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Abstract — Observing the state of totally unknown nonlinear
systems is a problem that is addressed in the ADRC framework
based on the use of Extended State Observers (ESO). A
weak point of available ESO designs is that they do not take
into account explicitly the statistical knowledge on the noise
measurement when this one is available. This paper introduces
a generic approach that makes possible to replace the ESO
observer by a Linear Kalman filter, taking into account the
variance of any Gaussian measurement noise. This approach
can be applied on a specific class of unknown nonlinear SISO
systems. Despite the fact that a linear Kalman filtering is a
model-based estimation, the proposed approach makes possible
the observation of nonlinear and time-varying systems when no
information exists on their structure, time-varying parameters
and potential disturbances. The process noise associated to this
linear observation approach is also provided.

Index Terms — Observer for Nonlinear Systems, Extended
State Observer, Kalman Filter, ADRC, Time-Varying Systems

I. INTRODUCTION

There exist various strategies for the obervation of non-
linear systems like the extended Kalman filter or one of
its many extensions [11], Lie algebra-based observers [15],
[6], Luenberger-like observers [28], [20], optimization-based
observers [1], high-gain observers [13], etc. As the observers
designed with these approaches duplicate the system’s non-
linear dynamics, a basic requirement is that this dynamics is
known to some extent. But in some cases the system cannot
be modeled nor identified for a question of available time,
cost, skills, etc. In this particular configuration, the system
is considered as unknown but still requires observation and
control schemes. Such considered unknown systems can be
nonlinear and time-varying. In the field of control theory, the
Active Disturbance Rejection Control (ADRC) framework
[5], [4], [8] has been developed to overcome these problems
without any training approaches. ADRC takes its deep roots
in the Extended State Observer (ESO) [9] that is estimat-
ing an extended state that lumps unmodeled dynamics and
external disturbances. Following the ESO parameterization
steps described in [3], the ADRC technique has been used
to solve various kinds of engineering problems [2], [27],
[25]. Efficiency of ESO designs has been improved other
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the years by increasing their order and that idea paved the
way of higher-order ESO [7], [19], Generalized Proportional
Integral observers (GPI) [18], [24], etc. Nevertheless these
ESO designs do not take into account explicitly the effect
of the noise measurement on the state observation. If some
statistical information on the noise is known, a typical
framework to take this information into account is the vast
family of observers based on Bayesian estimation [21] like
for instance Linear Kalman filter (LKF) for linear systems,
Extended Kalman filter (EKF) for linearized nonlinear sys-
tems, Unscented Kalman Filter (UKF) [11] and Particule
Filter (PF) [22] for nonlinear systems. Such state estimation
approaches need a model to be implemented, which seems
to make them totally useless if the system is unknown. The
aim of this paper is to show that the most basic and aged
filter of this family, eg. the discrete time-varying Linear
Kalman Filter introduced in 1960, can be used to estimate
the state of a given class of unknown and time-varying
nonlinear SISO systems if their outputs are corrupted by a
known Gaussian additive white noise. The remainder of the
paper is organized as follows. Section II introduces some
already published approaches that will be reused in this
paper. Section III specifies the class of nonlinear systems that
are considered and defines the framework of the developed
approach. Section IV proves that these nonlinear systems
can be described by a linear system of any order to which is
added a virtual input. Section V presents the linear Kalman
filter that is used to reconstruct not only the state components
of the system but also the virtual input. Some simulation
results are shown in section VI to exhibit the efficiency
of the proposed observation method. Finally, concluding
discussions are given in sections VII and VIII.

II. ROOTS OF THE PROPOSED OBSERVATION STRATEGY

The observation strategy presented in this paper takes its
roots in the ADRC framework and also in an unknown
input observation technique for known linear systems that
uses a LFK [23]. For SISO systems, ADRC addresses the
observation and the control of dynamical uncertain nonlinear
systems of order p whose state-space representation is given
by [10]: 

ẋ1 = x2,
...

ẋp−1 = xp,
ẋp = f(X, d, t) + b(X, t)u,
y = x1,

(1)



where d is some unknown external disturbance, f(X, d, t) ∈
IR and b(X, t) ∈ IR are some time-varying nonlinear and
possibly unknown functions with b(X, t) 6= 0. If b0 6= 0
is chosen to be an estimation of b(X, t), and if the total
disturbance, that lumps the model uncertainties and d, is
defined as an unknown extended state component xp+1:

xp+1 , f(X, d, t) + (b(X, t)− b0)u (2)

then (1) is equivalent to

ẋ1 = x2,
...

ẋp−1 = xp,
ẋp = xp+1 + b0 u,
y = x1.

(3)

If an extended state Xe = [x1 . . . xp xp+1]
T is introduced,

then Xe can be classically observed with any ESO of order
p+ 1 developed in the literature like Linear Extended State
Observers [17], [25], [26], [16], [14] or higher-order ESO
already cited that improve the estimation quality [19]. The
idea of using an extended state of order p + 1 will be
keep in this paper but the proposed approach will provide
an extension of the classical ADRC formulation. Using an
appropriate equivalent state-space representation introduced
in Section IV, the proposed approach will also consider
that the extended state component is here a virtual additive
unknown input. Estimating an unknown input with a LKF has
been proposed in [23], but exclusively for a perfectly known
linear system having a null control input. The challenge
to face consists in merging these two approaches, with
one related to an unknown nonlinear system and extended
state and the other to a known linear system with unknown
additive input and Gaussian measurement error.

III. PROBLEM STATEMENT

This paper addresses the state observation problem of
unknown nonlinear and time-varying SISO systems that
obey the three following assumptions.

Assumption 1: The systems of interest are nonlinear, un-
known and time-varying, with an input-output dynamics that
can be described by an Ordinary Differential Equation (ODE)
of order n > 0 defined by:

y(n)(t) = f
(
y(t), . . . , y(n−1)(t), u(t), U ′(t), t

)
(4)

where
• the order n is unknown;
• the nonlinear and time-varying function f exists but is

unknown;
• the scalar output y(t) ∈ IR will be sampled and

measured with a zero-mean additive Gaussian noise
v(kTs) ∈ IR with a known variance R.

• the scalar input u(t) ∈ IR is the known piecewise-
continuous output of the controller given by a zero-order
hold;

• the multidimensional piecewise-continuous disturbance
inputs U ′(t) ∈ IRδ are assumed unknown. The
dimension δ is also unknown. These disturbances can
affect the system in any way.

Assumption 2: The state vector X ∈ IRn of the unknown
system defined by (4) is written as

X =
[
y ẏ · · · y(n−1)

]T
. (5)

Assumption 3: The output y and its derivatives
ẏ, . . . , y(p−1) with p > 0 are assumed necessary to
implement the control law of the unknown system. These p
components are gathered in the vector

X =
[
y ẏ · · · y(p−1)

]T∈ IRp (6)

that has to be observed, with p being chosen. The strategy
to choose p is outside the scope of this paper that is only
focused on the observation of X for any chosen p.

With such assumptions, p can be higher, equal or lower
than the unknown value n. If p ≤ n then the observer will
be a reduced-order or a full-order observer of the state X . If
p > n then

X =
[
XT y(n) . . . y(p−1)

]T
. (7)

In this case, the n state components of X and p−n additional
successive output derivatives will be observed.

IV. EQUIVALENT STATE-SPACE REPRESENTATION

Let us introduce p a priori coefficients ai ∈ IR and a scalar
b 6= 0. The nonlinear n-order ODE (4) can be represented
by an equivalent linear p-order ODE using the procedure
explained below. From (4):

y(n) − f(y, . . . , y(n−1), u, U ′, t) = 0 (8)

which can be written as

y(n) − f(y, . . . , y(n−1), u, U ′, t)
− y(p) + (a1y + . . .+ apy

(p−1) + bu)

+ y(p) − (a1y + . . .+ apy
(p−1) + bu) = 0. (9)

Let us define a virtual input C ∈ IR by

C ,− 1

b

[(
y(n) − f(y, . . . , y(n−1), u, U ′, t)

)
(10)

− y(p) + (a1y + . . .+ apy
(p−1) + bu)

]
such that Eq. (9) is equivalent to the following p-order ODE
by injecting C in it:

y(p) = a1y + . . .+ apy
(p−1) + bu+ bC . (11)

Thanks to (8), it is possible to simplify (10) to

C = −1

b

[
−y(p) + a1y + . . .+ apy

(p−1) + bu
]
. (12)

If p ≤ n, the unknown temporal functions y, ẏ, . . . ,
y(p) in (12) are mathematically defined thanks to (4). If



p > n, the nonlinear function f has to be (p − n − 1)-
differentiable. Then y, . . . , y(n) are defined by (4) and the
additional unknown temporal functions y(n+1), . . . , y(p) are
mathematically defined by differentiating (4) p−n−1 times,
which lead to:

y(p) =
dp−n−1

dtp−n−1
f
(
y, . . . , y(n−1), u, U ′, t)

)
. (13)

As both ODEs (4) and (11) share the same first p initial
conditions on y(t0), . . . , y(p−1)(t0), (11) has the same input-
output behavior as the unknown nonlinear n-order ODE (4).
On a structural point of view, (11) now depends on p known
coefficients ai, a known coefficient b and an unknown virtual
input C . With (6), the equivalent input-output dynamics (11)
can be written as a state-space representation:

Ẋ = AX +Bu+BC (14)
y = CX,

A =


0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . .
0 0 0 . . . 0 1
a1 a2 a3 . . . ap−1 ap


p×p

B =


0
0
...
0
b


p×1

(15)

C =
[
1 0 . . . 0

]
1×p .

By setting X =
[
x1 · · ·xp

]T
, (14) can be put under the

following form with (15):

ẋ1 = x2,
...

ẋp−1 = xp,
ẋp = a1x1 + · · ·+ apxp + b u+ bC ,
y = x1.

(16)

If we choose to set all the p coefficients ai to 0 and b to
b0, then (16) becomes equivalent to (3) with the unknown
extended state xp+1 equal to bC . In this paper, the choice
of the parameters ai will not be restricted to 0. Therefore,
the standard SISO state-space formulation of ADRC can be
seen as a specific case of the proposed methodology.

V. STATE OBSERVER USING KALMAN FILTERING

The representation (14) reproduces the input-output behav-
ior of the nonlinear unknown system (4). This representation
of order p is linear with perfectly known input, state and
output matrices. As the output y is measured at each sample
time tk with an additive white gaussian zero-mean noise
vk ∈ IR having a known variance R, a linear Kalman filter
[12] based on matrices A, B and C is an appropriate way
to achieve the observation of the unknown nonlinear system.
Nevertheless, using such an approach implies that a Gaussian
process noise can be correctly defined and that its associated
covariance matrix can be mathematically derived. In most
implementation of Kalman filtering, this point is tricky and
lead to some heuristic choices. We show in the following
that the approach previously developed in [23] for a second-
order system with u = 0 can be adapted to solve this point
in our framework.

A. Virtual input modeling

Using a Bayesian framework to establish an a posteriori
unknown input estimation implies that this estimation is
based on an a priory uncertain modeling of the virtual input
evolution. Such modeling has to formulate that this evolution
is completely unknown. In other words, whatever is dt 6= 0,
strictly nothing can be a priori deduced on the derivative
Ċ (t + dt) from the knowledge of Ċ (t). Such property can
be easily hold by a modeled stochastic signal Ċm(t) with
an infinite bandwidth and an auto-correlation function being
a Dirac delta impulse. This modeled derivative of the input
signal is defined by:

Ċm(t) = ζ(t) (17)

with ζ(t) a zero-mean infinite-variance white Gaussian
stochastic process characterized by its power spectral density
(PSD) W given by the auto-correlation function φ of ζ(t):

φζ,ζ(τ) =W δ(τ) ∀τ ∈ IR (18)

in which δ(τ) is a Dirac delta impulse. Whatever is the
dimension p of X , once matrices A, B and C are set
arbitrarily, W ∈ IR is the only a priori parameter to adjust
that will influence the dynamics of the observer (ie the
observer gain) and its level of noise.

B. Discrete Kalman filter synthesis

An extended stochastic state Xe =
[
XT Cm

]T ∈ IRp+1 is
used to introduce the modeled stochastic input Cm into the
state to estimate. The associated stochastic state-space repre-
sentation is obtained using (17) and (14) with C substituted
by Cm :

Ẋe = AXe + Bu+Mζ, (19)
y = CXe, (20)

A =

[
A B

01×p 0

]
B =

[
B
0

]
M =

[
0p×1
1

]
C =

[
C 0

]
.

(21)
A discretization using a zero-order hold (zoh) gives the
evolution of Xe

k =
[
Xk Ck

]T
, with Ck, the discretization

of Cm by the sampling period Ts:

Xe
k+1 = F Xe

k + G uk + Zk, (22)
yk = CXe

k, (23)

F = eATs G =

∫ Ts

0

eAtdtB. (24)

The process noise Zk ∈ IRp+1 is a zero-mean band-limited
Gaussian white noise that characterizes the uncertainty on
the evolution of Xe

k . This uncertainty is due to the a priori
stochastic modeling Ċm(t) whose infinite bandwidth is now
restricted by the sampling period Ts used in the zoh. Its
(p+ 1)× (p+ 1) covariance matrix Q is:

Q = E
[
ZkZ

T
k

]
=

∫ Ts

0

eAtMWMTeA
Ttdt (25)

=W

∫ Ts

0

eAtMMTeA
Ttdt =W η(Ts). (26)



Thus, for a given Ts, W simply induces a proportional factor
in Q. The matrix structure of Q is given by η(Ts). This
means that the uncertainty on the extended state evolution
will raise if the parameter W increases. The covariance Q
can be computed using a numerical or a symbolic solver.
The measurement ymk of yk is assumed to be given by

ymk = yk + vk (27)

with vk a discrete-time band-limited gaussian white noise
with zero-mean and variance R = E

[
v2k

]
. Using an a priori

initial extended state estimation X̂e
0 and error estimation

covariance matrix P0 (that only influences the transient
response of the observer from its initial state), the classi-
cal predict and update phases of the discrete time-varying
Kalman filter are given by:

X̂e
k|k−1 = F X̂e

k−1 + G uk−1, (28)

Pk|k−1 = FPk−1FT +Q, (29)

Kk = Pk|k−1CT
(
CPk|k−1CT +R

)−1
, (30)

X̂e
k = X̂e

k|k−1 +Kk

(
ymk − CX̂e

k|k−1

)
, (31)

Pk =
(
I(p+1)×(p+1) −KkC

)
Pk|k−1, (32)

provided that the pair (F , C) is observable. The first p
components of X̂e

k give the estimation X̂k of X(t) at time
t = kTs and its last component gives the estimation Ĉk
of C (t). Note that the scalar parameter W in (18) adjusts
a trade-off between the response time of the observer and
its variance for each extended state component [23]. If W
increases, the response time of the observer decreases but its
level of noise increases.

VI. ILLUSTRATIVE EXAMPLE

In order to illustrate the efficiency of the proposed ap-
proach, the latter is applied to an unknown complex non-
linear and time-varying system, with unknown additive and
multiplicative disturbances.

Description of the system

The behavior of the unknown system is described by the
following equation:

y(4) = −0.1y(3) − 5ÿ − 2.5sgn(y)arctanh(ẏ2)y + d1

+0.3 arccos y − 0.01 arctan(ey) sin(0.1t) + d2u. (33)

The unknown time-varying disturbances U ′(t) are:[
d1 d2

]T
=
[
0.1 sin t e−0.005t

]T
. (34)

It has to be noted that (33) and (34) are only given for
information and are unknown to the observation process.
Also note that the disturbance d2 changes the applied control
input in a varying multiplicative way that is unknown to
the observer. The disturbed input d2u as stated in (33) is
plotted in red in Fig. (1b). In addition to the nonlinear
functions applied on y and its derivatives, the output y is
also multiplied by a function of ẏ and a sin function brings
a time-varying behavior in the ODE.

Choice of the LTI model

Let us arbitrarily choose p = 2 to observe the state
components X = [x1 x2 ]

T
= [ y ẏ ]

T. To illustrate the fact
that the dynamics behavior associated to the LTI coefficients
is not a critical point, a very underdamped but sufficiently
fast LTI system is chosen arbitrarily to observe the unknown
nonlinear system, which leads to the following matrices A
and B:

A =

[
0 1
a1 a2

]
, B =

[
0
b

]
(35)

where a1 = −1.40, a2 = −0.05, b = 450. The control
input u(t) is a step input of magnitude 0.005 at time t = 20 s.

The equivalent representation of the nonlinear system (4)
is illustrated in Fig. (1a). It shows the output of the different
representations of the system for the input u(t) and for null
initial conditions. First, the output of the underdamped LTI
system (35) is displayed in magenta. It is null for the first
20 seconds. Second, the output of the same LTI system with
the virtual input C , denoted LTI +C , is pictured in cyan.
It is complex and not null for the first 20 seconds. Finally,
the output of the nonlinear system in (33) is represented in
black. From figure (1a), it is clear that the dynamics of the
nonlinear system (33) is the same as the dynamics of the
LTI+C system (14).

Configuration of the Kalman filter

The initial a priori value of the extended state estimation
has been chosen arbitrarily to X̂e

0 = [1.5 0 0] (with wrong
initial value for x1(0) and C (0)), the power spectral density
to W = 7.10−8 and the error estimation covariance matrix
to P0 = diag[10−5; 10−5; 5.10−10]. A small matrix P0 will
induce a large confidence in X̂e

0 and thus a slow transient
response of the observer to correct the errors present in its
initial condition X̂e

0 . Furthermore, the output measurement
of the nonlinear system (33) is affected by a noise vk, which
is a band-limited Gaussian white noise, with zero-mean and
variance R = 10−5 (see Fig. (1b)). The estimation results of
the Kalman filter of the extended state Xe = [y ẏ C ]T with
a sampling time Ts = 0.01 s are illustrated in Figures (1c),
(1d) and (1e). In these three figures, the real component of
the extended state is displayed in red while its estimation
is plotted in blue. The real value of C is computed using
(12). In the first seconds, the wrong initial estimations for
x1(0) and C (0) are rapidly corrected by the observer. Then,
one can see that, despite the noisy measurement of the
complex nonlinear system’s output, the linear Kalman filter,
built on a simple 2nd-order LTI system having a sufficient
bandwidth, is able to track the first two states components
of the nonlinear system (33) and C with a bounded error
given in Fig. (1f).

VII. DISCUSSION AND PERSPECTIVE

If no information is available on the system, the coeffi-
cients ai and b 6= 0 can only be chosen randomly (whereas
in common ADRC, these coefficients are necessary null).
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If an approximate LTI modeling compatible with matrices
(15) is available, it can be used to set prior values. Whatever
is the strategy chosen, the choice made will influence the
observer efficiency. Model-free optimization techniques may
be used to enhance the observer efficiency with dynamical
coefficients ai and this point has to be studied in the future.
The choice of Ts has also to be coherent with the bandwidth
of the system. Then, the parameter W has to be tuned to
adjust the level of noise in Ĉk. As shown in [23], smaller
is W and smaller is the observer dynamics, but also smaller
is the noise in the observation. Furthermore, if W is chosen
too small, a delay appears in the observation of the high
part of the spectrum of C and X . This may lead to an
unstable closed loop when the control is added. To enhance
the efficiency of LKF, it should be interesting, like for ESO,
to develop higher-order extended state estimation by adding
the successive derivatives of C into the extended state Xe.
This should give a better estimation of the dynamics of C and
thus a better estimation of X . This issue is also a perspective
for this work.

VIII. CONCLUSION

Providing simple, efficient and generic designs for the
observation and control of complex unknown nonlinear
systems is a challenging issue in control theory. The pro-
posed methodology proposes an alternative to Extended
States Observers used in ADRC when the variance of the
noise measurement is exploited to perform the observation
of a specific class of nonlinear and time-varying SISO
systems with unknown order, structure and disturbances.
It generalizes the use of linear Kalman filtering for this
class of unknown systems. It also provides a straightforward
mathematical background to define the process noise and
its covariance matrix while these points are generally tricky
to define in conventional implementations of Kalman filters.
This illustrates that the potential of linear Kalman filtering for
nonlinear systems is much larger than commonly admitted.
It also illustrates that a model-based linear observer can be
used to observe totally unknown nonlinear systems for which
no model is available. The arbitrary LTI model used in the
LKF can be very different than the system physical behavior.
The important parameter to tune in the observer is a scalar
power spectral density that is related to the effective observer
bandwidth, delay and noise.
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