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This paper focuses on the torque optimization of a high speed Spoke-type interior permanent magnet (IPM) machine for automotive 

powertrain application. The optimization target is to balance the torque performance at low speed and durability of rotor strength at 

maximum speed. Firstly, torque and mechanical centrifugal force analysis using 2-D finite element method (FEM) are established to 

obtain the objectives and constraints. Secondly, metamodeling techniques including different kind of design of experiment (DOE) and 

meta-models are used to construct the design space, objective functions and constraint functions. Comparison of metamodeling 

techniques is carried out and engineering guidelines on selection for electric machine design optimization are given. Finally, some 

different optimization methods are applied on the meta-models to determine the optimal design.  

 
Index Terms— Permanent magnet machines, Finite Element Analysis, Stress, Optimization and Metamodeling.  

 

I. INTRODUCTION 

HE interior permanent magnet (IPM) machines have been 

widely used in automotive applications because they have 

high torque density and a wide speed range. However, there are 

some mechanically weak locations in rotor at high speed due to 

centrifugal forces [1]. These locations are concentrated locally 

in the so-called bridge and rib parts which are relatively thin 

values in rotor core. At the opposite, these regions should be 

thin to limit magnetic flux leakage [2]. Therefore, a 

compromise has to be found for the geometry of these regions. 

The mechanical stress analyses can be carried out by analytical 

and approximate methods [3], but this kind of method is useful 

in the early stage design and does not constitute a substitute for 

accurate mechanical validation. Therefore, finite element 

method (FEM) with higher accuracy are used both in 

electromagnetic and mechanical analyses in detailed design 

optimization.  

 On the other hand, it is also well-known that FEM analyses 

are time-consuming in particular when parametric analyses are 

required, uncertainty propagation for instance [6]. One solution 

is to use metamodels to reduce computational time [4]. There 

are few papers addressing metamodeling techniques in the 

electric machine optimization including mechanical constraints. 

In this paper, different kinds of metamodeling techniques are 

used for comparison of the quality constructing the torque 

objectives and stress constraints utilized in the optimization.  

II. FINITE ELEMENT MODELS OF ELECTRIC MACHINE 

Price fluctuations of rare earth magnets have impact on the 

design of electric machines. Therefore, a spoke-type ferrite IPM 

machine is chosen here. The machine structure is not provided 

here because of confidential reasons. The final version of paper 

will use a public machine geometry. Three important 

dimensions related to the bridge parts are selected as design 

variables.  

 For electromagnetic analysis, a transient solver is used. The 

torque performances are simulated at low speed. Average torque 

and torque ripple rate in one period are obtained from this 

simulation.  

 Centrifugal force dominates the stress and strain compared 

with electromagnetic force and magnetic attraction force [5]. 

Therefore, the centrifugal force caused by high speed is only 

considered in the mechanical analysis. From this simulation, the 

maximum of maximum principal stress (MPS) on the whole 

rotor and maximum of directional deformation (DD) are 

obtained.  

III. METAMODELING CONSTRUCTION 

A. Design of Experiment (DOE) 

In [4], comprehensive explanations about various sampling 

methods and their advantages are introduced. The main idea of 

the DOE, which also could be called sampling is to provide an 

informative database for building the meta-models in order to 

represent the knowledge of the objective landscape with less 

calls of FEM analysis.  

Here two methods are used: full factorial design (FFD) and 

Latin hypercube sampling (LHS). A 𝑛 -level FFD design 

contains 𝑛𝑘 samples (k is the dimension of variables or factors). 

The main method of LHS is stratification of the input 

probability distribution which divides the cumulative curve into 

equal intervals. Then the samples are randomly taken from each 

interval. The 33, 53 FFD and 27, 125 samples of LHS are used.  

In our study, the total computational time of 125 samples is 

42 hours by using 2.70 GHz Core i7 PC. The samples used in 

construction of meta-model are completed within a practical 

computational time. More samples also could be launched to 

increase the accuracy of meta-models.  
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B. Meta-models 

Meta-models are also called surrogate models which means 

a model of model. Various meta-models are used in the 

engineering applications. In this paper, response surface 

methodology (RSM) and Kriging are chosen.  

1) Response surface methodology 

RSM represents the relationship between inputs and outputs 

by a combination of polynomials. Second order polynomials (1) 

have the ability to represent curvature which includes quadratic 

terms and two-factor interactions: 

𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖
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2) Kriging 

The Kriging method is comprehensively explained in the 

literature [4]. The form of the Kriging meta-model used in this 

study is shown in (2):  

𝑓(𝑥) = ∑ 𝑤𝑖𝜓(𝑖)
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where 𝑁  is the number of samples, 𝑤𝑖   is the weight of each 

basis function, 𝜓(𝑖) is the ith basis function, θj is the width of 

basis function, 𝑝𝑗  is the exponent of the variables Euclidean 

distance. In this paper 𝑝 is fixed to 2 to reduce the complexity.  

C. Model verification and validation 

Model verification and validation are of great importance, 

especially for metamodeling [6]. Cross-validation is the most 

popular method and two types of different measures of model 

accuracy are used for validation. The first one is the root mean 

square error (RMSE) and the second one is correlation 

coefficient 𝑅2.  

IV. NUMERICAL RESULTS 

Average torque and torque ripple rate are selected for the 

objective functions. The quality of different quantity of samples 

and different types of meta-models are shown in TABLE I and 

II.  
TABLE I 

AVERAGE TORQUE METAMODELING RESULTS  

 RSM (2nd order)  Kriging  

 RMSE 𝑅2
 RMSE 𝑅2

 

3-level FFD 0.0187 0.9949 0.025 0.9926 

27-point LHS 0.0175 0.9948 0.0206 0.9941 

5-level FFD 0.0155 0.9953 0.0123 0.9982 
125-point LHS 0.0130 0.9966 0.0152 0.9962 

TABLE II 

TORQUE RIPPLE RATE METAMODELING RESULTS  

 RSM (2nd order)  Kriging  

 RMSE 𝑅2
 RMSE 𝑅2

 

3-level FFD 0.0970 0.9175 0.0643 0.9669 
27-point LHS 0.0903 0.8826 0.1012 0.9277 

5-level FFD 0.0772 0.9266 0.0316 0.9876 

125-point LHS 0.0676 0.9288 0.0209 0.9946 

Maximum of maximum principal stress (MPS) of the whole 

rotor and the maximum directional deformation (DD) are 

selected for the constraint functions. The quality of different 

quantity of samples and different types of meta-models are 

shown in TABLE III and IV.  

TABLE III 

MAXIMUM OF MPS METAMODELING RESULTS  

 RSM (2nd order)  Kriging  

 RMSE 𝑅2
 RMSE 𝑅2

 

3-level FFD 0.1839 0.7110 0.1708 0.7572 

27-point LHS 0.1284 0.8172 0.1600 0.8408 

5-level FFD 0.1480 0.7092 0.1501 0.7610 
125-point LHS 0.1099 0.7316 0.0785 0.8743 

TABLE IV 

MAXIMUM OF DD METAMODELING RESULTS  

 RSM (2nd order)  Kriging  

 RMSE 𝑅2
 RMSE 𝑅2

 

3-level FFD 0.0702 0.9631 0.1191 0.9487 
27-point LHS 0.1967 0.5422 0.1516 0.8624 

5-level FFD 0.0540 0.9564 0.0694 0.9731 

125-point LHS 0.0480 0.9549 0.0430 0.9802 

V. MULTI-OBJECTIVE OPTIMIZATION 

Multi-objective optimization gives more information about 

the problem than the weighted single objective optimization. 

But multi-objective optimization needs a large amount of 

function calls. Here meta-models play a key role.  

The best of the four meta-models is used in the construction 

of Pareto frontiers. The Pareto frontiers with and without 

constraints are shown in Fig. 1. Torque are normalized in this 

case which means the one close to 0 is better. The constraints 

are used in the optimization to prevent rotor to be busted. Here 

the total function count is up to 6827 and 11832 respectively. 

The methodology is useful to reduce the burden of computer 

with a considerable accuracy.  

 
Fig. 1. Pareto frontier of the optimization with and without constraints.  
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