguration path
that corresponds to the execution of test case tc on the system under test.

Example 3 (From a test case to a reconfiguration path) Figure 4 illustrates an exe-
cution of the test case and a reconfiguration path, i.e., a sequence of configurations
with reconfiguration operations/external events linking them. In this example, the test
case starts by a quiescence moment when the battery level decreases. This quiescence
is mapped to several run-operations in the reconfiguration path. When the environ-
ment generates an entry event, as soon as it is observed by the system, it fires the
reconfiguration that adds the WiFi component to the system. Later on, during a subse-
quent δ period the battery level drops under a given threshold, which triggers another
reconfiguration that removes the GPS component to save energy. Notice that these
reconfigurations correspond to the implementation of the adaptation policy rules that
are associated with the component system.

We now define the coverage criteria based on these definitions.

3.3 Coverage Criteria for Components under Adaptation Policies

In our testing process, two model artifacts can be used to define the testing objectives:
the FTPL properties and the adaptation policy rules. We propose to define dedicated
coverage criteria for the following purposes. First, these criteria can be used as a means
to evaluate a test suite, by measuring how much of the considered artifact the test suite
covers. Second, these criteria provide a test objective, namely a stopping criterion for
the test generation that can be used to decide when to stop the test generation phase.

Notice that the following assumes the ability to observe the successive configura-
tions of the system’s execution.

3.3.1 FTPL Property Coverage using Automata

FTPL properties are used to describe safety or liveness properties that can be checked
at run-time during the system’s execution. As explained in Sect. 2.3, FTPL properties
are expressed using a pattern-like scheme. Thus, from a textual property expression,
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Fig. 5 Automata for after ev temp (left), and before ev trace or trace until ev (right)

Fig. 6 Automaton for the after-before patterns combination

it is possible to build a test property automaton, labelled with the events involved in
the FTPL property, like in [34].

The computation of the automaton associated with the property is made by com-
posing the basic automata for the after, before and until patterns depicted in Fig. 5.
In this figure, the squared state represents a hierarchical state where one of the two
automata can be inserted. Double-circled state represents final states which show the
end of the property scope as expressed in its textual version (cf. [34] for more detail).

To remove hierarchical states, this automaton is flattened in the following way:

– the event labelling the reflexive transition on the hierarchical state is removed from
the outgoing transitions of the inner automaton states;

– the reflexive transition on the hierarchical state is copied and duplicated on each
state of the inner automaton;

– all transitions reaching the hierarchical state are connected to the initial state of
the inner automaton.

Notice that the automaton for property ϕ focuses only on the relevant events re-
garding ϕ, and the other events are not represented on the automaton transitions.

Definition 6 (FTPL property automaton) Let ϕ be an FTPL property on a
model S , and let Evϕ be the set of events occurring in ϕ. The automaton associated
with ϕ, denoted by Aϕ, is defined as a quadruplet 〈Q , q0,Qf ,T 〉 where Q is a set of
states, q0 ∈ Q is the initial state, Qf ⊂ Q is the set of final states, and T ∈ Q×Evϕ×Q
is the transition function.

Example 4 (An FTPL Property Automaton) The automaton for property after entry
before removegps eventually power < 33 is given in Fig. 6.

In order to measure the coverage of a property automaton, each step in the recon-
figuration path is mapped to a state of the automaton.

Definition 7 (Mapping state) Let Aϕ be a property ϕ automaton, and let σ be a
reconfiguration path. The state mapping associating a state in Aϕ with each configu-
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ration of σ, is recursively defined by:

state(σ(0)) = q0

state(σ(i)) =
{
qi if ∃ ev ∈ Θ.σ(i − 1)

ev→ σ(i) ∧ state(σ(i − 1))
ev→ qi ∈ TAϕ

qi−1 otherwise

We now define the FTPL property coverage criteria for testing, by adapting [8].

Definition 8 (Covered transitions in Aϕ) Let tc be a test case, σ = exec(tc)
an evolution path linked to tc execution, and let ϕ be an FTPL property. The set of
covered transitions in Aϕ = 〈Q , q0,Qf ,T 〉, denoted covered(tc, ϕ), is defined as

{q ev→ q ′ ∈ T | ∃ j ≥ 0. (state(σ(j )) = q ∧ state(σ(j + 1)) = q ′ ∧

σ(j ) ev→ σ(j + 1) ∧ ∃ k ≥ j .state(σ(k)) ∈ Qf )}

Notice that this definition requires, for a transition to be considered as covered,
that the execution reaches afterwards a state mapping to a final state of the automaton.
As in a final state a decision can be made on the validity of the property, it is thus
mandatory that a test case reaches such a state. Otherwise, the property cannot be
evaluated as it is impossible to conclude on its validity.

Example 5 (Property coverage on a Test Case execution) Let us consider property
after entry before removegps eventually power < 33 whose automaton is depicted
in Fig. 6. For the test case and an associated reconfiguration path in Fig. 4, let assume
that the incomplete parts of the path contain only run operations. Then the transitions
of the property that are covered by this test case are 0

entry→ 1 and 1
removegps→ 2.

Definition 9 (Property coverage) An FTPL property ϕ is said to be covered by
a test suite TS , if each transition of property ϕ automaton is covered by at least one
test case in TS : ⋃

tc∈TS

covered(tc, ϕ) = TAϕ

3.3.2 Adaptation Policy Coverage

Adaptation policies are defined as a set of rules, that apply to a given component, as
presented in Sect. 2.3.

Definition 10 (Adaptation rule coverage) Let tc be a test case, σ = exec(tc) an
evolution path linked to tc execution, and A = 〈RN ,RR〉 an adaptation policy. A rule
r = 〈F ,B ,G, I 〉 ∈ RR is said to be covered by tc, denoted tc covers r , if the following
holds:

∀ ope.ope ∈ dom(I )⇒ ∃ c, c′ ∈ σ.c ope→ c′ ∧ Bc ∧Gc

Intuitively, this definition corresponds to the activation, at a given step of the re-
configuration path, of the reconfiguration operation that is described in the adaptation
rule, from a configuration in which rule’s trigger and guard are both true. Notice that
this coverage criterion requires a rule to be executed at least once, regardless of its
utility.

We now lift this coverage notion to the set of rules. The coverage of the adaptation
policy is defined as the activation of all the rules contained in the adaptation policy.
This coverage is evaluated on a set of reconfiguration paths obtained by the execution
of the test cases.
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Definition 11 (Adaptation Policy Coverage) Let RR be the set of reconfiguration
rules in a given adaptation policy A, and let TS be a test suite. The adaptation policy
A is said to be covered if each adaptation rule r ∈ RR is covered by a test case tc:
∀ r .r ∈ RR ⇒ ∃ tc ∈ TS . tc covers r

These two test criteria provide test objectives tailored to temporal properties in
FTPL and adaptive systems, by focusing on their adaptation policy. We now present
two mandatory aspects of the testing process, namely the test generation, that is in
charge of computing test cases, and the test verdict, that is in charge of establishing if
the execution of a test case succeeds or fails.

4 Test Generation with a Usage Model

This section describes the test generation process that we propose. It aims to produce
test cases as sequences of external events that exercise the system, as defined in Def 5.

Adaptive systems react to external events, (presumably) accordingly to an adap-
tation policy that provides guidelines to detect when to execute reconfigurations on
the system. However, many different, but correct, implementations of the adaptation
policy are possible. Thus describing a model of these implementations is a complex
task that would require to make many design choices on the behavior of the system.

In order to avoid the description of a complete model, from which test cases can be
computed, we propose to consider a usage model of the system under test [39]. Thus,
in our case, the model does not represent the systems behavior, but rather describes
how is the environment in which the system is executed. As a consequence such models
are usually smaller than models describing a whole system.

This kind of models mainly aims to specify the various events that may occur in the
environment. We focus on controllable events that can be sent to the system under test
and to which it reacts. As we consider time-based systems, in addition to the external
events of the system, we explicitly define the controllable quiescence (as defined in
Sect. 3.3), as an absence of external event for a given time period, during which the
system updates its sensors and possibly its internal state. The most common way to
design such a model is to rely on probabilistic automata as follows.

Definition 12 (Usage model probabilistic automaton) A usage model is defined
as a deterministic probabilistic automaton Ap = 〈Q , q0,Aδ,F ,P〉, where Q is a set of
states, q0 ∈ Q is the initial state, Aδ is the set of controllable events, made of the set
of external actions augmented by ∆ which designates the set of controllable quiescence
(the absence of external events), F is a transition relation F ∈ Q × A∆ 7→ Q , and
P is the probability of a transition P : Q × A∆ → [0; 1] such that ∀ p ∈ Q ⇒
Σa∈A∆P(p, a) = 14.

A difference between these automata and those describing temporal properties is
twofold. First, property automata may display internal events, namely reconfiguration
operations, that are not visible from the environment point of view. Second, environ-
ment automata display the controllable quiescence that is not present in the property
automata. This definition is illustrated on our running example.

4 We assume that if an event does not label an outgoing transition of the current state, its
probability is 0.
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Fig. 7 Usage model of the Cycab example

Example 6 (Usage Model of the CyCab) The Cycab example displays two external
events: entry and exit, which respectively denote the entry and exit of a Wi-Fi zone.
Assuming that these events only occur with a (user-defined) 0.05 probability, the usage
model for this example is given by the graphical representation in Fig. 7, in which
number in parentheses designates the probability associated with the transition. Notice
that we assume that the time is discrete, and thus, δ represents a quiescence of one
time unit.

In this setting we define a test case as a sequence of transitions obtained by travers-
ing the usage model automaton of the system. A test case for a given usage model
Aδ = 〈Q , q0,Aδ,F ,P〉 is a trace of a path in automaton Aδ, namely, a finite sequence
of events e0e1...en−1 in which, at each step, the triggered event ei has a probability
P(qi , ei) > 0. This characterizes a path in Aδ that starts from the initial state and
follows existing transitions with non-zero probabilities.

In order to compute the test cases, a Markov random walk [30] is performed on the
probabilistic model. The considered test generation algorithm, sketched in Fig. 1 is a
classical walk through the automaton by firing the outgoing transitions of the current
exploration state. It results in a sequence of events that provides a means to stimulate
the system under test in a coherent way w.r.t. the actual environment. Notice that this
algorithm is parameterized by a bound in the size of the test case.

1 output ← []
2 q = q0
3 i ← 0
4 while i < n do
5 choose an outgoing transition a ∈ Aδ from q according to its probability
6 output ← concat(output, [a])
7 i ← i + 1
8 done return output

Algorithm 1: Test generation algorithm

Example 7 (Test case for the Cycab example) Figure 8 displays an example of a test
case for the Cycab component system. This test case displays frequent occurrences of
the quiescence (δ) which represents a period of time during which the systems state
evolves without any request from the environment; concretely its battery decreases.

This algorithm can be employed to generate test suite, that aims to reach specific
coverage criteria, such as those given in Sec. 3.3. With such test cases, the system is
stimulated by means of external events, that may either trigger the evolution of the
system’s internal state, or trigger a reconfiguration of the system, as presented in Sec. 3.
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Fig. 8 A test case for the Cycab example

When the test case is executed on the system, it produces a reconfiguration trace
that can be analyzed to decide if the system complies with the various specifications,
namely, the adaptation policies and the temporal properties that are formalized. The
test execution phase with verdict establishment and coverage measurements are now
described.

5 Test Verdict w.r.t. Adaptation Policy

The test verdict that we intend to establish is based on two formalized artifacts. First,
it refers to temporal properties that can be verified at run-time. Second, it is based
on the adaptation policy that defines conditions under which the system may execute
reconfigurations. This section presents how these two formal artifacts can be used to
establish the test verdict.

5.1 Test Verdict based on Runtime Properties Checking

This part relates to a previous work [23] on the verification of FTPL properties. The
semantics of the property language is provided in Sec. 2.

A test case, when executed, provides a finite reconfiguration trace, against which
FTPL properties can be verified. However, when the test case does not cover the
property, it is impossible to decide if this latter is satisfied or not. For example, consider
an after e1 before e2 eventually cp property. If the trace stops after having observed
e1 but before observing e2 it is impossible to conclude on the eventual occurrence of cp
in this interval. In this case, the property should be declared as “potentially false” (⊥p

using the semantics in [23]), and the test case which produced the trace is inconclusive
regarding this property.

Hence, our test verdict establishment process relies on a prefix of the reconfiguration
trace that stops if no subsequent configuration is associated with the final state for the
property automaton.

Example 8 The part of the reconfiguration trace in Fig. 4 that is used to evaluate the
FTPL property of Example 4 ends at configuration cm+1 since no subsequent final
states of the automaton (in Fig. 6) can be reached afterwards.

We now define the test verdict for the execution of test case w.r.t. a given property.

Definition 13 (Test verdict w.r.t. an FTPL property) The verdict of the exe-
cution of a test case tc that produces, when executed, reconfiguration trace tr(σ), w.r.t
property ϕ is defined by :

verdict(tc, ϕ) =


pass if ∃ i .state(σ(i)) ∈ QfAϕ ∧ σ

i
0 |= ϕ ∧ ∀ k > i ∧ state(σ(k)) 6∈ QfAϕ

fail if ∃ i .state(σ(i)) ∈ QfAϕ ∧ σ
i
0 6|= ϕ

inconclusive if ∀ i .state(σ(i)) 6∈ QfAϕ

Notice that each test case of a given test suite has to be evaluated for each property
of interest that is designed on the system.
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5.2 Test Verdict based on the Adaptation Policy

This section defines how a second test verdict can be established, this time based
on the information contained in the adaptation policy A = 〈RN ,RR〉. Intuitively,
this consists in detecting the occurrences of unexpected reconfigurations, based on the
reconfiguration rules that are described in the adaptation policy.

For each configuration σ(i) of σ related to the execution of a test case, we compute
three sets of reconfiguration operations that we define as follows:

– trigσ(i) is the set of adaptation rules that can be triggered in σ(i):

trigσ(i) = {r ∈ RR | Br
σ(i) = true}

– eligσ(i) is the set of adaptation rules that can be activated:

eligσ(i) = {r ∈ RR | Br
σ(i) = true ∧Gσ(i) = true}

– actualσ(i) ∈ Rrun which designates the operation that was executed in σ(i).

These sets help us identify the set of reconfigurations that could be executed in
a given configuration during the system’s execution. In addition, let RNtrigσ(i) (resp.
RNeligσ(i)) denote the set of names of reconfiguration operations in RN that are con-
cerned in the utility part I for the rules in trigσ(i) (resp. eligσ(i)).

We now explain how to use these sets to establish the test verdict and produce
coverage metrics on the adaptation policy. To this end, we define two illegal behaviors
that relate to the triggering of reconfigurations while other or none were expected.

Definition 14 (Wrong reconfiguration) A wrong reconfiguration occurs at a given
step σ(i)

ope→ σ(i+1) of a reconfiguration path σ if the actual reconfiguration operation
that is executed does not belong to the set of eligible reconfigurations names:

actualσ(i) ∈ R ∧ actualσ(i) 6∈ RNeligσ(i)

Notice that this non-conformance occurs only when a reconfiguration is actually
performed (actualσ(i) ∈ R). Indeed, it is possible that the implementation chooses to
deliberately ignore a potential reconfiguration. This option is not necessarily considered
as an error, and can be caught by the coverage measures that we aim to produce
additionally.

Definition 15 (Unexpected reconfiguration) An unexpected reconfiguration oc-
curs if the system under adaptation performs a reconfiguration operation while no
reconfiguration rule is eligible:

actualσ(i) ∈ R ∧ eligσ(i) = ∅

This second non-conformance is a particular case of a wrong reconfiguration, in
which elig = ∅.

The test verdict is established by determining if a wrong or an unexpected recon-
figuration occurs. In this case, the test fails, otherwise it passes.
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Definition 16 (Test verdict w.r.t. an adaptation policy) Let tc be a test case,
and A an adaptation policy. The test verdict w.r.t. A is established by the verdict
function defined by:

verdict(tc,A) =
{
fail if ∃σ(i) ∈ exec(tc). actualσ(i) 6= run ∧ actualσ(i) 6∈ RNeligσ(i)

pass otherwise

We aim to establish whether the implementation under adaptation complies with
the specified adaptation policy. Therefore, we propose to detect divergences between the
implementation and the adaptation policy, when wrong reconfigurations are triggered.
In addition, we also propose to perform a coverage measure of the occurrences of
reconfigurations to provide statistics on the rules of the adaptation policy.

5.3 Adaptation Policy Coverage Measure

In addition to a test verdict, we propose to address the question of the coverage of
the different rules by a given test (or more generally, by a test suite). The goal of this
measure is to provide a feedback on the “completeness” of the considered test(s), in
order to know if the (parts of the) rules have been covered, and, if so, how frequently.
In addition, this mechanism provides a means to detect errors in the design of the
adaptation policy (e.g. if a rule is too restrictive that it is never triggered), or possible
errors in their implementation, especially when it comes to comply with the fuzzy
values that describe the rules’ utilities.

In practice, this kind of coverage measure is meant to be performed only if the
tests passed. We first define the notion of rule coverage, and we then define additional
measures that can provide a useful feedback on the adaptation policy.

5.3.1 Coverage of a Rule

The aim of the rule coverage is to evaluate if the different rules of the adaptation policy
have been activated by the considered test cases. To this end we define a function that
counts the number of executions of a rule for a given reconfiguration path.

Definition 17 (Number of executions of a rule) Let σ be a reconfiguration path,
the number of executions of a rule r ∈ RR on σ is given by:

#actualr (σ) =
∑

i
f ra (σ(i))

where f ra (σ(i)) is the characteristic function of predicate actualσ(i) ∈ dom(Ir ) (which
equals to 1 if the predicate holds, and 0 otherwise).

This information can be used to evaluate if a given rule is covered by a test case,
or, more generally, by a test suite. However, if the rule is never covered, multiple
causes can be identified. First, the test cases do not reach a configuration where the
reconfiguration is applicable. In this case, the test suite has to be refined to try to cover
the rule. Second, some parts of the rules might be incorrectly written and present a too
restrictive (or even unreachable/invalid) trigger or guard. For such cases, we propose
to measure the number of times these different parts of the rule are satisfied.
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5.3.2 Eligibility of a Rule

First, we define the number of triggerings of a rule, which is, for a given adaptation
rule, the number of configurations in which its triggering property became true.

Definition 18 (Number of triggerings of a rule) Let σ be a reconfiguration path,
the number of triggerings of a rule r ∈ R on σ is given by:

#trigr (σ) =
∑

i
f rt (σ(i))

where f rt (σ(i)) is the characteristic function of predicate

r ∈ trigσ(i) ∧ r 6∈ trigσ(i−1) ∧ actualσ(i−1) 6∈ dom(Ir )

Second, for a given path σ, we define the number of eligibilities of a rule, which is,
for a given rule, the number of configurations of σ in which the rule became eligible.

Definition 19 (Number of eligibilities of a rule) Let σ be a reconfiguration path,
the number of eligibilities of a rule r ∈ R is given by:

#eligr (σ) =
∑

i
f re (σ(i))

where f re (σ(i)) is the characteristic function of predicate

r ∈ eligσ(i) ∧ r 6∈ eligσ(i−1) ∧ actualσ(i−1) 6∈ dom(Ir )

These measures, reported for each rule, help to evaluate which part of the rule has
not been satisfied during the test cases execution. However, in some cases, the rule
may have been eligible, but the implementation deliberately ignores it. For such cases,
in addition, we compute the frequency of the daptation rules.

5.3.3 Frequency of a Rule

The frequency of a rule activation is measured as the number of times this rule was
activated on the number of configurations in which this rule became eligible.

Definition 20 (Frequency of a rule) We define the frequency of a rule r ∈ RR for
a given test case tc as follows:

freqr (tc) =
#actualr (exec(tc))
#eligr (exec(tc))

This measure is useful to evaluate whether a given rule is frequently activated or
not. Once measured, the frequency can be compared against the fuzzy value associ-
ated with the rule in order to detect a potential inconsistency in the adaptation policy
implementation. Notably, it allows detecting a high-utility rule that is less frequently
applied than a low -utility rule.

We now present experiments that we have conducted to evaluate the relevance of
the developed MBT approach.
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6 Experimentation

This section reports on our experiments that aim to assess the contributions presented
in this article. We start by presenting a case study, and then we describe the performed
experiments.

6.1 Case Study: an Ad-hoc Network of Autonomous Vehicles

We consider the Vehicular Adhoc Network (VANet) case study which represents an
example of Cyber-Physical Systems [20]. In this system, vehicles are either organized in
platoons, namely groups of vehicles, or they are in solo mode. Each platoon has a leader
which heads the convoy. A vehicle in solo mode can ask to join another solo vehicle to
create a new platoon, or simply join an existing platoon. The vehicles’ autonomy (e.g.
depending on available energy supports) decreases over time. The vehicles can leave
the platoon in order to exit the road, either because they reach their destination, or
because they need to refill their energy supports. In addition, the leader of the platoon
may change over time, either because it needs to leave the platoon or because another
vehicle is a more appropriate candidate to head the convoy (e.g. because it has either
a greater autonomy or a farther destination).

6.1.1 System under Test

The VANet system can be seen as a component-based system, in which vehicles are
connected and linked together to constitute platoons, and connected to a main com-
ponent, which represents the road, as depicted in Fig. 9. In this figure, there are two
platoons (delimited by dotted line) and three solo vehicles. The leaders of the platoons
are the vehicles that are directly connected to the road.

We have designed and developed a reference implementation of the VANet as a
Java simulator that implements the main functions of the case study. Eventhough this
system is a simplification of a real system, in which the distances between vehicles

Fig. 9 A configuration of the VANet component system
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have been abstracted, it still represents a challenging case study, notably due to the
dynamic aspect of the system, in which the number of vehicles is not set and evolves
with time. Thus, the state space of the system is infinite. To simulate a real time, we
consider clock ticks that represent the time evolution. The considered entities are the
road and the vehicles. Platoons are abstract entities that only exist to cluster vehicles.
Platoons data model includes the number of vehicles that it contains, and a reference
to the current leader. Vehicles are characterized by their battery level, their distance to
their destination, and a state which indicates the status of the vehicle (solo, platooned
or stopped to refill its battery).

In the implementation, the external events and reconfiguration operations are
mapped to methods in specific objects. We consider the following external events that
represent the control points of the system:

1. CreateVehicle adds a new vehicle on the road.
2. RequestJoin that represents a vehicle is joining a platoon.
3. ForceQuitPlatoon occurs when a vehicle is forced to leave the platoon.

These events are used in the usage model that we consider. A probability is associated
with each of them.

The following reconfigurations can be performed by the system. In the context of
a platoon:

1. CreatePlatoon adds a new platoon on the road.
2. DeletePlatoon deletes a platoon from the road.

In the context of a vehicle:

1. ElectVehicle promotes the vehicle to be the leader of the platoon.
2. RevokeVehicle replaces the leading vehicle with another vehicle of the platoon.
3. JoinPlatoon adds the vehicle to the platoon, in response to a RequestJoin that is

successfully performed.
4. QuitPlatoon occurs when the vehicle leaves the platoon.

When executed, this system produces logs providing the necessary information to
infer the successive configurations along with the different operations that are triggered.
These logs can be analyzed to establish the test verdict and perform measures on the
adaptation policy as described before.

6.1.2 FTPL Properties

For the experiments the following FTPL properties are considered. The first two prop-
erties are expressed in the context of a platoon:

ϕ1: after CreatePlatoon before DeletePlatoon always Leader 6= null
specifies that when a platoon exists it must always have a leader vehicle.

ϕ2: after CreatePlatoon before DeletePlatoon always VehicleNumber > 2
specifies that a platoon must always contain at least two vehicles.

The following three properties are expressed in the context of a vehicle:

ϕ3: always Battery > 0 and Distance > 0
specifies that a vehicle must always have a strictly positive remaining distance and
a battery level.
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when (after ElectLeader) = TRUE
if (battery < 20) = TRUE then

utility of RevokeVehicle is high

when (battery < 5) = TRUE
if (state = platooned) = TRUE then

utility of QuitPlatoon is high

Fig. 10 Two reconfiguration rules of the VANet adaptation policy

ϕ4: after ElectVehicle before RevokeVehicle always Battery > 15
specifies that when a vehicle is leader, it must always have a battery level strictly
greater than 15%.

ϕ5: after JoinPlatoon before QuitPlatoon always state 6= stopped
specifies that when a vehicle is inside a platoon, it must not refill its battery.

6.1.3 Adaptation Policy

The adaptation policies we have designed, describe the behavior of the vehicles for
the system where the considered reconfigurations consist, for a vehicle, in creating or
joining a platoon, replacing platoon’s leader, or leaving the platoon.

To save space, we provide in Fig. 10 an excerpt of the VANet adaptation policy.
The first rule specifies that after a vehicle has been elected as a leader, it is necessary
to consider replacing it when it runs low on energy. The second rule specifies that when
the vehicle’s battery reaches a given threshold, the vehicle has to leave the platoon.

Our adaptation policies rules aim to guide the behavior of the VANet depending on
the attributes of the vehicles. We consider that the higher the utility of a reconfiguration
is, the higher the chances to trigger the corresponding reconfiguration operation is.
For example, when two vehicles want to leave the platoon at the same moment, the
reconfiguration with higher priority is chosen. Recall that the utility is determined by
several criteria, like the battery level or the distance from the target destination.

An example of execution of this system under adaptation is depicted in Fig. 11.
This figure displays one graphic per vehicle showing:

1. The remaining distance (in dashed plot) and battery level (in lined plot) (in %);
2. The length of the platoon in which the vehicle is. If the vehicle is in solo mode, its

platoon length is one. Bold dots symbolize the fact that the vehicle is leader of the
platoon;

3. The stations that appear as big dots on the X-axis;
4. The external events that are displayed with vertical lines. The names of the events

are provided.

The vehicles behaviors shown in the graphics are guided by adaptation policies.
Let consider vehicle A in Fig. 11. When its battery level drops below 20% at tick 80,
this vehicle may leave the platoon to refill its battery at the next station. As vehicle A
was leader before leaving the platoon, a new leader has to be elected. We can see
that vehicle C becomes leader. A few steps after, vehicle C runs low on energy, and
also leaves the platoon. As there is no vehicle available to become the new leader, the
platoon is deleted.

Sometimes, external events cause a reconfiguration, as for the RequestJoin event at
tick 200, after which vehicles B and C are put together to create a new platoon. This
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Fig. 11 An extract of the execution of the case study
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event corresponds, in the real world, to a situation in which a vehicle is getting close
to another vehicle and request a merging.

6.1.4 Usage Model

The probabilistic model of the environment is implemented in the ModelJUnit frame-
work [25], a library that makes it possible to design and exploit Finite State Machines
(FSM) in Java. Contrarily to other tools working on explicitly given automata, Mod-
elJUnit offers the possibility to encode the FSM states using variables and abstract
them by defining a state identification function. Thus, the environment model of the
VANet, which highly depends on dynamic creation of vehicle instances, does not have
to be explicitly defined. In addition, ModelJUnit can be used to generate test cases
offline, or online by being directly connected to the system under test. For our exper-
iments, we use this latter possibility to generate the test traces, so as to be able to
decide if a vehicle is solo or platooned. Indeed, as the only external event consists, for
a solo vehicle, to request a join on a platoon, it is mandatory to know if the vehicle is
already platooned or not before sending such a request. As there is no control on this
event, we need to examine the current state of the execution to know if the request is
relevant or not.

For the needs of the experiments, ModelJUnit has been extended to support proba-
bilities on the transitions, and a new algorithm for performing a random walk described
in Sect. 4 has been implemented. Each generated test case is recorded so as to be able
to replay it afterwards. The objective of the experiments is to validate the detection
capabilities offered by our approach on the adaptation policies.

6.2 Experiments with the Case Study

We describe here the experimental procedure. We start by the research questions, and
explain our approach, before discussing the results and the threats to validity.

6.2.1 Research Questions

Our experiment aims to address the following research questions.

RQ1. To what extent are property-based coverage criteria relevant for detecting errors?
This question relates to the capability of our approach to characterize test cases
that will detect errors. This includes the ability to both generate relevant test
sequences and observe the current configuration to detect violations.

RQ2. To what extent are rule coverage criteria complementary to property-based cri-
teria?
This question relates to the second coverage criteria, and aims to evaluate the
usefulness of considering the rules of the adaptation policy.

RQ3. To what extend are probabilistic models appropriate to generate test cases that
satisfy these criteria?
This question relates to the technique we propose to generate test cases. It is
important to assess the capability of our models to be able to generate test cases
that satisfy the coverage criteria that we defined.
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6.2.2 Experimental Procedure

In order to address the three research questions, we set up an experimental process
that we applied to the case study of the VANet.

First of all, we designed a test model of the VANet environment describing the
occurrences of interactions that may occur between vehicles. Then we used our test
generator to produce random test suites, and we report, for different length of test
cases, and average size of test suites that it is necessary to generate in order to satisfy
the considered coverage criteria. We expect that, first, the test generation process will
be able to generate test suites that satisfy the coverage criteria, and, second, that it does
not require extensive test suites to reach this coverage. This addresses RQ3, related to
the capability of a probabilistic random approach to fulfill the coverage criteria that
we proposed.

Second, we designed a set of mutants in order to evaluate the capability of the test
cases to detect faults, by killing the mutants. Mutants are a variant of the original
system, in which a fault has been introduced. The fault must be realistic (Competent
Programmer Hypothesis), and represent a fault or an implementation choice that a
programmer might do during the development of the system. The mutants are pro-
duced manually, so as to avoid the issue designing blindly equivalent mutants. The
mutations we consider rely on a simple fault model, which consists in changing, in the
code of the application, the conditions that are used to decide whether or not a given
reconfiguration should occur as some event or changes in the internal state happens.
The considered mutation will thus either strengthen or weaken the conditions under
which the implementation decides that a given reconfiguration is performed.

The test cases are run on the mutants and we use the two verdict establishment
definitions (based on properties and based on the adaptation policy) to decide if each
test succeeds or fails. We report, when a mutant is killed, which one of them was used
to detect the fault. This aims to address RQ1 and RQ2, related to the relevance of
these coverage criteria in terms of fault detection capabilities. We expect that some
mutants will be killed by each test verdict establishment that we have proposed.

Third and finally, as the design of the usage model is a complex task that is error
prone, especially when it comes to the definition of the probabilities in the system, we
study the impact of different choices of probabilities in this process. Thus, we consider
two additional usage models, from which we repeat the above-mentioned process: one
model in which the probability of quiescence is increased, and the other in which the
probability of quiescence is decreased, w.r.t. the original model we designed. We then
compare how test suite size and test cases length evolve, and we evaluate if, in these
cases, the detection capabilities are impacted or not, by running these new tests on the
set of mutants we designed previously. This also addresses RQ3.

6.2.3 Results

Random test generation. As we are dealing with a random approach, the results that
we present are an average of 15 generations of one test case of 4000 steps. The results
are shown in Table 1 which displays the average, minimum and maximum number
of steps that were necessary to achieve the targeted coverage (i.e., 100% coverage of
property or rules).

We can see that for the considered length, a 100% coverage of rules and properties
can be achieved in a reasonable number of steps and the test generation is not time-
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#steps (avg) #steps (min) #steps (max)
100% property coverage 1486 307 3475

100% rules coverage 1269 322 2991

Table 1 Necessary number of steps to reach 100% coverage

consuming (each test generation takes less than 30 seconds). For this first experiment,
we considered a single long test. We also considered computing several smaller tests.
Table 2 shows the results of these test generations. We present, for each test suite, its
characteristics in terms of number of tests (column #tests) and test lengths (column
|test|). We then report on the average coverage of properties and rules.

The results show that the tests need a given number of steps to be able to trigger all
the reconfiguration rules, and to reach configurations on which the temporal properties
can be evaluated.

Mutant detection. We designed a set of mutants that correspond to: (i) a strength-
ening of the conditions used in the code to trigger the reconfigurations (mutants M1,
M4) which will lead to reconfigurations that are not triggered when they should, (ii) a
weakening of the reconfigurations conditions (mutants M12, M13) which will lead to
the unexpected triggering of reconfigurations, (iii) a different implementation in the
ways events are handled (mutants M2, M3), (iv) a change in the way reconfigura-
tions are prioritized (mutants M5, M7, M10, M11), and (v) a functional error in the
implementation of the specification (mutant M6, M8, M9).

We tested these mutants on a single test case of 4000 steps with the defined FTPL
properties. The same test was executed on all the mutants. The execution of the test
stops as soon as a violation is detected. We report in Table 3 the results of the execution
and indicate for each detected mutant which property was violated and at which step
of the test. Mutants M1-M9 are detected by the verdict given in Def. 13 which observes
a violation of the properties we defined. Mutants M12 and M13 are detected using the
test verdict given in Def. 16 which detects unexpected reconfigurations (at steps 398
and 3026 of the test case respectively). Finally, mutants M10 and M11 are not killed
by any of these two verdict assignment techniques, but they can be spotted by the
frequency analysis presented given in Def. 20.

Indeed, the modification introduced in the third category of mutants changed the
behavior of the system w.r.t. the initial implementation but this did not lead to an
observable defect. However, we observed in these cases that the frequency of rules
triggering was modified w.r.t. the original implementation, and we were somehow “sus-
picious” w.r.t. the utility of the rule described in the adaptation policy. Namely, in

#test |test| % Prop. % Rules
5 2000 100% 100%
10 1000 100% 100%
10 400 100% 100%
20 200 100% 87.5%
10 200 98.5% 87.5%
10 100 96.7% 62.5%
500 100 100% 87.5%

Table 2 Test generation capabilities for different test suite sizes



26 F. Dadeau et al.

M1 M2 M3 M4 M5 M6 M7 M8 M9
ϕ1 #108
ϕ2 #10
ϕ3 #268 #114 #23 #429
ϕ4 #73 #53
ϕ5 #338

Table 3 Mutants detection

Implementation Property cov. (avg) % rules cov. (avg)
Reference 100% 100%
Variant 1 99.34% 92.5%
Variant 2 100% 86.1%
Variant 3 100% 100%

Table 4 Test generation results for the different variants

M10 mutant a low-utility rule was systematically triggered, and in M11 mutant, a
medium-utility rule was not triggered.

We consider this mutant detection as a warning more than an error, and if the
programmer has a doubt in the results he can verify his program. This illustrates
that the additional measures on the rules coverage that we proposed can be useful to
indicate a potential error in the system.

Coverage of the adaptation policy. The task of designing an appropriate model is te-
dious and error-prone, especially when it comes to defining the probabilities of the
different events. In order to evaluate the risks of defining wrong probabilities on the
usage model, we designed 3 variants of the usage model, which correspond to a modi-
fication for the external events of the probabilities of their occurrences.

In variant 1, we decreased the probabilities of ForceQuitPlatoon, CreateVehicle and
JoinPlatoon, in consequence we increased the Tick probability. In variant 2, we in-
creased the probabilities of the external events ForceQuitPlatoon, CreateVehicle and
JoinPlatoon, and we decreased the Tick event probability. Finally, in Variant 3, we in-
creased only the probability of events CreateVehicle and JoinPlatoon and we decreased
the probability of ForceQuitPlatoon. The variants illustrate different choices that can
be made, notably when defining the balance between the quiescence and the occurrence
of events.

The results that we obtained are provided in Table 4. We ran the test generation
process of a single test of 4000 steps. We measured the coverage we obtained w.r.t. the
properties and the rules, and we compared them to the reference usage model, used
for the rest of the experiments.

We can see that the increase of probability occurrence of some critical operations,
such as ForceQuitPlatoon, may lead to decreasing the occurrence of some rules. In this
case, the system forces a vehicle to leave the platoon more frequently, which prevents
some of the configurations used in other rules to be reached.
It is thus mandatory, when designing the probabilities of the external events, to care-
fully choose the probabilities associated with events that deactivate components.
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6.2.4 Threats to Validity

One of the threats to validity relates to the definition of the mutants, as one may argue
that the mutants were designed so as to be detected by our approach. However, they
were designed in a systematic manner (by weakening or strengthening conditions in
code decisions), so this threat is very limited.

A second threat to validity would be the definition of the usage model. To mitigate
this, we experimented with several models that present different probabilities on their
transitions. Even if we did design models that would differ in the transitions themselves,
we assume that the transitions, describing the sequencing of events, are less error-prone
than the definition of the probabilities. Even if a different model would maybe prevent
the coverage criteria to be fulfilled, it could be seen as an incorrect model that would
not correctly describe how the environment in which the system is executed behaves.

A third threat to validity relates to the use of a simulation for the experiment
which may be considered shallow compared to a real case testing approach. As men-
tioned above, we stay confident that our approach is representative enough of adaptive
systems. Furthermore, testing directly on real systems is not only time-consuming, but
may be impossible for very dangerous scenarii [16] as it highly depends on external
variable factors. Following [31], we believe that first series of validation can be per-
formed under simulations, and they are sufficient for illustrating the ability for finding
errors when using this kind of approaches.

A last threat to validity relates to the fact that, in this experiment, only one case
study has been used, with several mutants. Although we consider our description of
VANet (network) is representative of adaptive component systems, it would obviously
be better if we could have a diversity of subjects to consolidate the results of experi-
ments. However, let us emphasize that adaptive component systems are very complex
and need time to be designed. This is why random test generation and mutation test-
ing fit in well with our needs and are part of the described experimental procedure.
Notice that similar results have been obtained on the running example of the Cycab
vehicle location controller used in this article. The results for this simple example are
not described in this section.

7 Related Work

Self-adaptation is a very active research field with challenges and open questions in
various domains. The roadmap [9] emphasises an important challenge consisting in
bridging the gap between the design and the implementation of self-adaptive systems.
Validation by testing is needed for obtaining incremental assessments for more confi-
dence in self-adaptation [32,40]. The recent work [26] provides a literature review in
which different testing approaches are classified in a decision tree according to several
criteria such as technique type, usage of mutation analysis, and evaluation dimension.
Our approach relates to the black-box testing technique type, with mutation analysis
in effectiveness and scalability dimensions.

Fuzz testing, or fuzzing [35], is a software testing technique that aims at discover-
ing weaknesses by inputting massive amounts of data (often random and/or invalid).
Behavioural fuzzing sends (invalid) sequences of valid data. These sequences can either
be generated from a model, like in [29], or by re-engineering the result of a previous
run of the system, namely its log files. By using specifics of the reconfiguration model
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in [22] to generate the data to be injected, the work in [38] allows the tester to focus on
specific parts of the sequence of configurations that enables adaptation policies to be
tested. Robustness testing [18] describes a class of approaches that evaluate the degree
to which a system or a component can function correctly in the presence of invalid in-
puts or in stressful environmental conditions. Our approach complements these works,
as we mainly focus on establishing a test verdict and measuring a model coverage rather
than generating test cases.

Differently from general run-time testing techniques, where the adaptive software
systems are considered together with the simulations of their environment, see e.g. [14,
15], our approach is based on a usage model for representing the behavior of the
environment rather than the system itself [19]. Moreover, like design-time testing ap-
proaches, see [4] for some examples, it focuses on specific behaviour depending on ex-
ternal events to perform reconfiguration operations guided by adaptation policies with
temporal properties. In [27], the authors use resource prediction to manage evolution
of utility on self-adaptive systems. In our approach, in addition to its main function,
the utility is used to help detect potential inconsistencies in the adaptation rules. The
evaluation framework in [37] aims at evaluating quality-driven self-adaptive software
systems. That framework is based on a set of adaptation properties mapped to soft-
ware quality attributes. Thus, corresponding software quality metrics can be used to
assess adaptation properties. Our approach is different, as the adaptation policies with
temporal patterns are not directly linked to quality metrics. However, our MBT ap-
proach provides means for calculating such metrics, via the proposed coverage measure
inspired from temporal logics properties coverage described in [7].

Our purpose is close to that in [13] where the authors aim to deal with self-
organization by testing separately self-adaptation mechanisms. Like in that work, in our
approach is it possible to examine particular situations, namely where reconfiguration
operations are performed to comply with adaptation policies depending on temporal
properties and external events. In [12], the authors present an online test case genera-
tion procedure with a test case selection strategy. Unlike [13,12], our work is focused
on testing systems under adaptation policies allowing us to detect specification defects
and implementation errors.

8 Conclusion and Future Work

This paper has presented a model-based testing approach that aims to establish whether
a self-adaptive component system faithfully implements an adaptation policy that is
defined independently. Testing new adaptation policies is complicated and time con-
suming, especially for large systems that would require tailored settings to test specific
policies. Our approach relies on a usage model, that is used to generate test cases as
sequences of external events driving the systems execution. Two verdicts have been
proposed; the firts one is based on the use of temporal properties written in FTPL,
and the second one is based on detecting if a reconfiguration is legitimate or not. This
approach has been experimented on a case study of the platoons of vehicles, which
the paper reports on. We have also experimented our proposals on smaller case stud-
ies, namely Inria’s CyCab autonomous vehicle [1], which is simpler than the VANet
example, and for which we obtained similar results.

Unlike for other model-based testing approaches, usage models have to be manually
designed, which can be seen as a strong requirement to apply this technique. However,
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in the case of usage models, they are not used to fully describe the behavior of the
system under test, but rather correspond to additional artifacts, that require a minimal
effort of modelling to be employed. This test generation approach can be declined
in an offline process, when the test cases are first generated to be executed on the
system under test afterwards. Nevertheless, it is also possible to consider that, for
each generated step from the automaton, this step is immediately executed on the
system, and the different verification and measures are done on-the-fly. The declination
to an online testing approach is straightforward. Finally, notice that, even though
the experimentation has been made on a dedicated implementation, it could also be
performed on an integrated framework such as Fractal [5] or BIP [2] which provide
similar observation capabilities. Such a development is part of future work.

Future work directions also include the definition of different techniques to improve
the coverage of the adaptation rules. One option is to design dedicated test generation
algorithms that target the triggers and guards of the adaptation policy rules, so as
to generate test cases that aim to provoke the firing of the reconfigurations in a more
active manner. Another future work is to adapt the approach to a wider class of self-
adaptive Cyber-Physical Systems, which would require to take into account the real-
time aspects of such systems. In particular, we plan to evaluate our approach on the
realistic simulator VIPS [16] which would make it possible to confirm the results on the
same case study of the platoons of vehicles, including potential external perturbations.
In this context, the use of an online testing process could be done.

Finally, during the experiments, we noticed that the measures that we proposed at
the end of Sec. 5 could be useful w.r.t. the validation of the correct implementation of
the adaptation policy. We plan to investigate this aspect further, with the objective to
be able to detect inconsistencies between the fuzzy values provided in the adaptation
policy rules and the actual frequences of the reconfigurations that are observed.
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