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ABSTRACT
This paper introduces a generic procedure for the state estimation of unknown non-
linear SISO systems, i.e. when no information is available on their structure, pos-
sibly time-varying parameters and potential disturbances. This procedure relies on
the choice of an arbitrary linear model and the use of a Generic Linear Extended
State Observer, whose principle is also introduced in the paper. The proposed ap-
proach overcomes well-known model-based nonlinear techniques in the sense that it
is easy to implement, all the while avoiding any identification step and mathemati-
cal complexity. Simulation results involving a nonlinear system, subject to external
disturbances and measurement noise, compare the performance of the proposed ap-
proach to the one of some model-free nonlinear observers described in the literature.
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1. Introduction

Owing to its importance in modern control theory, the field of state observation for
dynamical systems has been an active area of research for decades. Based only on
the inputs and outputs of any given system, the resulting observers are expected to
produce an estimation of the states, that is then used by the control structure. For
linear systems, one can cite the works of Kalman for stochastic systems (Kalman,
1960) and Luenberger for deterministic systems (Luenberger, 1964). However, physical
systems may feature some unexpected complexity due to, e.g., inherent nonlinearities,
unavoidable and unknown changes of their structure (uncertainties), the influence of
the environment (disturbances), etc. Therefore, these systems are no longer linear
and that is why many theoretical and practical developments focus on the design of
nonlinear observers.

There exist various strategies for the design of observers for nonlinear systems.
There are, for example, the extended Kalman filter or one of its many extensions
(Julier and Uhlmann, 1997), Lie algebra-based observers (Gauthier, Hammouri,
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& Othman, 1992; Krener and Isidori, 1983), Luenberger-like observers (Marconi,
Praly, & Isidori, 2007; Zeitz, 1987), optimisation-based observers (Dong, Wang,
& Wang, 2013), high-gain observers (Khalil and Praly, 2013), etc. Of all of the
above approaches, the high-gain observers have received the most attention due
to their simplicity and good performance in noise-free settings (Khalil and Praly,
2013). Indeed, in the high-gain observers paradigm, the estimation error trajectory
has an exponential decay rate that can be chosen arbitrarily fast by acting on a
design parameter that appears in the observers structure. Nevertheless, the high-gain
observers design also highlights drawbacks, including implementation issues due to
the value of the design parameter, the peaking phenomenon during the transient
and a sensitivity to measurement noise (Astolfi, 2016). Recent works alleviated these
undesirable properties (Astolfi, Marconi, Praly, & Teel, 2018), but this has been
achieved at the cost of a more complicated design, i.e. increase of the observers
dimension to 2n− 1, use of saturation functions in the observers dynamics, etc.

Furthermore, a major limitation that is common to all the above approaches is
that they all require some a priori information on the structure of the systems, e.g.
their order, a Lipschitzian behaviour (Astolfi et al., 2018; Khalil and Praly, 2013), a
stable zero dynamics (Freidovich and Khalil, 2008), etc. However in many industrial
cases, the systems cannot be a priori known, neither theoretically nor experimentally,
but still require efficient observation and control schemes. Also, as the mathematical
complexity inherent to the nonlinear nature of the systems may be an issue, there
is a growing interest in the development of accessible and general methods to solve
the problem of state observation and control of such unknown nonlinear systems.
Owing to its less dependence on systems information, its abilities to cope with a wide
range of uncertainties and disturbances, and its simplicity in the control structure,
the Active Disturbance Rejection Control (ADRC) framework (Gao, Huang, & Han,
2001; Gao, 2006; Guo and Zhao, 2016) is a significant step towards this purpose.
This framework clearly inspired the approach proposed in this paper.

The idea of ADRC consists in estimating both the state and a total disturbance,
that lumps unmodeled dynamics and external disturbances into an extended state,
by an Extended State Observer (ESO) (Han, 1995). Thus, the state of the unknown
systems becomes available for control purposes and the total disturbance can be
compensated for in real time. Following the ESO parameterisation steps described in
(Gao, 2003), the ADRC technique has been used to solve various kinds of engineering
problems, e.g., motor control (Feng, Liu, & Huang, 2004), flight control (Xia, Zhu,
Fu, & Wang, 2011), robot control (Talole, Kolhe, & Phadke, 2010), etc. Yet, many
of the ESO developed in the literature like the Standard Linear Extended State
Observer (SLESO) (Kim, Rew, & Kim, 2010; Li, Yang, Chen, & Chen, 2012, 2014;
Talole et al., 2010; Wang, Li, Yang, Wu, & Li, 2015) are of order n + 1, where n
is the order of the system. This implicitly assumes that the total disturbance is
constant or slowly time-varying. Therefore, in the common case of non constant total
disturbance, the quality of the estimation provided by the standard ESO becomes
insufficient (Madoński and Herman, 2015). In order to improve the efficiency of the
ESO, a possible option is to increase their order and that idea paved the way to the
design of higher-order ESO (Godbole, Kolhe, & Talole, 2013; Madoński and Herman,
2013, 2015) and Generalised Proportional Integral observers (GPI) (Luviano-Juárez,

Cortés-Romero, & Írez, 2010; Sira-Ramı́rez, Luviano-Juárez, Ramı́rez-Neria, &
Zurita-Bustamante, 2017). Indeed, increasing the number of extended states allows
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to effectively reconstruct a total disturbance described by complex and sophisticated
high order polynomial.

This paper addresses the on-line state observation problem of a specific class of
nonlinear SISO systems that are totally unknown. No learning method is used in
contrast to identification and control approaches based on artificial neural networks
(Suykens, Vandewalle, & De Moor, 1996). In the proposed procedure, the unknown
nonlinear system is represented as a chosen (arbitrarily because no information is
provided) linear system to which is added an unknown non physical exogenous input,
called a virtual input. That exogenous input can be seen as an alternative to the
total disturbance of the ADRC framework. Indeed, the virtual input gathers all the
neglected nonlinearities, unmodeled dynamics, parameter uncertainties, and external
disturbances such that the input-output dynamics of the linear system matches the
one of the nonlinear system. Then, extending the state of the linear system with
some well-posed linear combinations involving that unknown virtual input, its time
evolution can be estimated with any linear extended state observation technique,
alongside with the state of the system. In this paper, this will be achieved by a Generic
Linear Extended State Observer (GeLESO). This new concept is a less conservative
version of higher-order ESO and GPI observers used in ADRC in the sense that the
GeLESO is built upon a linear system whose parameters are not necessarily restricted
to zero as it is the case for higher-order ESO and GPI observers. Furthermore, the
order of this observer can be increased at will in order to preserve the estimation
accuracy even with unknown complex virtual input. In the following, the design
procedure of the GeLESO is described. The proof of the interest of increasing its
order is established. Its performance is validated by simulations and its behaviour is
compared to higher-order ESO/GPI observers when measurement noises are present
or not.

The remainder of the paper is organised as follows. Section 2 defines the framework
of the approach and specifies the class of nonlinear systems that are considered. Section
3 proves that these nonlinear systems can be described by a linear system to which
is added a virtual input. Section 4 establishes the link with the ADRC framework.
Section 5 presents the Generic Linear Extended State Observer that is proposed to
estimate, not only the state of the system, but also the virtual input. Some simulation
results are shown in section 6 to exhibit the efficiency of the observation scheme.
Finally, concluding discussions are given in sections 7 and 8.

2. Problem statement

This paper addresses the state observation problem of unknown nonlinear and
time-varying SISO observable (Chen, Bai, & Huang, 2016) systems that obey the
three following assumptions.

Assumption 2.1. The systems of interest are nonlinear, unknown and time-varying,
with an input-output dynamics that can be described by an Ordinary Differential Equa-
tion (ODE) of order n > 0 defined by:

y(n)(t) = f
(
y(t), . . . , y(n−1)(t), u(t), U ′(t), t

)
(1)
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where

• the order n is unknown;
• the nonlinear and time-varying function f exists but is unknown;
• the scalar output y(t) ∈ IR is the known information provided to the observer.

Its n successive derivatives are assumed to be defined but are unknown;
• the scalar input u(t) ∈ IR is the piecewise-continuous known output of the con-

troller that is provided to the observer;
• the multidimensional piecewise-continuous disturbance inputs U ′(t) ∈ IRδ are

assumed unknown. The dimension δ is also unknown. These disturbances can
affect the system in any way.

Assumption 2.2. The state vector X ∈ IRn of the unknown system defined by (1) is
written as

X =
[
y ẏ · · · y(n−1)

]T
. (2)

Assumption 2.3. The output y and its derivatives ẏ, . . . , y(p−1) with p > 0 are as-
sumed necessary to implement the control law of the unknown system. These p com-
ponents are gathered in the vector

X =
[
y ẏ · · · y(p−1)

]T∈ IRp (3)

that has to be observed, with p being chosen.

With such assumptions, p can be higher, equal or lower than the unknown value n.
If p ≤ n then the observer will be a reduced-order or a full-order observer of the state
X . If p > n then

X =
[
XT y(n) . . . y(p−1)

]T
. (4)

In this case, the n state components of X and p − n additional successive output
derivatives will be observed.

3. Equivalent state-space representation

Let us introduce p a priori coefficients ai ∈ IR and a scalar b 6= 0. The nonlinear
n-order ODE (1) can be represented by an equivalent linear p-order ODE using the
procedure explained below. From (1):

y(n) − f(y, . . . , y(n−1), u, U ′, t) = 0 (5)

which can be written as

y(n) − f(y, . . . , y(n−1), u, U ′, t)

− y(p) + (a1y + . . .+ apy
(p−1) + bu)

+ y(p) − (a1y + . . .+ apy
(p−1) + bu) = 0. (6)
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Let us define a virtual input C ∈ IR by

C ,− 1

b

[(
y(n) − f(y, . . . , y(n−1), u, U ′, t)

)
(7)

− y(p) + (a1y + . . .+ apy
(p−1) + bu)

]
such that Eq. (6) is equivalent to the following p-order ODE by injecting C in it:

y(p) = a1y + . . .+ apy
(p−1) + bu+ bC . (8)

Thanks to (5), it is possible to simplify (7) to

C = −1

b

[
−y(p) + a1y + . . .+ apy

(p−1) + bu
]
. (9)

If p ≤ n, the unknown temporal functions y, ẏ, . . . , y(p) in (9) are mathematically
defined thanks to (1). If p > n, the nonlinear function f has to be (p − n − 1)-
differentiable. Then y, . . . , y(n) are defined by (1) and the additional unknown temporal
functions y(n+1), . . . , y(p) are mathematically defined by differentiating (1) p− n− 1
times, leading to:

y(p) =
dp−n−1

dtp−n−1
f
(
y, . . . , y(n−1), u, U ′, t)

)
. (10)

As both ODEs (1) and (8) share the same first p initial conditions on
y(t0), . . . , y(p−1)(t0), (8) has the same input-output behaviour as the unknown
nonlinear n-order ODE (1). On a structural point of view, (8) now depends on p
known coefficients ai, a known coefficient b and an unknown virtual input C .

With (3), the equivalent input-output dynamics (8) can be written as a state-space
representation using companion form matrices:{

Ẋ = AX +Bu+BC
y = CX

(11)

where A ∈ IRp×p, B ∈ IRp×1 and C ∈ IR1×p with

A =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0

. . .
. . .

0 0 0 . . . 0 1
a1 a2 a3 . . . ap−1 ap

 , B =



0
0
0
...
0
b

 , C =
[
1 0 . . . 0

]
. (12)

In (11), the virtual input C does not have any physical explanation. The additive
term BC is added to the chosen LTI system AX + Bu to obtain the true state
derivative Ẋ, and thus the true dynamic of the state X associated to the nonlinear
system (1). Like for a process noise, BC gathers all the differences between the state
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evolution of the unknown system (1) and the chosen LTI model. Because of the struc-
ture of the LTI system (11), C is a matched input homogeneous to the control input u .

4. Reduction to the ADRC framework

By setting X =
[
x1 · · ·xp

]T
, and using (12), (11) can be put under the following form:

ẋ1 = x2,
...

ẋp−1 = xp,
ẋp = a1x1 + · · ·+ apxp + b u+ bC ,
y = x1.

(13)

For SISO systems, the classical formulation of ADRC addresses the observation and
the control problem of dynamical uncertain systems of order p whose state-space rep-
resentation is given by (Huang and Xue, 2014):

ẋ1 = x2,
...

ẋp−1 = xp,
ẋp = f(X, d, t) + b(X, t)u,
y = x1,

(14)

where d is some unknown external disturbance, f(X, d, t) ∈ IR and b(X, t) ∈ IR are
some time-varying nonlinear and possibly unknown functions with b(X, t) 6= 0. If
b0 6= 0 is chosen to be an estimation of b(X, t), and if the total disturbance, that lumps
the model uncertainties and d, is defined as an unknown extended state component
xp+1:

xp+1 , f(X, d, t) + (b(X, t)− b0)u (15)

then Eq. (14) is equivalent to

ẋ1 = x2,
...

ẋp−1 = xp,
ẋp = xp+1 + b0 u,
y = x1

(16)

that is classically observed using an ESO in the ADRC approach. If all the p
coefficients ai are set to 0 and b is set to b0, then (13) becomes equivalent to (16)
with the total disturbance (unknown extended state xp+1) equal to bC . Therefore,
the standard SISO state-space formulation of ADRC can be seen as a specific case of
the presented methodology.
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As opposed to the standard ADRC presented above, in this paper, the p parameters
ai will not be restricted to 0. Sections 6 and 7 provide an example and a discussion
on the consequences of having possible non-zero coefficients, including their usefulness
and their influence on future control design and generated output noise.

5. Generic Linear Extended State Observer

The state estimation problem of the unknown nonlinear and time-varying system (1) is
formulated by the state estimation of its linear equivalent representation (8) combined
with the estimation of the unknown virtual input C ∈ IR. To solve this estimation
problem, C has to be included in some way in an extended state Xe. Such estimation
can notably be achieved using a SLESO, a higher-order ESO or a GPI observer. Unlike
all of these approaches, the GeLESO proposed in this paper will use the information
provided by the p parameters ai to estimate C (standard GeLESO) and also the p− 1
successive derivatives of C (higher-order GeLESO) in order to improve the efficiency
of the estimation of X ∈ IRp.

5.1. Design of the standard GeLESO

The standard GeLESO is based on the equivalent state-space representation (13). As
opposed to SLESO cited above, in which the extended state xp+1 represents the total
disturbance, the state xp+1 in the standard GeLESO includes not only the unknown
virtual input C , but also partial information on the linear equivalent representation
(8) of the plant:

xp+1 , a1x1 + . . .+ ap−1xp−1 + bC . (17)

Thus xp+1 includes all the components of the dynamic of (8) excepted apxp+b u. Then
(13) can be written as:

ẋ1 = x2,
...

ẋp−1 = xp,
ẋp = xp+1 + apxp + b u,

ẋp+1 = a1x2 + a2x3 + · · ·+ ap−1xp + b Ċ ,
y = x1,

(18)

where x1, . . . , xp+1 are the p+ 1 components of the extended state Xe. The unknown
virtual input C is deduced from xp+1 by:

C =
1

b
(xp+1 − a1x1 − a2x2 − · · · − ap−1xp−1). (19)

The pair (A,C) in (12) being observable thanks to the companion form of matrix A,
the state estimation of the system (18) is achieved by a (p+1)-order GeLESO designed
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as: 

ż1 = z2 + L1(y − z1),
...

żp−1 = zp + Lp−1(y − z1),
żp = zp+1 + apzp + Lp(y − z1) + bu,

żp+1 = a1z2 + · · ·+ ap−1zp + Lp+1(y − z1),

(20)

with zp+1 = a1z1+a2z2+· · ·+ap−1zp−1+bĈ and where z1, · · · , zp+1 are the estimates of
states x1, · · · , xp+1 respectively, and L1, · · · , Lp+1 are the observer gains to be chosen

to ensure the stability of (20). Then the virtual input estimation Ĉ is given by

Ĉ =
1

b
(zp+1 − a1z1 − a2z2 − · · · − ap−1zp−1). (21)

As mentioned in (Madoński and Herman, 2013), (Godbole et al., 2013), (Madoński
and Herman, 2015), (p+ 1)-order ESO observers implicitly assume that the extended
state component xp+1 should be slowly time-varying and, thus, its time derivative
is ignored. This is the same here for the unknown input C . Thus both SLESO or
standard GeLESO may give an insufficient estimation quality if high dynamics are
present in xp+1. To improve the state estimation accuracy, higher-order ESO and
GPI observers have been developed in which the successive time derivatives of the
total disturbance are taken into account. As opposed to aforementioned approaches,
in higher-order GeLESO, all the information provided by the p parameters ai will be
used to obtain a better representation of the higher-order dynamics of C and improve
the state estimation.

5.2. Design of the higher-order GeLESO

Let i > 0 be the number of extended components in the extended state Xe:

Xe = [x1 · · ·xp xp+1 · · ·xp+i]T ∈ IRp+i. (22)

Like for C and xp+1, each extended state component xp+i has no physical explanation.

They are mathematically introduced to estimate C , C (1), · · · , C (i−1) (i terms) with
all the p+ i components of Xe using some linear combinations explained below.

To proceed with the design of the higher-order GeLESO, the following assumption
has to be made:

Assumption 5.1. C is a continuous m-differentiable unknown function defined on
IR, where m ∈ N∗ with m ≥ i.

In (18), the state xp+1 was introduced to estimate C . The key idea in the proposed
observation scheme is to introduce a state for each derivative of the virtual input to be
estimated. This new state is based on the time derivative of the previous one, where all
the components are kept, but the last one. For instance, to estimate Ċ , the extended
component xp+2, has to be introduced by setting i = 2. The extended state vector Xe
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becomes Xe = [x1, · · · , xp+2]T. According to ẋp+1 in Eq. (18), the new state reads as:

xp+2 , a1x2 + a2x3 + · · ·+ ap−2xp−1 + b Ċ (23)

because ap−1xp is not taken into account in it. Thus Ċ now appears in xp+2. It comes
the following dynamics on x1, . . . , xp+2:

ẋk = xk+1, k = 1, . . . , p− 1,
ẋp = xp+1 + apxp + b u,

ẋp+1 = xp+2 + ap−1xp,

ẋp+2 = a1x3 + a2x4 + · · ·+ ap−2xp + b C̈ .

(24)

This dynamics remains an equivalent representation of the uncertain system, but
thanks to the extended state components xp+1 and xp+2, (24) includes the dynamics

of C and Ċ .

For any i ≤ m, the extended state-space representation of the system (13) will be
written in two different ways depending on the value of i, i.e., when 1 ≤ i < p and
when p ≤ i ≤ m.
If 1 ≤ i < p, i.e. as long as the order of the derivative to be estimated is smaller than
the size of X, the extended state components are defined by:

xp+k ,
p−k∑
j=1

ajxk+j−1 + bC (k−1), k = 2, · · · , i− 1. (25)

If p ≤ i ≤ m, i.e. when the order of the derivative to be estimated becomes larger than
the size of X, the subsequent extended states only include the previous derivative of
C and read as:

xp+i , bC (i−1). (26)

According to (25) and (26), the general representation of the system, including the
initial system (13) and the extended states, is given by:

ẋ1 = x2,
...

ẋp = xp+1 + apxp + bu,
ẋp+1 = xp+2 + ap−1xp,

...
ẋ2p−1 = x2p + a1xp,

ẋ2p = bC (p),
...

ẋp+i−1 = bC (i−1)

ẋp+i = bC (i),
y = x1.

(27)

where the first p rows represent the original system (13). The following p rows, i.e.
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from ẋp+1 to ẋ2p−1 represent the dynamics of the extended state components defined
by (25). The final rows, i.e. from ẋ2p to ẋp+i represent the dynamics of the extended
states written by (26).

The pair (A,C) in (12) being observable thanks to the companion form of matrix
A, the higher-order GeLESO estimating both the states and the extended states, and
subsequently the virtual input and its successive derivatives, is built upon (27) and is
given by: 

ż1 = z2 + L1(y − z1),
...

żp = zp+1 + apzp + Lp(y − z1) + bu,
żp+1 = zp+2 + ap−1zp + Lp+1(y − z1),

...
ż2p−1 = z2p + a1zp + L2p−1(y − z1),
ż2p = z2p+1 + L2p(y − z1),

...
żp+i−1 = zp+i + Lp+i−1(y − z1),
żp+i = Lp+i(y − z1),

(28)

where z1, . . . , zp+i are the p + i components of the observer state Z, and where
L1, · · · , Lp+i are the observer gains to be chosen. For implementation purposes, the
higher-order GeLESO (28) can be written as:

Ż = (Ae − LCe)Z +Buu+ Ly (29)

where the matricesAe ∈ IR(p+i)×(p+i), L ∈ IR(p+i)×1,Bu ∈ IR(p+i)×1 and Ce ∈ IR1×(p+i)

are respectively given by:

Ae =



0 1 · · · 0 0 0 · · · 0 0 · · · 0 0

0 0
. . . 0 0 · · · 0 0 · · · 0 0

...
...

. . .
. . .

...
...

...
...

0 0 · · · 0 1 0 0 0 · · · 0 0
0 0 · · · 0 ap 1 0 0 · · · 0 0

0 0 · · · 0 ap−1 0
. . . 0 0 · · · 0 0

...
...

...
. . .

...
...

0 0 · · · 0 a1 0 · · · 0 1 0 0

0 0 · · · 0 0 0 · · · 0 0
. . . 0 0

...
...

...
...

...
...

. . .

0 0 · · · 0 0 0 · · · 0 0 · · · 0 1
0 0 · · · 0 0 0 · · · 0 0 · · · 0 0



, L =



L1
...

Lp−1

Lp
Lp+1

...
Lp+i


,

Bu =
[
0 · · · 0 b 0 · · · 0

]T
, Ce =

[
1 0 · · · 0

]

(30)

One can notice that the p coefficients ai are included in Ae and gives its specificity.
Computing the dynamics of the estimation error by substracting (28) from (27) leads
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to: 

ė1 = e2 − L1e1,
...

ėp = ep+1 + apep − Lpe1,
ėp+1 = ep+2 + ap−1ep − Lp+1e1,

...
ė2p−1 = e2p + a1ep − L2p−1e1,
ė2p = e2p+1 − L2pe1,

...
ėp+i−1 = ep+i − Lp+i−1e1,

ėp+i = −Lp+ie1 + bC (i),

(31)

which can be put under the more compact form:

Ė = (Ae − LCe)E +BeC
(i) (32)

and where the matrix Be ∈ IR(p+i)×1 reads as:

Be =
[
0 · · · 0 b

]T
(33)

5.3. Parameterisation of the GeLESO

To ensure the stability of the observation error dynamics (32), the gain matrix L has
to be chosen such that the matrix

A = Ae − LCe ∈ IR(p+i)×(p+i) (34)

is Hurwitz. This can be done using pole placement techniques, linear quadratic routines
or any other optimisation designs provided that the pair (Ae, Ce) is observable. In this
paper, in order to ease the tuning of the observer, a single parameter ωo > 0 is used
as in (Gao, 2003; Zheng, Gao, & Gao, 2007) to specify the components of the gains
matrix L:

LT = [L1, L2, · · · , Lp+i]
= [γ1ωo, γ2ω

2
o , · · · , γp+iωp+io ] (35)

where

γj =
(p+ i)!

j!(p+ i− j)!
, with j = 1, · · · , p+ i. (36)

If the p parameters a1, . . . , ap in the matrix A are all set to zero like in ADRC, then
using the same proof as the one in (Zheng et al., 2007), it can be easily shown that
the p+ i observer poles are placed in −ωo and that A is Hurwitz.
If any parameters a1, . . . , ap are chosen different from zero, then the gains L′ that are
placing the poles in −ωo are close to the gains L given by Eq. (35)-(36) provided that
the bandwidth ωo is chosen large enough. In this case, the Hurwitz property has not
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been proven for Ae−LCe with any ωo and ai. Thus, in the following, it will be assumed
that it is verified that A is Hurwitz for the chosen values of ωo and a1, . . . , ap.

5.4. Convergence of the GeLESO

In this section, the convergence analysis of the proposed GeLESO is presented. It is
shown that, in some cases depending on the order of the derivatives of the virtual
input C , the asymptotic convergence of each component Ej of the estimation error E
can be achieved. For the cases where the asymptotic convergence is not achieved, it
is shown that the estimation error is bounded, and the bound is provided. This result
is achieved provided that the following assumption is verified.

Assumption 5.2. C (i) is bounded by some positive constant β, i.e. ∀i ∈ N∗ with
1 ≤ i ≤ m, ∃β ∈ IR+ such that |C (i)| < β.

The different cases are summed up in the following theorem:

Theorem 5.3. Provided that assumptions 5.1 and 5.2 are satisfied, ∀ p, order of
the non physical chosen LTI model, ∀m, number of times that the virtual input C is
differentiated, ∀ i, number of times that the state of the initial system (13) is extended,
and ∀ j = 1, · · · , p+ i, the following statements are verified:

S1: If i = m and C (m) = 0, then lim
t→+∞

|Ej(t)| = 0.

S2: If i = m, and C (m) 6= 0, then ∃ αj ∈ IR+ such that lim
t→+∞

|Ej(t)| ≤ αj.

S3: If i < m and C (i) = 0, then lim
t→+∞

|Ej(t)| = 0.

S4: If i < m, ∀ C (i) 6= 0, then ∃ ζj ∈ IR+ such that lim
t→+∞

|Ej(t)| ≤ ζj.

Proof. See Appendix A.

5.5. Influence of the GeLESO order on the estimation error

In this section, it will be shown that the more the order of the GeLESO increases,
the more the estimation error E of the extended state Xe decreases, provided that
the following assumption is true.

Assumption 5.4. The parameter ωo is chosen such that ωo > ωmax, with ωmax de-
fined in (B7) in the proof of Theorem 5.5 in Appendix B.

Theorem 5.5. Provided that assumption 5.4 is satisfied, let us consider two GeLESO
designed with different orders, but the same ωo. The one of order p + i will be noted
GeLESO|i and the one of order p+ k will be noted GeLESO|k, ∀ i, k ∈ N∗ with i < k.
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We denote by |Ej(t)|i and |Ej(t)|k the estimation error of the component j associ-
ated to GeLESO|i and GeLESO|k respectively, where j = 1, · · · , p + i. In the case of
statements S1 and S3:

lim
t→+∞

|Ej(t)|k = lim
t→+∞

|Ej(t)|i = 0. (37)

In the case of statements S2 and S4:

lim
t→+∞

|Ej(t)|k < lim
t→+∞

|Ej(t)|i. (38)

Proof. See Appendix B.

6. Illustrative example

In order to illustrate its efficiency, higher-order GeLESO is compared to GPI ob-
servers (Luviano-Juárez et al., 2010; Sira-Ramı́rez et al., 2017) and higher-order ESO
(Godbole et al., 2013; Madoński and Herman, 2015) that have a similar internal struc-
ture. The proposed approach is applied on a Genesio-Tesi Chaotic system studied in
(Luviano-Juárez et al., 2010), on which a varying disturbance is added to make the
state estimation more complex. A white measurement noise will also be added in a
second time. The unknown dynamics of X = [x1 x2 x3]T is given by:

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −6x1 − 2.92x2 − 1.2x3 + x2

1 + d(t),
y = x1,

(39)

where y is the output of the system and d(t) = sin(2 t) represents a varying disturbance
that is always affecting the system. The initial conditions of (39) are kept the same as
in (Luviano-Juárez et al., 2010), i.e. x1(0) = −1, x2(0) = −2 and x3(0) = 1.

In order to validate the equivalent state-space representation (11), one can choose
any value p > 0. A full-order observer (p = 3) is here chosen to test in simulation the
estimation of all the state components of X . The same way as in (12), the state matrix
A and the input matrix B are:

A =

 0 1 0
0 0 1
a1 a2 a3

 , B =

0
0
b

 . (40)

The coefficient b will affect the value of C . It is taken equal to 1. In test 1, the
coefficients ai are chosen to have no physical meaning: a1 = −8, a2 = −8, a3 = −0.8.
In test 2, the coefficients are specifically chosen to be equal to the linear dynamics of
the system (39) (that is just for simulation purposes as this dynamics should normally
be unknown), i.e. a1 = −6, a2 = −2.92, a3 = −1.2.

We propose to introduce 5 extended states (i = 5) as what is done in (Luviano-
Juárez et al., 2010). Then, the higher-order GeLESO, GPI observer and higher-order
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ESO estimation dynamics are given by:

GeLESO

ż1 = z2 + L1e1

ż2 = z3 + L2e1

ż3 = z4 + a3z3 + L3e1

ż4 = z5 + a2z3 + L4e1

ż5 = z6 + a1z3 + L5e1

ż6 = z7 + L6e1

ż7 = z8 + L7e1

ż8 = L8e1

GPI observer

ż1 = z2 + L1e1

ż2 = z3 + L2e1

ż3 = ρ1 + L3e1

ρ̇1 = ρ2 + L4e1

ρ̇2 = ρ3 + L5e1

ρ̇3 = ρ4 + L6e1

ρ̇4 = ρ5 + L7e1

ρ̇5 = L8e1

Higher-order ESO

ż1 = z2 + L1e1

ż2 = z3 + L2e1

ż3 = z4 + L3e1

ż4 = z5 + L4e1

ż5 = z6 + L5e1

ż6 = z7 + L6e1

ż7 = z8 + L7e1

ż8 = L8e1

where e1 = y − z1. The ρi are the extra states in the GPI observer (Luviano-Juárez
et al., 2010). For all three observers, initial conditions are null and the observer gains
L1, . . . , L8 are calculated using (35), where ωo = 5. One can see that the GPI observer
and the higher-order ESO have the same internal structure and will provide the same
estimation results. The observer gains for the three observation strategies are all the
same and given below:

L = [ 40 700 7000 43750 175000 437500 625000 390625 ]T .

Figure 1 illustrates that (39) (black curve) gives the same temporal behaviour y(t)
as (11) (blue curve). The virtual input C plotted in red is computed using (9) with

the coefficients ai defined in test 1. Its estimation Ĉ using (21) is the dashed blue
line. Note that the peak in the transient phase of the estimation is cropped.
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Figure 1. Evolution of the output y and virtual input C
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Figure 2. Estimation errors of component x1
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Figure 3. Estimation errors of component x2

6.1. Estimation error analysis

Figures 2, 3 and 4 show the estimation errors for the state components x1, x2 and x3

respectively. Table 1 gives, for these three xj , the magnitude WEj of the upper bound
of the error on a finite-time window using the higher-order GeLESO and higher-order
ESO/GPI observers designed above. WEj is defined as

WEj = sup
t∈[t1,t1+τ ]

|Ej(t)| (41)

with t1 chosen much larger than the response time of the observer and E defined by
(32). In table 1, the results are given for t1 = 20 s and τ = 10 s. That table shows
an improvement of the accuracy of state observation for the proposed higher-order
GeLESO with respect to the higher-order ESO/GPI observers when all observers have
the same gains. Table 2 shows the same results for only 4 extended states (i = 4).
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Figure 4. Estimation errors of component x3

One can see by comparing the two tables that GeLESO in test 1 remains close or
more efficient with only 4 extended states than the higher-order ESO/GPI observers
with 5 extended states.

Table 1. WEj associated to xj for i = 5

ESO/GPI obs GeLESO

ai (test1) ai (test2)

x1 0.0032 0.0017 0.0023
x2 0.1304 0.0700 0.0918
x3 2.2785 1.1717 1.6047

Table 2. WEj associated to xj for i = 4

ESO/GPI obs GeLESO

ai (test1) ai (test2)

x1 0.0060 0.0035 0.0035
x2 0.2107 0.1235 0.1225
x3 3.1580 1.8509 1.8360

In order to investigate the influence of the parameters ai on the estimation error
for the state components, Monte-Carlo simulations have been performed to provide a
statistical analysis. This analysis was done by picking 1000 random sets of parameters
ai with a 100 % variation around the nominal values of test 1. The values taken by the
random parameters are given by uniform distributions. The results of this analysis are
given in the form of histograms presented in figures 5, 6 and 7. On these histograms,
the estimation error of the higher-order ESO / GPI observer is represented by the
dashed vertical red line.

That can be explained by the root locus of the GeLESO that is also provided for
all the state components z1 to z8 shown in Figure 8. From this figure, one can see
that the poles of the observer are not all placed in −ωo as mentioned in section 5.3.
Some poles are faster and some others are slower and thus change the dynamics of
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the observation compared to the higher-order ESO / GPI observer.
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Figure 5. Distribution of the estimation error WE1 of state component x1
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Figure 6. Distribution of the estimation error WE2 of state component x2
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Figure 7. Distribution of the estimation error WE3 of state component x3

Figure 8. Root locus of the observer of order p+ i = 8

6.2. Noise analysis

To study the sensitivity of the GeLESO to measurement noise, a white noise v(t) is
added to the output y and the measured output ym = y+ v is fed into each observers.
The infinite variance and zero-mean white Gaussian noise v is chosen to have a Power
Spectral Density pv equal to 10−6. Each observer’s statistical behaviour remains the
same if v is replaced by a band-limited white Gaussian noise v′ having the same PSD
up to a cutoff frequency ωc >> ω0 and a finite variance R that can be simulated.

In the simulation, ωc is set to π.104 rad/s. The variance R = pv
ωc
2π

is then equal

to 0.005. Figure 9 shows y, ym and the estimation z1 provided by the higher-order
GeLESO (test 1) with these settings. As each observer is linear, it is characterised by
a Gaussian random extended state Z given by:

Z = Z + Z̃ (42)
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Figure 9. Evolution of output y, measured output ym and output estimation z1

with Z representing the deterministic behaviour of the observer previously determined
for y (with v = 0) and Z̃ representing the zero-mean Gaussian behaviour associated to
v (with y = 0). The covariance matrix P (t) = E

[
Z̃(t)Z̃(t)T

]
has a steady-state value

P given by the solution of the continuous-time Lyapunov equation:

(Ae − LC)P + P (Ae − LC)T + LpvLT = 0 (43)

with L given by (35). The diagonal components of P give the variance of the asymptotic
stationary noise present on each component of the state observation Z. Figures 10, 11
and 12 show the effect of ωo on the observer noise ratio

NRj =

√
Pjj√
R

(44)

that expresses how the measurement noise v′ is amplified by the observer on the jth

state component. This noise ratio is an increasing function of ωo and it is a little
smaller on the GeLESO than on the higher-order ESO/GPI observers. For ω0 = 5, the
measurement noise is attenuated for z1 (which is verified in Fig. 9), slightly amplified
in z2 and much more amplified in z3. More generally, the higher is j and the bigger is
the observer noise ratio for zj .
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Figure 10. Effect of ωo on the observer noise ratio for the estimation of x1
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Figure 12. Effect of ωo on the observer noise ratio for the estimation of x3

Figure 13 illustrates how the number i of extended states influences the GeLESO
noise ratio for z1 in test 1. It can be seen that, for any ωo, the higher the parameter
i, the stronger is the noise amplification in the estimation of state x1. Finally, the
histogram presented in figure 14 shows the distribution of the noise ratio NR1 for the
state component z1 and for the same statistical analysis as the one provided in the
previous section. The limited statistical range of this distribution illustrates that the
estimation noise of the GeLESO has a low sensitivity to different sets of parameters ai.
That can be explained from Figure 8 where the poles corresponding to the extended
state components are among the slowest ones, hence having little influence on the
noise.
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Figure 13. Effect of the number of extended states i on the GeLESO noise ratio for the estimation of x1 in
test 1
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Figure 14. Distribution of the noise ratio (44) for state component z1 with ωo = 5

7. Discussion and perspectives

Having possible non-zero coefficients ai (as opposed to common ADRC where these
coefficients are null) asks the question of their choice and future control design. Some
preliminary elements for future studies on this issue are given in this section. These
elements express that the coefficients choice and the control design are both related.

A possible control scheme for the unknown nonlinear system (1) may consist in
decomposing u into two parts u = u1 + u2. Like in ADRC, an approximate global
linearisation of (1) is firstly performed. It is here achieved by canceling the virtual

input C with a negative feedback u1 = −Ĉ = −ϕ(Z), that is the first step of the
Virtual Input Rejection Control (VIRCO) scheme introduced in this section. This
preliminary control u1 uses the estimation Z provided by the GeLESO and the linear
operator ϕ described by (21). Using this specific feedback u1, the equivalent dynamical
behaviour (11) becomes {

Ẋ = AX +Bu2 + ε
y = CX

(45)

with ε being a nonlinear residual that depends on the estimation quality of the
GeLESO that is defined by:

ε = B(C − Ĉ ) (46)

This residual cannot be estimated because all the a priori available information ai and
b has been used to provide Ĉ . Thus, ε acts as an unknown disturbance and its effect
on y has to be minimised to obtain a closed-loop dynamic that is as close as possible
to the associated LTI model. As the residual ε depends on the ai and b that gives Ĉ ,
these coefficients have to be chosen in a way that minimises |ε|. To achieve this, some
online optimisation strategies are possible. To introduce the criteria to minimise, let
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us consider the two following state dynamics:

Ẋ = AX +Bu+BC , (47)

Ẋ ′ = AX ′ +Bu+BĈ (48)

= AX ′ +Bu2. (49)

Equation (47) is the same as (11) which gives the state X of system (1). Equation (48)
is associated to a new state X ′ for which the virtual input C has been substituted
to Ĉ . As shown by (49) it is also the dynamics of the chosen LTI model with u =

u1 + u2 = −Ĉ + u2. As u and Ĉ are known, X ′ can be computed online and used in
the minimisation criteria. By difference between (47) and (48), it comes

Ẋ − Ẋ ′ = A(X −X ′) + ε.

If A is Hurwitz, the closer is X to X ′ and the smaller is |ε|. Hence, the optimisation
process of the coefficients ai that minimises |ε| can be associated to the minimisation
of the difference |X − X ′|. Nevertheless, in practice, the state X is unknown. Thus

it has to be replaced by its estimation X̂ given by the GeLESO, with an error
characterized by (32). Theorem 5.3 also states that the limit of this error can be
bounded or null. Therefore, the parameters ai will adjust to minimise the criteria
|X̂ − X ′|, that will in return minimise |ε|. Such an approach would fit into the
framework of adaptive observers.

If |ε| = 0 is achieved, (45) becomes equivalent to{
Ẋ = AX +Bu2

y = CX.
(50)

Such representation is richer than in the conventional ADRC framework and its
associated p poles can then be placed easily with a secondary control u2 = −KZ.
Having more poles thanks to the choice of p may bring more possibilities to adjust
finely the control. The observation noise in Ĉ and Z will add some noise on the
control input u of the system. Such noise may be prejudicial (mechanical wear of the
actuators for instance) and should be avoided with an appropriate choice of ai and
b. This input noise on u is then filtered by the system whose dynamical behaviour
is now close to (50) and provides a noise on y. Thus, using appropriate coefficients
ai to have a low pass behaviour, the noise generated on y can be limited, which is
mandatory to reach high control performance. Finally, the final goal of such control
scheme is the achievement of a pole placement of a linear virtual system (50) that has
substituted the unknown system (1). This asks the question of the feasibility of the
control u in term of stability, bounds, etc. This issue constitutes clearly a perspective
to this work.

8. Conclusion

The generic methodology proposed in this paper can be applied to a given class of
observable unknown nonlinear and time-varying SISO systems with unknown order,
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structure and disturbances. The proposed methodology can be seen as a first step to-
wards a generalisation of the ADRC framework. To this end, the state observation of
the unknown SISO nonlinear systems is transformed into the state observation of an
arbitrary known observable LTI systems and an unknown virtual input. This observa-
tion is performed with a Generic Linear Extended State Observer that is introduced
in the paper. This specific observer uses the parameters present in the chosen LTI sys-
tem to introduce higher-order state components that take into account the unknown
virtual input and its successive derivatives. A mathematical proof that demonstrates
the reason of designing higher-order GeLESO to improve the accuracy of the proposed
observer is also given. Numerical simulations based on a Genesio-Tesi Chaotic system
affected by a varying disturbance show that the proposed observer gives better results
than classical higher order ESO / GPI observers provided that the observer coefficients
are well chosen.

Acknowledgment

This work has been supported by the EIPHI Graduate school (contract ”ANR-17-
EURE-0002”).

References

Astolfi Daniele (2016). Observers and Robust Output Regulation for Nonlinear Systems. PSL
Research University.

Astolfi Daniele, Marconi Lorenzo, Praly Laurent and Teel Andrew R. (2018). Low-Power
Peaking-Free High-Gain Observers. Automatica, 98, 169–179.

Chen Sen, Bai Wenyan and Huang Yi (2016). ADRC for Systems with Unobservable and
Unmatched Uncertainty. Proceedings of the 35th Chinese Control Conference, Chengdu,
China.

Dong Yali, Wang Hui and Wang Yangang (2013). Design of Observers for Nonlinear Systems
with H∞ Performance Analysis. Mathematical Methods in the Applied Sciences, 37 (5), 718–
725.

Feng Guang, Liu Yan-Fei and Huang Lipei (2004). A New Robust Algorithm to Improve the
Dynamic Performance on the Speed Control of Induction Motor Drive. IEEE Transactions
on Power Electronics, 19 (6), 1614–1627.

Freidovich Leonid B. and Khalil Hassan K. (2008). Performance Recovery of Feedback-
Linearization-Based Designs. IEEE Transactions on Automatic Control, 53 (10), 2324–2334.

Gao Zhiqiang, Huang Yi and Han Jingqing (2001). An Alternative Paradigm for Control
System Design. Proceedings of the 40th Conference on Decision and Control, Orlando, FL,
USA.

Gao Zhiqiang (2003). Scaling and Bandwidth-Parameterization Based Controller Tuning. Pro-
ceedings of the American Control Conference, Denver, CO, USA.

Gao Zhiqiang (2006). Active Disturbance Rejection Control: A Paradigm Shift in Feedback
Control System Design. Proceedings of the American Control Conference, Minneapolis, MN,
USA.

Gauthier Jean-Paul, Hammouri Hassan and Othman Sami (1992). A Simple Observer for
Nonlinear Systems - Applications to Bioreactors. IEEE Transactions on Automatic Control,
37 (6), 875–880.

Godbole Ashwini A., Kolhe Jaywant P. and Talole Sanjay E. (2013). Performance Analysis of
Generalized Extended State Observer in Tackling Sinusoidal Disturbances. IEEE Transac-
tions on Control Systems Technology, 21 (6), 2212–2223.

24



Guo Bao-Zhu and Zhao Zhi-Liang (2016). Active Disturbance Rejection Control for Nonlinear
Systems: An Introduction. Wiley.

Han Jingqing Q. (1995). The Extended State Observer for a Class of Uncertain Systems.
Control and Decision, 10 (1), 85–88.

Huang Yi and Xue Wenchao (2014). Active Disturbance Rejection Control: Methodology and
Theoretical Analysis. ISA Transactions, 53 (4), 963–976.

Julier Simon J. and Uhlmann Jeffrey K. (1997). A New Extension of the Kalman Filter to
Nonlinear Systems. Proceedings of AeroSense: 11th International Symposium on Aerospace
/ Defense Sensing, Simulations and Controls, Orlando, FL, USA.

Kalman Rudolf E. (1960). A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82 (1), 35–45.

Khalil Hassan K. and Praly Laurent (2013). High-Gain Observers in Nonlinear Feedback Con-
trol. International Journal of Robust and Nonlinear Control, 24 (6), 993–1015.

Kim Kyung-Soo, Rew Keun-Ho and Kim Soohyun (2010). Disturbance Observer for Estimating
Higher Order Disturbances in Time Series Expansion. IEEE Transactions on Automatic
Control, 55 (8), 1905–1911.

Krener Arthur J. and Isidori Alberto (1983). Linearization by Output Injection and Nonlinear
Observers. Systems & Control Letters, 3 (1), 47–52.

Li Shihua, Yang Jun, Chen Wen-Hua and Chen Xisong (2012). Generalized Extended State
Observer Based Control for Systems with Mismatched Uncertainties. IEEE Transactions on
Industrial Electronics, 59 (12), 4792–4802.

Li Shihua, Yang Jun, Chen Wen-Hua and Chen Xisong (2014). Disturbance Observer-Based
Control - Methods and Applications. CRC Press.

Luenberger David G. (1964). Observing the State of a Linear System. IEEE Transactions on
Military Electronics, 8 (2), 74–80.
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Appendix A. Proof of Theorem 5.3

Statements S1 and S3 mean that the higher-order GeLESO estimates the state X,
the virtual input C and its successive derivatives until C (m−1) without steady-state
error.
Statements S2 and S4 mean that the higher-order GeLESO estimates the state X,
the virtual input C and its successive derivatives until C (m−1) with a bounded error.

A.1. Proof of statement S1

If i = m and C (m) = 0, then C (i) = 0. In that case, the dynamics of the estimation
error (32) can be written as:

Ė = (Ae − LCe)E = AE (A1)

whose solution is: E(t) = eAtE(0).
Since L is chosen such that A is Hurwitz, its exponential tends toward 0 when t tends
toward infinity then: lim

t→+∞
E(t) = lim

t→+∞
eAtE(0) = 0. Statement S1 is verified.

A.2. Proof of statement S2

Since C (m) 6= 0, C (i) 6= 0 and therefore the dynamics of the estimation error (32)
remains the same. It was shown in (Yang and Huang, 2009) that its solution is:

E (t) = eAtE(0) +

∫ t

0
eA(t−τ)BeC

(m)(τ)dτ (A2)

which can be split into two parts:

R1(t) = eAtE(0) (A3)

and

R2(t) =

∫ t

0
eA(t−τ)BeC

(m)(τ)dτ (A4)

Since A is Hurwitz, lim
t→+∞

R1(t) = 0. Consequently, in order to bound lim
t→+∞

E(t),

lim
t→+∞

R2(t) in (A4) has to be bounded.

Let us define the vector operator | . | by:

∀Q =

q1
...
qη

 , |Q | ,

| q1 |
...
| qη |

 (A5)
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According to assumption 5.2, and knowing that i = m, we have |C (m)| < β, and
then, using the operator | . |, it comes:

lim
t→+∞

|R2(t)| ≤ β lim
t→+∞

∣∣∣∣∫ t

0
eA(t−τ)Be dτ

∣∣∣∣ (A6)

The integral term in (A6) can be written as:∫ t

0
eA(t−τ)Be dτ =

∫ t

0
−A−1(−AeA(t−τ))Bedτ

= A−1eAtBe −A−1Be

leading to:

lim
t→+∞

∣∣∣∣∫ t

0
eA(t−τ)Be dτ

∣∣∣∣ = lim
t→+∞

∣∣A−1eAtBe −A−1Be
∣∣

Therefore, lim
t→+∞

R2(t) can be bounded by:

lim
t→+∞

|R2(t)| ≤ β
∣∣A−1Be

∣∣+ β

(
lim

t→+∞

∣∣A−1eAtBe
∣∣)

Again, since A is Hurwitz, we have

lim
t→+∞

∣∣A−1eAtBe
∣∣ = 0 (A7)

and the only term remaining to be bounded is
∣∣A−1Be

∣∣.
According to the expressions of matrices Ae, Ce, L in (30) and the value of the gains

in (35), the matrix A reads as:

A =



−γ1ωo 1 · · · 0 0 0 · · · 0 0 · · · 0 0

−γ2ω
2
o 0

. . . 0 0 0 · · · 0 0 · · · 0 0
...

...
. . .

...
...

...
...

...

−γp−1ω
p−1
o 0 · · · 0 1 0 · · · 0 0 · · · 0 0

−γpωpo 0 · · · 0 ap 1 0 0 · · · 0 0

−γp+1ω
p+1
o 0 · · · 0 ap−1 0

. . . 0 0 · · · 0 0
...

...
...

...
. . .

...
...

−γ2p−1ω
2p−1
o 0 · · · 0 a1 0 · · · 0 1 0 0

−γ2pω
2p
o 0 · · · 0 0 0 · · · 0 0

. . . 0 0
...

...
...

...
...

...
...

. . .

−γp+m−1ω
p+m−1
o 0 · · · 0 0 0 · · · 0 0 · · · 0 1

−γp+mωp+mo 0 · · · 0 0 0 · · · 0 0 · · · 0 0



(A8)
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whose inverse A−1 is given by:

A−1 =



0 0 · · · 0 0 0 · · · 0 0 · · · 0 − 1

ωp+mo

1 0 · · · 0 0 0 · · · 0 0 · · · 0 − γ1

ωp+m−1
o

. . .
...

...
...

...
...

...
...

0 0
. . . 0 0 0 · · · 0 0 · · · 0 − γp−2

ω
p+m−(p−2)
o

0 0 1 0 0 · · · 0 0 · · · 0 − γp−1

ω
p+m−(p−1)
o

0 0 −ap 1 0 · · · 0 0 · · · 0 −apγp−1 − γpωo
ω
p+m−(p−1)
o

...
...

...
. . .

...
...

...
...

0 0 −a1 0 0
. . . 0 0 · · · 0 −a1γp−1 − γ2p−1ω

p
o

ω
p+m−(p−1)
o

0 0 0 0 0 1 0 · · · 0 − γ2p

ω
p+m−(2p)
o

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 0
. . . 0 −γp+m−2

ω2
o

0 0 0 0 0 0 0 1 −γp+m−1

ωo


(A9)

One can note that, in order to alleviate the notation in (A9), the term γp+m has
been directly replaced by its value, i.e. 1, for i = m and j = p+m.

Using the operator | . | on the product of (A9) and Be in (33) leads to:
∣∣A−1Be

∣∣ ≤
V +W , where
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|A−1Be|︷ ︸︸ ︷

|b|
ωp+mo
|b| γ1

ωp+m−1
o

...
|b| γp−2

ω
p+m−(p−2)
o
|b| γp−1

ω
p+m−(p−1)
o

|b| |apγp−1 − γpωo|
ω
p+m−(p−1)
o

...
|b| |a1γp−1 − γ2p−1ω

p
o |

ω
p+m−(p−1)
o
|b| γ2p

ω
p+m−(2p)
o

...
|b| γp+m−2

ω2
o

|b| γp+m−1

ωo



≤

V︷ ︸︸ ︷

|b|
ωp+mo
|b| γ1

ωp+m−1
o

...
|b| γp−2

ω
p+m−(p−2)
o
|b| γp−1

ω
p+m−(p−1)
o
|b| γpωo

ω
p+m−(p−1)
o

...
|b| γ2p−1ω

p
o

ω
p+m−(p−1)
o
|b| γ2p

ω
p+m−(2p)
o

...
|b| γp+m−2

ω2
o

|b| γp+m−1

ωo



+

W︷ ︸︸ ︷

0
0
...
0
0

|bap| γp−1

ω
p+m−(p−1)
o

...
|ba1| γp−1

ω
p+m−(p−1)
o

0
...
0
0



(A10)

From (A10), it can be seen that:

Vj =
|b| γj−1

ω
p+m−(j−1)
o

> 0 (A11)

and

Wj ≤ ε =
|ba| γp−1

ω
p+m−(p−1)
o

> 0 (A12)

where a = max {ak}k=1,··· ,p, and j = 1, · · · , p+m.

As a result, each term of
∣∣A−1Be

∣∣ is bounded by:

∣∣(A−1Be
)∣∣
j

=
∣∣∣(A−1Be

)
j

∣∣∣ ≤ Vj + ε (A13)

According to (A7) and (A13), the bound on R2(t) is:

lim
t→+∞

∣∣R2j
(t)
∣∣ ≤ β (Vj + ε) (A14)
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and therefore

lim
t→+∞

|Ej(t)| ≤ β (Vj + ε) (A15)

that can be written

lim
t→+∞

|Ej(t)| ≤ αj , j = 1, . . . , p+m, (A16)

with αj = β(Vj + ε). Statement S2 is verified.

A.3. Proof of statement S3

In this case, i < m and C (i) = 0. As in statement S1, the dynamics of the estimation
error in (32) can be written as:

Ė = (Ae − LCe)E = AE (A17)

Therefore, with the same reasoning as in case of statement S1, it can be easily shown
that

lim
t→+∞

E(t) = lim
t→+∞

eAtE(0) = 0. (A18)

Statement S3 is verified.

A.4. Proof of statement S4

The same demonstration as the one done for statement S2 can be used to prove
statement S4. The only difference is that, as i < m, the dimensions of the matrices
and vectors will be reduced from p+m to p+ i. Thus, it can be shown that

lim
t→+∞

|Ej(t)| ≤ ζj (A19)

where ζj = β(V ′j + ε′). Statement S4 is verified.

Appendix B. Proof of Theorem 5.5

The result in the case of statements S1 and S3 is obvious. In the case of statements
S2 and S4, we note by γj |k and γj |i the coefficients associated to GeLESO|k and
GeLESO|i respectively. According to (A10), the estimation error lim

t→+∞
|Ej(t)| with

j = 1, . . . , p+ i is given by four different relations depending on the value of j. Indeed,
the expression of the lim

t→+∞
|Ej(t)| is different for:

• Case 1: index j = 1.
• Case 2: indices j = 2, . . . , p.
• Case 3: indices j = p+ 1, . . . , p+ i if 1 ≤ i ≤ p.
• Case 4: indices j = 2p+ 1, . . . , p+ i if i > p.
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Let us now compare lim
t→+∞

|Ej(t)| generated by GeLESO|k and GeLESO|i for each case.

B.1. Case 1: index j = 1

In that case, according to (A10), lim
t→+∞

|E1(t)|i =
|b|
ωp+io

and lim
t→+∞

|E1(t)|k =
|b|
ωp+ko

.

To compare lim
t→+∞

|E1(t)|i and lim
t→+∞

|E1(t)|k, it suffices to calculate:

lim
t→+∞

|E1(t)|k
lim

t→+∞
|E1(t)|i

=

|b|
ωp+ko

|b|
ωp+io

=
1

ωro
, with r = k − i > 0. (B1)

Therefore, for all ωo > 1, we have
lim

t→+∞
|E1(t)|k

lim
t→+∞

|E1(t)|i
< 1.

This verifies that lim
t→+∞

|E1(t)|k < lim
t→+∞

|E1(t)|i, for ωo > 1.

B.2. Case 2: indices j = 2, . . . , p

In that case, still according to (A10), lim
t→+∞

|Ej(t)|i = |b| γj−1|i
ω
p+i−(j−1)
o

and

lim
t→+∞

|Ej(t)|k = |b| γj−1|k
ω
p+k−(j−1)
o

.

To compare lim
t→+∞

|Ej(t)|i and lim
t→+∞

|Ej(t)|k, it suffices to calculate:

lim
t→+∞

|Ej(t)|k
lim

t→+∞
|Ej(t)|i

=

|b| γj−1|k
ω
p+k−(j−1)
o

|b| γj−1|i
ω
p+i−(j−1)
o

.

Let r = k − i > 0. The coefficients γj are calculated using (36).

lim
t→+∞

|Ej(t)|k
lim

t→+∞
|Ej(t)|i

=
Ξ2

ωro
(B2)

with Ξ2 =
(p+ k)!(p+ i− j)!
(p+ k − j)!(p+ i)!

.

Therefore, for all ωo >
r
√

Ξ2, we have
lim

t→+∞
|Ej(t)|k

lim
t→+∞

|Ej(t)|i
< 1.

This verifies that lim
t→+∞

|Ej(t)|k < lim
t→+∞

|Ej(t)|i, for j = 2, . . . , p and ωo >
r
√

Ξ2.
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B.3. Case 3: indices j = p + 1, . . . , p + i with 1 ≤ i ≤ p

In that case, still according to (A10):

lim
t→+∞

|Ej(t)|k = |b| γj−1|k
ω
p+k−(j−1)
o

+ |ba2p−(j−1)|
γp−1|k

ω
p+k−(p−1)
o

(B3)

and

lim
t→+∞

|Ej(t)|i = |b| γj−1|i
ω
p+i−(j−1)
o

+ |ba2p−(j−1)|
γp−1|i

ω
p+i−(p−1)
o

. (B4)

The same procedure as the one used in the case 2 for the comparison between
lim

t→+∞
|Ej(t)|k and lim

t→+∞
|Ej(t)|i will be used again to compare the left parts of (B3)

and (B4), i.e., |b| γj−1|k
ω
p+k−(j−1)
o

and |b| γj−1|i
ω
p+i−(j−1)
o

. So, for all ωo >
r
√

Ξ2, we have

|b| γj−1|k
ω
p+k−(j−1)
o

< |b| γj−1|i
ω
p+i−(j−1)
o

(B5)

Now, let us compare the ratio between the right part of (B3) and (B4):

|ba2p−(j−1)|
γp−1|k

ω
p+k−(p−1)
o

|ba2p−(j−1)|
γp−1|i

ω
p+i−(p−1)
o

=
Ξ3

ωro
(B6)

with Ξ3 =
(p+ k)!(i+ 1)!

(k + 1)!(p+ i)!
.

Then, for all ωo >
r
√

Ξ3, we have

|ba2p−(j−1)|
γp−1|k

ω
p+k−(p−1)
o

< |ba2p−(j−1)|
γp−1|i

ω
p+i−(p−1)
o

.

Consequently, lim
t→+∞

|Ej(t)|k < lim
t→+∞

|Ej(t)|i, for all

ωo > max
{

r
√

Ξ2,
r
√

Ξ3

}
.

B.4. Case 4: indices j = 2p + 1, . . . , p + i if i > p

In that case, still according to (A10), lim
t→+∞

|Ej(t)|i = |b| γj−1|i
ω
p+i−(j−1)
o

and

lim
t→+∞

|Ej(t)|k = |b| γj−1|k
ω
p+k−(j−1)
o

which are the same as in case 2. Therefore, with the

same reasoning as in case 2, it can be easily shown that lim
t→+∞

|Ej(t)|k < lim
t→+∞

|Ej(t)|i,

for j = 2p+ 1, . . . , p+ i and ωo >
r
√

Ξ2.
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Let us define

ωmax , max
{

1, r
√

Ξ2,
r
√

Ξ3

}
. (B7)

Regarding the four studied cases, (38) has been proven for all j = 1, . . . , p + i if
ωo > ωmax.

From (21), the estimation of the virtual input Ĉ is a linear combination of the
estimation of the components of Xe. As these components are better estimated when
the order of the GeLESO increases, it is the same for the estimation of the virtual
input.
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