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Abstract

Acoustic emission (AE) is a passive monitoring technique used for learning about
the behavior of an engineered system. The streaming obtained by continuously
recording AE transient signals is treated by a four steps procedure: 1) The
detection of salient AE signals by distinguishing noise against non-noise signals
using wavelet denoising, 2) the statistical representation of randomly selected
AE signals using Autoregressive Weakly Hidden Markov Models, 3) an infer-
ence phase by applying those models to unknown AE signals and generating
a set of novelty scores reflecting differences between signals, 4) the clustering
of novelty scores using constraint-based consensus clustering. Compared to the
standard way relying on the transformation of all AE signals by manual feature
engineering (MFE) before clustering, the main breaktrough proposed in this
paper holds in the use of the raw AE signals, with different lengths and various
scales, to build high level information and organise the low level streaming data.
Validated first on simulated data, we show the potential of this methodology for
interpreting acoustic emission streaming originating from composite materials.

Keywords: Acoustic emission, raw waveform, model-based clustering,
representation learning, novelty detection.

1. Introduction

Monitoring the formation and propagation of damages in materials is of
paramount importance for ensuring the availability and safety of industrial
equipment in many application fields. The non-destructive technique called
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acoustic emission (AE) is widely used for that purpose. The terms around the
AE technique were made uniform in the ASTM standard E1316 [1, 2]. The prin-
ciple of the AE technique is the detection of the subnanometric displacements of
the surface of a material induced by the propagation of an elastic wave generated
by a sudden and permanent change in the integrity of a material. Permanent
changes can, for example, be related to plasticity and cracks at various scales.
The mechanical wave is then transformed into a voltage signal by an AE sensor
(usually piezo-electric based). The frequency content of the wave may vary, and
it is quite common in AE literature to use preamplifiers including a bandpass
filter in the range 20 kHz–1 MHz.

The AE technique has been applied in Structural Health Monitoring (SHM)
[3, 4, 5, 6, 7] since the progression of the signature of those mechanical waves
can provide useful insights about the behavior of a material during loading. It
was used, for example, to detect, localise, identify and monitor AE sources in
rocks [8], concrete structures [9], pressure vessels [10], rolling bearings [11, 12],
grinding wheels [13, 14, 15, 16], tool wear [17] and in tribology [18, 19].

The sensitivity of the AE sensors makes this technique suitable for detecting
damages at various scales as encountered in complex heterogenous materials
made of various constituents with different damage kinetics. For example, in
composite materials such as Carbon-Fibre Reinforced Plastics (CFRP), multi-
scale damages can occur such as matrix cracking, fibre breakage, debonding or
ply delamination which can be detected using the AE technique [5].

Detecting and identifying damages by the AE technique requires to develop
an efficient pattern recognition chain able to tackle the specificities of AE signals:

• Specificity 1: The AE technique provides time-series data. The order
of the transients could either be indexed by the number of cycles or by
damage accumulation.

• Specificity 2: AE signals may be unevenly spaced-in-time. It is partic-
ularly true for heterogenous materials, random loading profiles or during
transitions of materials undergoing progressive deformation.

• Specificity 3: AE signals are influenced by damages, so the data gen-
erating process is non-stationary. The non-stationarity can be relatively
pronounced according to the materials and the loading profile.

• Specificity 4: The characteristics of AE sources are unknown, it is par-
ticularly true for complex materials such as composites.

In addition to those specificities, the variability of the initial damage state of
materials and structures due to the manufacturing process make difficult the
generalisation of conclusions between papers [20].

1.1. The standard approach to interpret AE signals

Unknowns behind the generation process of AE signals and the modification
of those signals along the propagation path until the sensors account for the
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use and development of unsupervised learning methods to interpret them. Su-
pervised learning requires to precisely know the source of every AE signal in a
dataset, which is possible only for simple configurations. Unsupervised learning
in AE signals relies on a set of steps (described below) which are common in
feature-based time-series clustering [21, Fig. 1], [22, 23].

1.1.1. Feature extraction and the need of representation learning

The first step, called feature extraction, generates a feature vector for each
AE signal. Each feature is an axis in a coordinates system that allows to rep-
resent all AE signals by a set of common variables. Without prior knowledge,
selecting the correct set of AE features can be challenging and is an active
area of research in AE. A lot of features are generally manually extracted (in
[24, 25, 26], commonly used features in AE can be found) and a common practice
in AE literature is to perform subset selection by wrapping [26] or sequentially
[27] in order to select a unique subset. The majority of unsupervised learning
methods in AE literature makes use of a unique subset of features. To our
knowledge, only [28] makes use of multiple subsets for clustering AE data.

The use of a unique and manually-extracted low-dimensional feature subset
is unlikely to represent AE signals due to the complexity of the underlying
physics. Representation learning from raw data is one solution explored in
this paper. It is based on the estimation of a parametric mapping acting as an
encoding function which makes the data easier to interpret. Numerous examples
can be found in supervised machine learning [29, 30, 31].

Representation learning has become an active area of research in machine
learning with recent deep learning advances. However, for unsupervised learn-
ing, there are much less available methods [32]. Principal components analysis
(PCA) is one representation learning approach used in unsupervised learning in
AE literature [33]. The PCA linearly transforms the original set of features into
a new space with orthogonal axes so that the mapping retains as much infor-
mation as possible in terms of variance. The first axis of this new coordinates
system is given by the eigenvector with the largest eigenvalue computed from the
data covariance matrix. By retaining the largest eigenvalues, the PCA performs
an additional feature (and lossy) extraction yielding uncorrelated features.

The PCA relies on several assumptions (quest of a linear combination of fea-
tures weighted by eigenvectors, orthogonality of axes, maximising the variance,
the search of uncorrelated features). Moreover, the fact that the covariance
matrix of the full dataset is used to perform the projection makes the encoding
similar for all feature vectors, even though the AE signals are originated from
different AE sources. Additionnally, the PCA is a lossy compression procedure
which is traditionnally applied after a first feature extraction step, itself a lossy
one that is performed on raw signals.

Deep autoencoder is another representation learning method used in [34]
for the localisation of AE events using a single AE sensor. This recent repre-
sentation learning method is worth mentioning since it can encode linear and
non-linear mapping [35]. As described in [36, Section 4.1], neural nets and deep

3



encoders were successfully used for anomaly detection and so can be included
in the methodology we propose.

1.1.2. Clustering

The second step is called clustering and aims at identifying, from features,
the discrete latent variables called clusters. Latent variables practically repre-
sent the damage families, unobservable directly but through the AE technique.

We can enumerate two categories of methods used in AE clustering (we
consider only multivariate approaches): mono-subset approaches [37, 38, 26, 39]
and consensus clustering (using multiple subsets) [28]. It was shown in other
applications that consensus clustering is able to discover useful patterns for
complex data [40, 41, 42] by exploring different subspaces of the original feature
space. In each category, different clustering methods have been used such as
Kmeans, Fuzzy-C-means, Gustafson-Kessel or Gaussian mixture models.

1.1.3. Evaluation

The third step is evaluation, that quantifes the relevance of the clusters
identified in the previous step. Davies-Bouldin and Silhouette indices are among
the most used clustering validity indices [43, 44, 45, 46, 22]. Those indices
are often dependent on both clusters and features. Hence, such methods to
evaluate a clustering result make use of feature-level constraints [47]. In contrast,
cluster-level constraints [48] aims at selecting a parameterization according to
the fulfillment of some constraints on the partition. This can be used, for
example, to sort partitions of AE signals [28]. The third type of approach
for evaluation, namely model-level constraints, consists in using a numerical
simulation to correlate experimental data and physics-based model [26].

1.2. Beyond feature engineering for AE interpretation

Manual feature engineering (MFE) plays a central role in the pattern recog-
nition chain implemented to interpret AE signals and has become a must-to-do
step in AE interpretation. Can we change the way in analysing AE signals
by considering directly the raw signals and streaming? This is the main ques-
tion tackled in this publication. Such an approach could potentially raise novel
questions in terms of pattern recognition for AE signals and their interpreta-
tion. This is also a way to progress towards automatic feature engineering and
unsupervised representation learning from AE signals.

Recent works questioning the use of features for unsupervised AE interpre-
tation focused on source location [49, 50]. For instance, [51] uses dynamic time
warping (DTW) to evaluate the similarity between AE signals for multi-source
events localisation. Distance-based approaches are indeed intuitive to solve the
problem of unsupervised clustering directly from raw AE signals as done in time-
series data mining [23, 52, 53]. Other approaches include information-theoretic
novelty detection working direclty on blocks of samples [36, Section 6 therein],
[12, 54, 19].

The closest related work to the present one is from Martin-Del-Campo and
Sandin [12]. They developed a sparse dictionary-based learning approach to
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analyse vibration signals. The authors were interested in evidencing transition
between healthy and faulty states in materials behavior. They first show how to
train their model using “normal” condition vibration signals. Likewise one-class
supervised methods or baseline-based approaches [7, 36], the method is able to
generate a novelty score reflecting how similar are the new unknown testing data
compared to the normal conditions. In their experiments, they collected acous-
tic emission data from a tensile quasi-static test on a stainless steel specimen.
They decomposed the streaming into segments of the same length and train
the parameters on normal condition data corresponding to the phase where the
material remains elastic. They showed that their method is able to depict the
transition between elastic and plastic phases. This approach was extended in
[19] combining sparse dictionary-based learning with orthogonal matching pur-
suit to statistically represent a piece of AE streaming as a linear superposition of
learned/optimized shift-invariant waveforms and Gaussian noise. This approach
is used to detect the contamination of the lubrication of bearings at different
rotational speeds. A training stage allows to represent the normal condition
(uncontaminated lubrication) and during testing, the method generates a “rate
of activation” (likewise a novelty indicator) of the learned waveforms according
to the level of contamination.

1.3. Contribution and paper organisation

We propose a clustering methodology (described in Section 2) based on rep-
resentation learning of raw AE signals (Figure 1). The key point is that it does
not require manual feature extraction from AE signals and works directly on
raw AE signals. According to the terminology used in [21, Section 3.3 therein],
the proposed method is model-based. The idea detailed in the present paper
was first published in [55, 56] with no mathematical details which are provided
below together with new tests. The approach is scalable for the analysis of a
huge amount of AE signals, collected, for example, during fatigue tests as shown
in experiments.

Compared to the work of [12, 19], the streaming is summarised by a set
of AE “hits” (as defined in the standard [1]) with different lengths found out
by a wavelet-based detector published in [25]. The wavelets are not used as a
standard filter, but rather as a trigger to determine the onset time of transient
signals (wave-picking like for seismic data analysis). It is applied on a streaming
block-wise (with 250 Ksamples) to adapt the thresholds in the wavelet decom-
position [57].

Many information processing tasks can be very easy or very difficult de-
pending on how the information is represented [58, Chap. 15]. So, the proposed
approach is expected to better exploit the richness of the acoustic emission
streaming by considering raw AE signals. The approach consists in fitting a
modified version of auto-regressive hidden Markov models onto randomly se-
lected AE signals serving as references (Section 3). Those models perform a
decomposition of AE signals into a linear combination of auto-regressive models
where the switching from a model to another is governed by a Markov chain.
As in reconstruction-based novelty detection [36], the obtained models are then
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used to generate novelty indicators (Section 4) when applied on newly observed
AE signals.

A consensus clustering (Section 5) is then developed to draw benefits from
multifarious subsets of those indicators. The clustering step exploits some ideas
published in [28, 59] about confidence intervals and about the evaluation crite-
rion that gives preference to subsets evidencing regularly spaced-in-time clusters
onsets. This concept is represented on the top right-hand side of Figure 1 de-
picting the cumulated occurrence of each cluster. Accumulation depicts the
onsets (well spread along the x-axis) and the kinetics (change of slope) which
can then be used for monitoring purposes. Finally, experimental results con-
cern both simulated data (presented in Sections 6) and real data from composite
materials in quasi-static and fatigue tests (in Section 7).

Compared to [12, 19], we do not perform anomaly detection in the classical
sense. Indeed, anomaly detection requires a baseline to train a one-class super-
vised learning algorithm which can then be used for online monitoring [7, 36].
In our methodology, we are concerned by offline clustering. For that, a few AE
signals are randomly picked in a dataset and used to estimate the parameters
of various auto-regressive hidden Markov models. The random selection makes
this method unsupervised and the repetitions allow to build confidence intervals
on the chronology of onsets of damages estimated at the end of the algorithm.
The quality of the chronology of onsets of clusters is exploited by the cluster-
ing algorithm to select some of the randomly picked signals. It is similar to
the final step of standard clustering methods used in AE literature which usu-
ally depend on a quality criterion reflecting the compactness and separability
of clusters (Section 1.1.3). Conclusively, there is generally a kind of supervision
in AE clustering since a “supervision signal” [58, Section 5.1.3 therein] is used
to select the most appropriate parameterization of the clustering method (such
as the inputs and the number of clusters).

Figure 1: Methodology proposed [56].
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2. Methodology and problem statement

An AE signal is a collection of real values (voltage) xt ∈ < defined at discrete
time t which can be mathematically represented by a function f(x; θ) with
parameters θ. We here suppose that f includes an autoregressive model which
allows to compute a value xt from previous values xt−δ, δ = 1 . . .∆. In that
way, function f , estimated from a reference AE signal, can be used on new
observed AE signals in order to compute a prediction x̂t for each t. Given the
observed AE signal and the prediction through its representation f , we can
compute novelty scores that evaluates the similarity between the observed and
reconstructed AE signals. For instance, the mean squared error (MSE) can be
used:

NOVmse(i) =
1

Ti

Ti∑
t=1

(x̂t − xt)2 (1)

where Ti is the length of the current AE signal. The global problem tackled in
this work can thus be decomposed as follows:

1. Problem 1: Which method to build the model of an AE reference signal?
A regression method able to face the complexity and richness of AE signals
is used in this work called Autoregressive Weakly-Hidden Markov Models
(ARWHMM) described in the next section.

2. Problem 2: Which novelty scores? A solution is by applying similarity
measures insensitive to the length of AE signals. In this work we propose
six novelty scores.

3. Problem 3: How to infer a relevant partition of AE signals from novelty
scores? In this work we propose a method which selects partitions evi-
dencing new AE sources onsets and estimate the uncertainty on clusters.

4. Problem 4: How to select the number of AE sources (number of clusters)?
A solution is by evaluating the robustness of the results using mutual
information [60].

5. Problem 5: How to select the references? We suggest a bootstrapping
strategy which randomly selects AE signals with replacement. This strat-
egy allows to estimate confidence intervals on clustering results according
to the randomly selected signals.

Each problem is tackled in the following sections. The methodology is pictorially
illustrated in Figure 1.

3. ARWHMM for building the model of an AE reference signal

In this section, we describe a method to solve problem 1 using ARWHMM.
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3.1. Representing AE signals using ARWHMM
In an ARWHMM model, a measurement at time t, xt is mathematically

represented as a weighted sum of the previous measurements plus an error term
where the weights are defined conditionally to hidden states of a Markov process:

xt = −
∆∑
δ=1

rδ(yt) · xt−δ + εt(yt), 1 ≤ t ≤ T (2)

with yt ∈ Ω = {ω1, ω2, . . . ωK} is the value of the state at time t, and where
the noise term εt(yt) ∼ N (0, σ(yt)) has a covariance σ(yt) depending on the
state. The AR coefficients for the i-th state are denoted as r(i) and B =(
r(1); . . . ; r(i); . . . ; r(K)

)
is the matrix of all AR coefficients. The state may

represent an internal variable with or without physical meaning. The weights
and the stochastic switching between AR models are governed by a Markov chain
and are automatically learned from data using maximum likelihood [61, 62]. The
switching between internal states is governed by the Markov chain represented
by a transition matrix A with elements aij = p(yt = j|yt−1 = i) (probability of
going into state j at time t given the state was i at t−1). The prior probability of
the chain is denoted as ΠΠΠ = [π1 . . . πK ], where πi is the probability to be in state
i at time t = 1. The set of parameters to estimate is λ = A,Π,B,ΣΣΣ, 1 ≤ i ≤ K
where K is the number of internal states in the ARWHMM.

3.2. Learning parameters in ARWHMM
Learning can be performed in the Expectation-Maximization (EM) frame-

work [63]. In the E-step, we evaluate the expectation of the hidden variables
given the data; In the M-step, the auxiliary function Q representing the expec-
tation of the complete-data loglikelihood has to be maximized to ensure that
the likelihood will not decrease at each iteration,

Q(λ,λ(q)) = Eλ(q) [log(L(λ; z))|x,w]

=
∑
y

p(y|x,λ(q))⊕w(y) logL(λ; z) (3)

with (q) the iteration index of EM algorithm, x is the dataset (here represented
by the AE reference signal), and z = (x,y). Operator ⊕ is a point-wise multi-
plication followed by a normalization [64, 65]. Variable w(y) represents a prior
on hidden variables (for example distributions over possible internal states given
AE signals). It offers the possibility to adjust parameters estimates [65, 66].

The complete-data likelihood function is given by

L(λ; z) = p(y1;ΠΠΠ)

T∏
t=2

p(yt|yt−1; A)×
T∏
t=1

p(xt|yt; r(yt), σ(yt)) (4)

where the dependence to the parameters of the model is made explicit. We
define the likelihood as [61]

p(xt|yt, r(yt), σ(yt)) = N (xt +

∆∑
δ=1

rδ(i) · xt−δ | 0, σ(yt)) (5)
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that will also be represented for short as bt(i). Using Eq. 4 in Eq. 3, we can
expand the expression of Q, set the derivatives with respect to each parameter
to zero to get the parameters at iteration (q + 1) of EM, yielding the following
updates for the Markov chain:

π
(q+1)
i = γ1(i)(q) (6a)

a
(q+1)
ij =

∑T
t=2 ξ

(q)
t−1,t(i, j)∑T

t=2

∑K
l=1 ξ

(q)
t−1,t(i, l)

, (6b)

where γ and ξ are the posterior probabilities computed using the forward-
backward algorithm initially defined for Hidden Markov Models [67]. We re-
mind below the forward pass which is useful to evaluate the likelihood of the
ARWHMM model that will be used subsequently as a novelty score. The forward
pass recursively evaluates the forward variable αt(i) which is the probability of
jointly observing the sequence up to t (for instance, the voltage values for an
AE hit) x1, x2 . . . xt and observing state i given prior knowledge:

α
(q)
1 (i) = π(q)(i) b

(q)
1 (i) w1(i) (7a)

α
(q)
t (j) = b

(q)
t (j) wt(j)

∑
i

α
(q)
t−1(i) a

(q)
ij (7b)

The likelihood of the observed data given the model is then

L(λ(q); x,w) =

K∑
i=1

α
(q)
T (i) (8)

Practically, given a set of parameters λ representing an ARWHMM built from
a given transient, the value of L(λ; xtest,w) evaluates how good is the fitting of
the learned model λ on a new transient xtest. This similarity measure will be
discussed with others subsequently.

For the observation model, the noise covariance update is [61]:

ΣΣΣ
(q+1)
i =

1∑T
t=1 γ

(q)
t (i)

T∑
t=1

γ
(q)
t (i)

[
xt +

∆∑
δ=1

r
(q)
δ (i)xt−δ

][
xt +

∆∑
δ=1

r
(q)
δ (i)xt−δ

]′
(9)

and the expression of the AR coefficients B(q+1)(i) are

B(q+1)(i) = −
[ T∑
t=2

γ
(q)
t (i)xtu

′

t−1

][ T∑
t=2

γ
(q)
t (i)ut−1u

′

t−1

]−1

(10)

with ut−1 =
(
xt−1, xt−2, ..., xt−∆

)′
.

3.3. Setting hyper-parameters

The sample partial autocorrelation was used to find the order (∆) of each
AR model. It assumes that an AR(p) process can be described in terms of p
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nonzero functions of the autocorrelations [68, Chap. 3], plotted against ∆ =
1, 2 . . . p . . . Pmax. The plots presents a cutoff after lag p if the process is a pth-
order autoregressive one. If the process is autoregressive of order p and the
time-series of length N , the estimated partial autocorrelations of order p + 1,
and higher, are approximately independently and normally distributed with zero
mean and standard error equal to 1/

√
N [68, Eq. 6.2.3].

The weights w can play different roles, one being the possiblity to incorporate
domain knowledge (e.g. from physics of mechanical waves or from damage
progression) in the training and testing phases [69, 70, 66, 71] or the novelty
detectors. Domain-based novelty detection approaches [36] allow to define a
boundary on the structure of the training dataset. Then, new measurements are
compared to the boundary instead of the density for classical approaches. For
the remaining of the paper, the weights were set to 1 (likewise prior information
are unavailable) and the tuning of those parameters is let for future work.

3.4. Implementation details and complexity

It can be observed that the posterior probability γ plays an important role
(used in all updating equations). We can thus apply first a partially hidden
Markov model (PHMM) [66] (the code is available on Matlab© central) over
the data made of {[xt−1xt−2 . . . xt−∆]}Tt=1 . This algorithm provides a first
estimate of γ without taking into account the AR process in each state. This
first estimate can be used to compute all parameters of the ARWHMM. The
advantage of the PHMM is that it also manages prior information on states
likewise the ARWHMM.

The second important issue concerns the possibility that the likelihood
(Eq. 5) may not be defined when applying a model to a new AE signal. It can
appear that some new data (used in test for example) may be very different to
the data used in model learning. In that case, the likelihood may be close to 0.
An AE signal for which no ARWHMM model is able to generate a likelihood in
Eq. 5 is an information about the fact that the set of models is not sufficient to
represent the range of possibilities in a dataset. In that case, it is required to
add more AE signals during the training phase.

Thirdly, to our experience, it is relevant to incorporate the mean and the
variance of the AE signal used during the training of a model λ as a part of
it. Therefore, prior to performing the inference phase (generating the novelty
scores) using a model λ on an unknown AE signal, this signal is z-normalised
by simply removing the mean and dividing by the variance of the AE signal
used to estimate the parameters in λ.

Finally, in terms of computational complexity, the main operations are made
during calls to both the forward and backward propagations of probabilities,
each implying about N ·K2 operations for K states and a signal with N points.
Those exact (optimal) propagations are thus easily computed. The inference
stage (to compute the predicted output) involves only a forward pass.
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4. Estimating novelty scores

In this section, we show how to extract novelty scores from an ARWHMM
λ in order to solve problem 2. The measures are available in Matlab©. Each
score NOV•(i) for a given novelty score (• will be replaced by an acronym
subsequently) is indexed by a variable i which represents the value of the scores
for the i-th AE signal collected (the order of AE signals is respected according
to the acquisition). The i-th AE signal is denoted xi = [xi1, xi2 . . . xiTi

] with
length Ti. The scores are calculated using two information: the input AE signal
xi (to be analysed) and the approximation made by a model λ and denoted x̂i.
The set of scores form a matrix used in the next section for clustering. This
matrix is also called distance map in the unsupervised shapelets framework [52].

4.1. Measure 1: Mean-squared error (MSE)

The mean squared error (MSE) between the input AE signal (xi) and its ap-
proximation (x̂i) made by the ARWHMM, divided by its length (Ti), NOVmse(i)
is given by Eq. 1.

4.2. Measure 2: Loglikelihood (LOGL)

The loglikelihood is the sum of the elements in the forward variable at time
Ti after applying the model λ on the input AE signal (xi). This probabilistic
score, NOVlogl(i) and defined in Eq. 8, does not require the approximation x̂i
since it directly quantifies the fitting of the model on the input AE signal.

4.3. Measure 3: Peak signal-to-noise ratio (PSNR)

The peak signal-to-noise ratio (PSNR) takes the number of bits per sample
used to encode AE signals. It is defined as

NOVpsnr(i) = 20 log10(
2nb−1√

NOVmse(i)
) (11)

where nb is the number of bits per sample (depending on the acquisition board,
for instance 16 bits in standard AE system). The number of bits remaining
constant, it should not perform better than MSE as confirmed by later results.

4.4. Measure 4: Maximum absolute squared deviation (MAXERR)

The maximum absolute squared deviation (MAXERR) of the original signal
(xi) from its approximation (x̂) is defined as

NOVmaxerr(i) = max
t
|x̂it − xt| (12)

4.5. Measure 5: Ratio of the squared norm (L2RAT)

The ratio of the squared norm of the signal approximation (x̂) to the input
signal (x) is denoted L2RAT and is defined as

NOVl2rat(i) =

∑
t x̂

2
t∑

t x
2
t

(13)
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4.6. Measure 6: Non dimensional error index (NDEI)

The ratio of MSE to the standard deviation of the target (std(xi)) is called
non dimensional error index (NDEI) has been used in the past for evaluating
the quality of predictions in neuro-fuzzy systems [72]:

NOVndei(i) =
NOVmse(i)

std(xi)
(14)

5. Clustering approach

This section bring a solution to problem 3 to 5.
In clustering, two important problems must be faced: Feature selec-

tion and estimation of the number of clusters. Novelty scores N =
[NOV

′

mse NOV
′

logl NOV
′

psnr NOV
′

l2rat NOV
′

maxerr NOV
′

ndei] for all AE signals
collected constitute the training data. All the possible subsets can be considered
as potential inputs of the clustering method. In this paper, each single novelty
indicator, all pairs and the first order difference of the indicators were considered
as potential subsets of features for the Gustafson-Kessel clustering method [73].
For each subset of features, one partition is obtained. All partitions (one per
subset) were then sorted as follows. For each partition, the time onset of each
cluster was determined. This onset is obtained by taking the time stamp of the
AE signal corresponding to the first occurrence of a cluster. Then, each cluster
was re-labelled according to their order of occurrence: the first cluster to occur
was labelled “1”, the second cluster labelled “2”, and so on. This co-association
allows the fusion of partitions since all clusters with the same label are assumed
to correspond to the same source. This process was suggested first in [28]. After
re-labelling, each partition was ranked according to the following criterion [59]:

C(S) =

κ−1∑
k=1

∆onset(k, k + 1) log ∆onset(k, k + 1) (15a)

∆onset(k, k + 1) = tonset,k+1 − tonset,k (15b)

where κ is the number of cluster, S ⊆ N is a subset of novelty scores (single,
pairs and derivatives) used to compute the partition, tonset,κ+1 is equal to Ti
which is the duration of the i-th AE signal. This criterion assumes that the
onsets of all clusters in a given partition should be spread onto the time (or
load) axis as uniformly as possible. When clusters are spread, it means that the
corresponding AE sources are activated gradually, and this will help to better
understand the damage kinetics compared to when all clusters start too closely
and too early in the test [74, 75].

Once the partitions have been sorted according to this criterion, the 15
best partitions were selected. The fusion process of those partitions works as
follows. For all partitions selected, the logarithm of the cumulated occurrence
of the i-th cluster is plotted against time (or load) [28]. When superimposed
on the same graph, the supremum and infinum of this set of curves define an
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envelope evolving with time. It represents the time-dependent uncertainty of
each cluster. The centerline of the envelope is defined by the median of the
logarithm of the cumulated occurrence from the 15 best partitions selected.
This process is performed by varying the number of clusters. For every value of
the number of clusters, the quality of the partition obtained by the fusion process
is evaluated by using a bootstrapped ensemble method with the computation of
the normalised mutual information [60]. This method finds the natural number
of clusters which maximizes the robustness of the clustering results against
change in the input partitions. In other words, by removing some partitions,
a robust method must give a similar fusion result which is ensured using this
criterion. The fusion process is pictorially illustrated in [28] using composite
rings and in [59, 20] using tubular composite structures.

6. Controlled experiments

6.1. Description of the dataset

We here propose a toy dataset to generate transients signals and inspired
from [76]. We suppose that an AE signal of length T is made of a set of T
spikes, where each spike is the response of a resonant second order model to a
dirac excitation with random amplitude E:

R(s) =
1

1 + 2 ζkωk
s+ s2

ω2
k

E (16)

where s is the Laplace variable, k represents the class number, parameterized
by ωk and ζk. In our case we considered 4 classes, i.e. 4 types of AE signals
with ω1 = 75 rad/s, ω1 = 50 rad/s, ω1 = 30 rad/s, ω4 = 20 rad/s, and
ζ1 = 2%, ζ2 = 5%, ζ3 = 20%, ζ4 = 35%. Algorithm 1 is applied to generate
transients. Several random sampling steps are used to increase the difficulty
of modeling the time evolution of each signal. The goal is to discriminate the
classes according to raw signals and to demonstrate that the proposed method
is able to capture both the frequency content and the time evolution without
feature extraction using ARWHMM. The performance of clustering methods
has been evaluated using the Adjusted Rand Index (ARI) [77]. The value is
between 0 (bad clustering) and 1 (perfect clustering).

A set of 100 signals per class have been generated, and all normalised between
[−1, 1]. Figure 2 depicts a typical signal for every class. The number of samples
(6000) was selected sufficiently high to show the applicability of the method to
work on real data with sampling around 5MHz. It is indeed close to typical
AE signals duration (material dependent feature) found in AE literature, for
example [78, Fig. 1-3], [79, Fig. 6b], [80, Tab. 2,3]. The ARWHMM can be
parameterised to fit AE signals with relatively arbitrary length by increasing
the number of hidden states or the predictors in AR models.
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Algorithm 1 Random generation of transient signals.

Require: ω and ζ
Ensure: A transient signal S as the impulse response of a second order model
1: T = 6000 % number of samples in the signal
2: for i ∈ [1, N ] do
3: c ∼ U(0, 1) % random sample from a uniform distribution
4: if c > 0.5 then
5: u(i) ∼ N (0, 1) % random sample from a Gaussian
6: v(i) ∼ LN (0, 1) % amplitude from a log-normal distribution
7: if i < 10%N then
8: r(i) = v(i) · exp (−0.01 · i) · sign(u(i)) % exp. decay through time
9: else

10: r(i) = v(i)
10
· exp (−0.1 · i) · sign(u(i)) · 10

T−i
T % increase decay

11: end if
12: else
13: r(i) = 0
14: end if
15: end for
{% Now simulate the transient}

16: return S ∼ second order impulse response(ω, ζ, input = r)

6.2. Results

Figure 3 depicts the sample partial autocorrelation for ∆ = 1 . . . 100. We
can observe a first cutoff around p = 5, then around p = 10 and p = 20. The
lowest value (thus less parameters), p = 5, was used by expecting a better
generalisation of the model to unknown case.

A PHMM was used to initialise the ARWHMM using 2 states and 10 Gaus-
sian components per state for observations modelling and was run 10 times with
random initialization to select the likeliest model. The model was trained on
signals from class 4 drawn randomly for the illustrations below (tests have been
done with arbitrary signals from classes 1, 2, 3 and 4 with similar conclusions).

Three clustering methods from the literature (implemented in Matlab©)
were applied on each single novelty score: Kmeans (KM), Gaussian Mixture
Model (GM) and agglomerative hierarchical cluster tree (LK), each with 2 to 6
clusters. The optimal partition was selected automatically using three types of
quality indices from the literature focusing on clusters’ shape: Calinski-Harabasz
(CH), Silhouette (SIL) and Davies-Bouldin (DB). It led to 9 combinations, each
with a given marker in Figure 4.

L2RAT novelty score yields the exact number of clusters (equal to 4) in
all combinations and with correct assignment of clusters for all classes. This
result, obtained using only one AE signal and one novelty score, shows that the
method is able to reveal the true data structure automatically independently of
the clustering method or the quality index. CH index generally overestimated
the number of clusters on this dataset (the performance is not much less than
others since clusters were split and with no mixing between clusters). The SIL
and DB indices generally underestimated the number of clusters for all clustering
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Figure 2: An illustration of the raw signals in each class for the simulated dataset.
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Figure 3: Sample partial autocorrelation for various orders of an AR(p) model.
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Figure 4: Clustering performance with various methods (true value is K = 4). KM, GM, LK
stand for Kmeans, Gaussian mixture model and hierarchical (linkage) clustering, CH, DB, Sil
stand for Calinski-Harabasz, Silhouette and Davies-Bouldin indices.

methods with MSE or NDEI novelty scores (with mixing between clusters).
The residual error along time is plotted in Fig. 5 (at each time step as well

as the cumulated value). It is estimated by the ARWHMM trained on an AE
signal from class 4 and applied on AE signals from the four classes. We can
observe how the error evolves gradually as new data points are collected. The
responses are naturally ordered as class 4 < class 3 < class 2 < class 1 (natural
due to the damping and natural frequency of signals).

Sensitivity to the AE signal used in training: Figure 6 shows the sensitivity
of the method according to the selection of the initial AE signal used in training
for the toy dataset. 20 signals were randomly selected from all classes indepen-
dently. We can observe a first set of results, with novelty score L2RAT: Results
are stable with an ARI equal to 1 (recognition of all 399 signals for every test),
and 0.9 with CH index coupled with KM and LK clustering methods. CH index
coupled with various methods and novelty scores then provide a second set of
results varying from 0.6 to 0.3 with more variability. Then the third set of re-
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Figure 5: Response (in terms of point-wise and cumulated residual errors along time) of a
model trained on an AE signal from class 4, on AE signals from different classes.
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sults are made of configurations (novelty score, index, clustering) which provide
low performance.

Figure 6: Performance sensitivity according to the selection of the initial AE signal used in
training for various configurations of clustering methods (KM=Kmeans, LK=hierarchical clus-
ter tree, GM=Gaussian distribution), novelty scores (L2RAT, MSE, LOGL, PSNR, MAXERR
and NDEI) and quality indices (CH=Calinski-Harabasz, SIL=Silhouette, and DB=Davies-
Bouldin).

Comparison with supervised classification: Since the ground truth is known
(by simulation), we can evaluate the performance that can be obtained using
supervised learning. For that, we used random subspace ensembles implemented
in Matlab© 2016. The input was the set of 6 novelty scores generated by an
ARWHMM trained on one signal from class 4 and applied on the remaining
399 signals. Figure 7 shows the results using a 2-NN classification learner. The
performance is plotted against the number of learners (1 . . . 15) in the ensemble
and using 10-fold cross validation. We can observe that the classification error
rate of this supervised learning method oscillates around 16% with at least 10
learners. With one learner, the error is about 18.5% which is greater than the
proposed method using L2RAT (no error and correct estimation of the number
of clusters despite using one AE signal from a unique class).

Comparison with supervised novelty score selection: Using supervised learn-
ing, we can also evaluate if the relevance of novelty scores as seen by the AR-
WHMM (L2RAT < NDEI < MAXERR < LOGL < MSE < PSNR), is similar
to supervised learning. The variable selection method based on neighborhood
component analysis [81] implemented in Matlab© 2016 was used. We can ob-
serve that L2RAT (Figure 8) is indeed the far most important novelty score for
this dataset. This supervised method also emphasizes that the worse scores for
this particular dataset are MSE and PSNR are underlined in our method (Fig.
6). Therefore, using only one unique signal, the proposed unsupervised learning
method based on ARWHMM here provides quite similar results.
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7. Real dataset

We considered AE signals generated during a quasi-static and a fatigue
tests of laminated composite materials. Such materials are extensively used
in aerospace industry due to their high specific strength and modulus. Their
behavior under impact is of paramount importance since impacts occurring dur-
ing in-service use induce internal damages which are visually imperceptible but
significantly trending the performance downward and possibly causing unsta-
bility in the structure [82, 83].

7.1. Materials and methods

7.1.1. Materials and production of composite plates

Carbon fibre reinforced laminates are based on Arovex© 250 Prepreg, which
is a curing epoxy prepreg. Samples were fabricated by autoclave forming with a
curing cycle under a pressure of 3.5 bar, heating step with a rate of 1.5 °C/min to
reach 121 °C, hold for 120 min, subsequent cooling step with a rate of 1.5 °C/min.
Vacuum was applied during the whole cycle. A quasi-isotropic stacking sequence
with 32 plies ([0/45/90]4s) has been manufactured and investigated.
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7.1.2. Impact testing

Impact tests were performed using an instrumented drop tower (In-
stron/CEAST 9340) equipped with an hemispherical steel impactor having a
diameter of 12.7 mm. A circular sample holder with an inner diameter of
40 mm was used to support the specimen, in combination with a clamping plate
- pneumatically activated - having the same inner diameter (requirements of
the ASTM D5628 standard). Specimens have been tested at room temperature
with an energy level of 2.5 J using a total mass of 2.987 kg. After impact, some
specimens were scanned using a nano-micro-tomograph to evidence the initial
state of damage. The cross-section view (Figure 9) depicts a typical cone-shaped
profile of defects initiated by the impact occurring at the top. Interply delam-
inations are clearly visible (horizontal lines in white) at the interface between
plies. Through the thickness, the state of damage is evidenced. Matrix cracks
can also be observed (oblique lines between between plies). This network of
delaminations is interlinked by intralaminar matrix cracks [84]. It was observed
by [84] that intralaminar matrix cracks occurred parallel to the direction of the
fibres and form a “spiral staircase” of delaminations around the impact site.
During the following flexural tests, this complex initial state of damage will be
the source of stress concentrations. Matrix cracks for example represent the
initiation points for new delaminations and fibre breakages which ineluctably
change the performance of this type of material.

Figure 9: Nano-micro-tomography image of a specimen after impact.

7.1.3. Flexural testing

Both static and fatigue tests were performed using a four point bending
device (ASTM D 7264) with a support span of 130 mm and a load span of
65 mm. The tests were carried out in displacement control with a crosshead
speed of 1 mm/min for the quasi-static tests. This device was connected to an
electro-mecanical testing machine, Instron Eletropuls E10000, equipped with a
10 kN load sensor. The displacement was measured by a LVDT transducer. The
fatigue tests were done under a sinusoidal waveform loading at 3 Hz. A load
amplitude control mode and a ratio between minimum and maximum stress (R)
of 0.1 were used with 80% of the maximum stress. Peak-to-peak and average
amplitudes of load and LVDT sensors were recorded for each cycle. A complete
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cycle was also recorded as a function of a linear progression. The last 20 cycles
before breaking were also systematically recorded.

7.1.4. Post-mortem analysis

The impact loading, due to the low energy level used, resulted in a slight
indentation on the impacted side while no damage was detected on the rear face.
Despite this apparently low level of damage, the specimens subjected to fatigue
loading after impact exhibited a different failure pattern with extensive cracks
and delaminations on both sides (figure 10), namely the one in compression and
the other in tension. In this case, multiple delaminations of the surface plies,
starting from matrix cracks likely induced by the impact loading, caused a lost
in integrity during their propagation at increasing load until catastrophic fibre
failure occurred in the compression side.

Figure 10: Fatigue test of an impacted sample: Post-mortem profile.

7.1.5. AE acquisition

The transient elastic waves were recorded during test at the material sur-
face using a multichannel data acquisition system from Euro Physical Acoustics
corporation (MISTRAS Group). Two miniature piezoelectric sensors (micro-
80) were used with preamplifiers set to 40 dB, a 20 − 1000 kHz filter and a
sampling rate of 5 MHz. The calibration was performed before each test after
installation of the transducers on the specimen and using a pencil-lead break
procedure. The real-time wavelet-based wave picking method proposed in [25]
was applied to get AE signals with Dauchechies wavelet of order 10 and with
detection thresholds set to PDT=30 µs, HDT=100 µs, HLT=30 µs.
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7.1.6. Clustering for quasi-static data

Seven AE signals were selected randomly in the set of AE signals with ampli-
tude greater than 60 dB (Fig. 11). Then, every AE signal, used both in training
and in testing, were normalised between -1 and 1 by dividing the voltage value
by the maximum absolute value (∀t ∈ 1 . . . |x|, xt ← xt/maxt(|xt|)).
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Figure 11: Signals used for ARWHMM learning in the quasi-static test.

On each AE signal, one ARWHMM was trained and the inference of the six
novelty scores was then made on all other signals (this process was repeated for
the seven signals). The ARWHMM was initialised as in the previous section.
The number of states and components in the mixture model were kept to 2 and
10 as previously. The lag was set for each signal using the same procedure as
before based on sample partial autocorrelation. For a given AE signal used in
training, all novelty scores and all pairs in

N = [NOV
′

mse NOV
′

logl NOV
′

psnr NOV
′

l2rat NOV
′

maxerr NOV
′

ndei]

as well as in the first order difference of the scores, were used as inputs of
clustering approach detailed in the previous section.

Figure 12 represents the result of clustering for the quasi-static test using the
logarithm of cumulated occurrences in each cluster. Each step represents the
sudden assignment of AE signals to a cluster. The number of AE signals assigned
depends on the height of the step. A plateau for a given cluster illustrates that
the AE source associated to this cluster is not active. The cumulated energy
(absolute and MARSE [24]) were extracted from AE signals and plotted here
for information but not used in clustering. The stress in the outer layer of the
composite is also depicted. This type of information is useful to understand
the global behavior of the material. The drops observed in this curve are an
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indication of dramatic change in the stiffness due to fibre breakage and large
damage propagation (matrix cracking, delamination, fibre/matrix debonding).

The clusters’ onset are positioned close to the highest steps occuring on the
cumulated energy (t = 15, 17, 22, 290, 390 and 730s). Therefore, without using
any energy-based features, the method is able to infer some useful patterns
concerning damage kinetics and corresponding to changes in the evolution of
the energy features [85, 86, 87]. Those onsets, well spread on the time axis
and optimised in the clustering method described beforehand, are useful to
determine the various phases of the damage process. Between phases, there is
a stable damage growth and those phases may correspond to different damage
mechanisms such as matrix cracking, fibrematrix debonding, delamination, and
fibre breakage, or similar damages but in different plies of the composite. In
that case, the cumulated occurrence graph shows that there may be dominating
damages at different periods. For instance, clusters 1-3 evolve drastically at
the beginning of the test, while clusters 4, 5 and 6 only start at t = 290, 390
and 730s respectively. The occurrence of cluster 5 is just after a period where
clusters 2-4 remains quiet while cluster 1 evolves substantially. The evolution of
cluster 5 is also substantial between t = 390 to t = 730 compared to the other
clusters.

Figure 12: Quasi static test: Damage sequence estimated. Cumulated energy (MARSE and
absolute) shown for information but not used in clustering.

7.1.7. Clustering for fatigue data

A set of 10 AE signals were drawn randomly and used for training AR-
WHMM. Each model was then applied on all AE signals in order to generate
the novelty scores. Figure 13 represents the result of clustering. We can observe
that the method estimated 6 clusters with different onsets and kinetics yielding
5 main phases.
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In phase 1 (0-33%), cluster 1 starts early (first cycles) with about 30 events
(101.5) in the same clusters. It evolves drastically until 20% and then follows a
quiet period until first occurrence of cluster 2 with about 60 events. This new
cluster is synchronised with a high increase of cluster 1 together with a high
increase of energy in AE signals. During the second phase, cluster 2 quickly
reaches a plateau which probably means that this cluster is related to a sudden
progression of cracks. The plateau for cluster 2 represents about 30% of the
fatigue life during which only cluster 1 evolves quite linearly. Phase 3 starts at
65% of the fatigue life, with the evolution of cluster 2 (end of plateau) which
is then followed by the first occurrence of cluster 3 (with about 16 events),
synchronised again with a substantial increase of the energy. In phase 4, clus-
ter 2 evolves substantially followed by the occurrence of cluster 5 (about 10
events) and a high increase of energy release. Ultimate failure is preceded by
the occurrence of cluster 6 and a huge increase of energy.

Cluster 2 seems to drive several clusters and thus several damage mecha-
nisms. The evolution of this cluster around 65% of the fatigue life, preceding
the evolution of energy and the occurrence of other clusters, is related to observa-
tions made by previous authors for other materials and different configurations
[88, 89, 27].

Figure 13: Fatigue test: Damage sequence estimated versus normalised cycles in %. Cu-
mulated energy (MARSE and absolute) shown for information but not used in clustering.

8. Conclusion

This work shows how to use novelty detection for clustering raw acoustic
emission signals. This new approach does not need to extract features that rep-
resents a cumbersome phase when implementing a pattern recognition method
to learn from those signals. This paves a new way for the interpretation of
acoustic emission streaming using representation learning.
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The method was applied on simulated data and compared to supervised
learning. The results shown that the proposed unsupervised approach is able
to sort correctly the novelty scores according to their effectiveness in clustering
this dataset. It also performed well in clustering the full dataset using only one
signal as a reference.

When applied on real datasets originating from carbon fibre reinforced plas-
tics composites, results shown relevant clustering in terms of timeline of the
obtained clusters. The onsets of the obtained clusters are well related to the
evolution of the cumulated energy, which is a widely used feature to understand
the behavior of materials using acoustic emission. This results shows that the
proposed method is able to naturally capture this evolution without using this
feature. The change points obtained by the proposed method are also well cor-
related with the evolution of the material properties both in quasi-static and
fatigue tests.

Future work include the development of new novelty detection measures,
the optimisation of the number of random AE reference signals to use, the
incorporation of domain-knowledge information in the modeling (e.g. through
the weights). Another key point is to make the proposed methodology suitable
for online monitoring and, for that, to include information about the operational
conditions of the material of interest.
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