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Abstract — This paper introduces a generic procedure for the
state estimation of unknown nonlinear SISO systems, i.e. when no
information is available on their structure, possibly time-varying
parameters and potential disturbances. Such systems are met
for instances for systems based on complex micro and nano
mechatronic designs that are interacting in an unknown way
with their environment at nano scales. This procedure relies
on the choice of an arbitrary linear model and the use of a
Generic Linear Extended State Observer, whose principle is also
introduced in the paper. The proposed approach overcomes well-
known model-based nonlinear techniques in the sense that it
is easy to implement, all the while avoiding any identification
step and mathematical complexity. Simulation results involving
nonlinear systems, subject to external disturbances, compare the
performance of the proposed approach to the one of some model-
free nonlinear observers described in the literature.

Index Terms — Observer for Unknown Nonlinear Systems,
Extended State Observer, ADRC, Micro Mechatronic Systems

I. INTRODUCTION

Owing to its importance in modern control theory, the
field of state observation for dynamical systems has been
an active area of research for decades. Based only on the
inputs and outputs of any given system, the resulting observers
are expected to produce an estimation of the states, that
is then used by the control structure. For linear systems,
one can cite the works of Kalman for stochastic systems
[1] and Luenberger for deterministic systems [2]. However,
physical systems may feature some unexpected complexity
due to, e.g., inherent nonlinearities, unavoidable and unknown
changes of their structure (uncertainties), the influence of the
environment (disturbances), etc. Therefore, these systems are
no longer linear and that is why many theoretical and practical
developments focus on the design of nonlinear observers.

There exist various strategies for the design of observers
for nonlinear systems. There are, for example, the extended
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Kalman filter or one of its many extensions [3], Lie algebra-
based observers [4], optimization-based observers [5], high-
gain observers [6], etc. Of all of the above approaches, the
high-gain observers have received the most attention due to
their simplicity and good performance in noise-free settings
[6]. Indeed, in the high-gain observers paradigm, the estima-
tion error trajectory has an exponential decay rate that can
be chosen arbitrarily fast by acting on a design parameter
that appears in the observers structure. Nevertheless, the high-
gain observers design also highlights drawbacks, including
implementation issues due to the value of the design parameter,
the peaking phenomenon during the transient and a sensitivity
to measurement noise [7]. Recent works alleviated these un-
desirable properties [8], but this has been achieved at the cost
of a more complicated design, i.e. increase of the observers
dimension to 2n− 1, where n is the order of the system, use
of saturation functions in the observers dynamics, etc.

Furthermore, a major limitation that is common to all
the above approaches is that they all require some a priori
information on the structure of the systems, e.g. their order,
a Lipschitzian behavior [6], [8], a stable zero dynamics [9],
etc. However in many industrial cases involving micro and
nano mechatronic designs, some parameters may be affected
by large uncertainties and cannot be easily measured (e.g.
mass, inertia, etc.) nor identified, but these systems still
require efficient observation and control schemes. Also, as
the mathematical complexity inherent to the nonlinear nature
of the systems may be an issue, there is a growing interest
in the development of accessible and general methods to
solve the problem of state observation and control of such
unknown nonlinear systems. Owing to its less dependence on
systems information, its abilities to cope with a wide range of
uncertainties and disturbances, and its simplicity in the control
structure, the Active Disturbance Rejection Control (ADRC)
framework [10]–[12] is a significant step towards this purpose.



The idea of ADRC consists in estimating both the state and a
total disturbance, that lumps unmodeled dynamics and external
disturbances into an extended state, by an Extended State
Observer (ESO) [13]. Thus, the state of the unknown systems
becomes available for control purposes and the total distur-
bance can be compensated for in real time. Following the ESO
parameterization steps described in [14], the ADRC technique
has been used to solve various kinds of mechatronic problems,
e.g., motor control [15], flight control [16], robot control [17],
etc. Yet, many of the ESO developed in the literature like
the Standard Linear Extended State Observer (SLESO) [17]–
[19] are of order n+ 1. This implicitly assumes that the total
disturbance is constant or slowly time-varying. Therefore, in
the common case of non-constant total disturbance, the quality
of the estimation provided by the standard ESO becomes
insufficient [20]. In order to improve the efficiency of the
ESO, their order has to be increased and that idea paved the
way to the design of higher-order ESO [20]–[22], Generalized
Proportional Integral observers (GPI) [23], [24], etc. Indeed,
increasing the number of extended states allows to effectively
reconstruct a total disturbance described by complex and
sophisticated high order polynomial.

This paper addresses the on-line state observation problem
of a specific class of nonlinear SISO systems that are totally
unknown. In the proposed procedure, the unknown nonlinear
system is represented as a chosen (arbitrarily because no
information is provided) linear system to which is added an
unknown non physical exogenous input, called a virtual input.
That exogenous input can be seen as the total disturbance
of the ADRC framework as it gathers all the neglected
nonlinearities, unmodeled dynamics, parameter uncertainties,
and external disturbances such that the input-output dynamics
of the linear system matches the one of the nonlinear system.
Then, extending the state of the linear system with that
unknown virtual input, its behavior can be estimated with any
linear extended state observation technique, along with the
state of the system. In this paper, this will be achieved by
a Generic Linear Extended State Observer (GeLESO). This
new concept is a less conservative version of higher-order
ESO and GPI observers used in ADRC in the sense that the
GeLESO is built upon a linear system whose features, i.e.
order, bandwidth, etc., are chosen and therefore not unique.
Furthermore, the order of this observer can be increased at
will in order to preserve the estimation accuracy even with
unknown complex virtual input. In the following, the design
procedure of the GeLESO is described, its performance is
validated by simulations and its behavior is compared to
higher-order ESO / GPI observers.

II. PROBLEM STATEMENT

This paper addresses the state observation problem of un-
known nonlinear and time-varying SISO systems whose input-
output dynamics can be described by an Ordinary Differential
Equation (ODE) of the form:

y(n)(t) = f
(
y(t), . . . , y(n−1)(t), u(t), U(t), t

)
(1)

where
• the order n > 0 of the ODE is unknown;
• the nonlinear and time-varying function f exists, but is

unknown;
• the scalar y(t) ∈ IR is the output of the system that is

provided to the observer. It is known, but its n successive
derivatives are unknown;

• the scalar u(t) ∈ IR is the output of the controller that is
also provided to the observer, hence it is known;

• the input U(t) ∈ IRδ , where δ is unknown, represents the
uncertainties and disturbances that can affect the system
in any way, hence it is unknown.

The state vector X (t) ∈ IRn of system (1) is defined by:

X (t) =
[
y(t) ẏ(t) . . . y(n−1)(t)

]T
(2)

where only its first component y(t) is known.

Let’s now assume that, by the designer’s choice, the first
p components of X (t) are actually necessary to implement
the control algorithm of the unknown system (1). These p
components, gathered in the vector

X(t) =
[
y(t) ẏ(t) . . . y(p−1)(t)

]T∈ IRp, (3)

have therefore to be estimated despite the fact that no infor-
mation is available on the system. This is the point of the
paper.

Note that, as the order n of the system is unknown, p can
unknowingly end up less, equal or greater than n. In the first
two cases, the methodology introduced in this paper would
respectively lead to a reduced-order or a full-order observer
of X (t). In the last case, which will not be addressed in this
paper due to a lack of relevance, the designed observer would
estimate the n components of X (t) along with the p − n
following successive derivatives of the output.

III. EQUIVALENT STATE-SPACE REPRESENTATION

In this section, it is shown that the nonlinear ODE of order
n (1) can be described by an equivalent linear ODE of order
p. Indeed, (1) can be written as:

y(n) − f
(
y, . . . , y(n−1), u, U, t

)
− y(p) +

(
a1y + . . .+ apy

(p−1) + bu
)

+ y(p) −
(
a1y + . . .+ apy

(p−1) + bu
)

= 0

(4)

where the coefficients ak ∈ IR, with k = 1, . . . , p, and b ∈
IR∗ are chosen.

Let’s now define a virtual input C ∈ IR as:

C , − 1

b

[
y(n) − f

(
y, . . . , y(n−1), u, U, t

)
− y(p) +

(
a1y + . . .+ apy

(p−1) + bu
)] (5)

such that (4) becomes equivalent to the following ODE of
order p:

y(p) = a1y + . . .+ apy
(p−1) + bu+ bC . (6)



y(p) = a1y + . . .+ apy
(p−1) + bu+ bC . (7)

As both (1) and (7) have the same first p initial conditions
y(t0), . . . , y(p−1)(t0), (7) has the same input-output behavior
as (1).

Combining (3) and (7) leads to the following state-space
representation: {

Ẋ = AX +Bu+BC
y = CX

(8)

where the matrices A ∈ IRp×p, B ∈ IRp×1 and C ∈ IR1×p

are given by:

A =

[
0(p−1)×1 Ip−1
a1 A

]
with A =

[
a2 . . . ap

]
B =

[
0(p−1)×1

b

]
and C =

[
1 01×(p−1)

]
.

(9)

with 0 standing for zero matrices of appropriate dimensions.

As a result, the state estimation problem of the unknown
nonlinear system (1) becomes equivalent to the state estimation
of the known linear system (8), combined with the estimation
of the unknown virtual input C .

IV. GENERIC LINEAR EXTENDED STATE OBSERVER

The Generic Linear Extended State Observer (GeLESO),
able to estimate not only the state X of the system, but also
the virtual input C , is introduced in this section.

A. Design of the GeLESO
As most approaches in the literature, this new observation

scheme relies on the incorporation of the virtual input C into
the state X to form an extended state Xe. However unlike
the usual approaches, the GeLESO will ingeniously use the
information provided by the p coefficients ak and by the
successive derivatives of C . It is designed as follows:

Let i ∈ N∗ be the chosen number of extended components
in the extended state Xe such that:

Xe =
[
x1 . . . xp xp+1 . . . xp+i

]T ∈ IRp+i (10)

and let’s assume that the virtual input C is of class Cm, with
m ∈ N∗ and m ≥ i.

The key idea in the proposed observation scheme is to
introduce a state component into Xe for each derivative of
C to be estimated. This new component is based on the time
derivative of the previous one, where all the components are
kept, but the last one. This leads to:

ẋ1 = x2,
...

ẋp = xp+1 + apxp + bu,

ẋp+1 = xp+2 + ap−1xp,
...

ẋ2p−1 = x2p + a1xp,

ẋ2p = bC (p),
...

ẋp+i = bC (i),

y = x1

(11)

with (as an example of the design procedure)

xp+1 = a1x1 + a2x2 + . . .+ ap−1xp−1 + bC (12)

and where the first p rows represent system (8). The following
p − 1 rows, i.e. from ẋp+1 to ẋ2p−1, represent the dynamics
of the extended state components introduced as aforemen-
tioned. These rows correspond to the case where, by choice,
1 ≤ i < p. The final rows, i.e. from ẋ2p to ẋp+i, represent
the dynamics of the components subsequently introduced, and
only composed of the successive derivatives of C . Those rows
only exist in the case where p ≤ i ≤ m. The Generic Linear
Extended State Observer estimating the extended state Xe,
hence giving both the state X and the virtual input C , is built
upon (11) and is given by:

ż1 = z2 + L1 (y − z1),
...

żp = zp+1 + apzp + Lp (y − z1) + bu,
żp+1 = zp+2 + ap−1zp + Lp+1 (y − z1),

...
ż2p−1 = z2p + a1zp + L2p−1 (y − z1),
ż2p = z2p+1 + L2p (y − z1),

...
żp+i = Lp+i (y − z1)

(13)

where z1, . . . , zp+i are the p+i components of the observer’s
state Ze, and where L1, . . . , Lp+i are the gains of the ob-
server.

Substracting (13) from (11) leads to the dynamics of the
estimation error E that reads as follows:

Ė = Ẋe − Że =
(
Ae − LCe

)
E +BeC

(i) (14)

where the matrices Ae ∈ IR(p+i)×(p+i), L ∈ IR(p+i)×1, Ce ∈
IR1×(p+i) and Be ∈ IR(p+i)×1 are respectively given by:

Ae =

 0(p+i−1)×1
Ip−1 0(p−1)×i

A ′ Ii
01×(p+i)

 ,
L =

[
L1 . . . Lp Lp+1 . . . L2p−1 L2p . . . Lp+i

]T
,

Ce =
[
1 01×(p+i−1)

]
and Be =

[
0(p+i−1)×1 b

]T
(15)

where 0 stands for zero matrices of appropriate dimensions,
and where

A ′ = [ ap, . . . , a1, 0(i−p)×1 ]T , if p ≤ 2

or

A ′ =


ap

0i×(p−2)

...
a1

0(i−p)×1

 , if p > 2.

B. Tuning of the GeLESO

Provided that the pair (Ae, Ce) is observable, the gains
matrix L in (14) must be chosen such that the matrix A =
Ae−LCe is Hurwitz. This can be done using pole placement
techniques, linear quadratic routines or any other optimization



design. In this paper, in order to ease the tuning of the observer
and following the steps of [14] and [25], a single parameter
ωo > 0 is used to specify the value of the gains in L. They
are defined as follows:

L =
[
L1 L2 . . . Lp+i

]T
=

[
γ1 ωo γ2 ω

2
o . . . γp+i ω

p+i
o

]T (16)

where

γj =
(p+ i)!

j! (p+ i− j)! , with j = 1, . . . , p+ i. (17)

With such a choice of gains, it has been shown in [25] that
the observer’s poles are all located in a close neighborhood of
−ωo provided that the parameter ωo is chosen large enough,
hence leading A to be Hurwitz.

C. Convergence of the GeLESO

Let’s assume that C (i) in (14) is bounded by some positive
constant β, i.e. ∀i ∈ N∗, ∃β ∈ IR+ such that

∣∣C (i)
∣∣ ≤ β. The

convergence of the proposed Generic Linear Extended State
Observer is then established in the following theorem:

Theorem 1 (convergence of the GeLESO): ∀ p ∈ N∗, order
of the linear system (8); ∀m ∈ N∗, the class of the virtual
input C ; ∀ i ∈ N∗, the chosen number of extended components
in the extended state Xe with i ≤ m and ∀ j = 1, . . . , p+ i,
the following statements are true:

S1: if C (i) = 0, then lim
t→∞

E(t) = 0

S2: if C (i) 6= 0, then

∃α ∈ IR+ such that lim
t→∞

|Ej(t)| ≤ α

Proof: For reason of space, the proof of this theorem is
omitted but it can be found in [26].

Statement S1 claims, when the last derivative of C consid-
ered is null, that all the components of the estimation error E
converge to 0. On the other hand, statement S2 states, when
the last derivative of C considered is different from 0, that
each component of the estimation error E is bounded, the
latter being provided in the proof in [26].

D. Order of the GeLESO

Let’s consider two Generic Linear Extended State Ob-
servers, designed with a different order, but with the same
parameter ωo chosen large enough (see the proof of Theorem 2
in Appendix). The one of order p+ i will be noted GeLESO

∣∣
i

and the one of order p + k will be noted GeLESO
∣∣
k
. The

influence of the order of the GeLESO on the estimation error
is established in the following theorem:

Theorem 2 (order of the GeLESO): Provided that ωo is
chosen large enough (see the proof in Appendix), ∀ p ∈ N∗,
order of the linear system (8); ∀ i ∈ N∗, the chosen num-
ber of extended components in the extended state Xe

∣∣
i

of
the GeLESO

∣∣
i
; ∀ k ∈ N∗, the chosen number of extended

components in the extended state Xe

∣∣
k

of the GeLESO
∣∣
k

with
k > i and ∀ j = 1, . . . , p+ i:

• if C (i) = 0, i.e. statement S1 of Theorem 1, then

lim
t→∞

E(t)
∣∣
k

= lim
t→∞

E(t)
∣∣
i

= 0

• if C (i) 6= 0, i.e. statement S2 of Theorem 1, then

lim
t→∞

|Ej(t)|
∣∣
k
< lim

t→∞
|Ej(t)|

∣∣
i
⇔ α

∣∣
k
< α

∣∣
i

Proof: For reason of space, the proof of this theorem is
omitted but it can be found in [26].

This theorem states, in the case where the estimation error
does not converge to 0, that the more the order of the GeLESO
increases, the more the estimation error E(t) on the extended
state Xe decreases.

V. SIMULATION RESULTS

In order to illustrate its efficiency, higher-order GLESO is
compared to higher-order ESO [20], [21] and GPI observers
[23], [24]. The three approaches are used to estimate the
state of the following system whose parameters are supposed
unknown, like for some micro mechatronic systems:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −5θ x1 − 2.92x2 − θ x3 + x21 + d,

y = x1

(18)

where θ is an uncertain parameter and X =
[
x1 x2 x3

]T
is

the unknown state of the system, y is its output that is known
and d, with d(t) = sin (2 t), is an unknown disturbance. To
preserve the coherence of the comparison, the parameters and
the initial conditions of (18) are kept the same as in [23], i.e.
θ = 1.2, x1(0) = −1, x2(0) = −2 and x3(0) = 1.

The first step of the design procedure is to define the chosen
linear system (8), of chosen order p > 0, equivalent to (18).
The choice of p relies on the controller’s requirements and
will be set to 3 in this example. According to (9), matrices A,
B and C are given by:

A =

 0 1 0
0 0 1
a1 a2 a3

 , B =

0
0
b

 and C =
[

1 0 0
]
(19)

where, by choice, a1 = −8, a2 = −8, a3 = −0.8 and b = 1.

The second step of the procedure is to choose i ∈ N∗, the
number of extended components in the extended state Xe (10).
Still to preserve the coherence of the comparison, i is set to
5 as it was done in [23]. With that choice, the structure of
the GeLESO (13), the GPI observer [23], [24] and the higher-
order ESO [20], [21] are given in Table I, where e1 = y− z1.

In addition, the initial conditions of the three observation
schemes are all null and their observation gains L1, . . . , L8

are computed using (16) and (17), with ωo = 5. With these
settings, and because they have the same internal structure, the



TABLE I
STRUCTURE OF THE DIFFERENT OBSERVERS

higher-order GeLESO GPI observer higher-order ESO
ż1 = z2 + L1e1 ż1 = z2 + L1e1 ż1 = z2 + L1e1
ż2 = z3 + L2e1 ż2 = z3 + L2e1 ż2 = z3 + L2e1
ż3 = z4 + a3z3 + L3e1 ż3 = ρ1 + L3e1 ż3 = z4 + L3e1
ż4 = z5 + a2z3 + L4e1 ρ̇1 = ρ2 + L4e1 ż4 = z5 + L4e1
ż5 = z6 + a1z3 + L5e1 ρ̇2 = ρ3 + L5e1 ż5 = z6 + L5e1
ż6 = z7 + L6e1 ρ̇3 = ρ4 + L6e1 ż6 = z7 + L6e1
ż7 = z8 + L7e1 ρ̇4 = ρ5 + L7e1 ż7 = z8 + L7e1
ż8 = L8e1 ρ̇5 = L8e1 ż8 = L8e1

GPI observer and the higher-order ESO will provide the exact
same estimation of x1, x2 and x3.

Figure 1 illustrates that (18) (black curve) gives the same
temporal behaviour y(t) as (8) (blue curve). The virtual input
C plotted in red is computed using (5) with the coefficients ai
defined above (19), its estimation is in the dashed blue line.
Note that the peak in the transient phase of the estimation is
cropped.
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-50

0

50

Real value

Estimated value

Fig. 1. Evolution of the output y(t) and the virtual input C (t)

Figures 2 and 3 show the estimation error for state com-
ponents x1 and x2 respectively, for the different observation
schemes. The figure showing the estimation error for the state
component x3 is omitted for reason of space. However, note
that the behavior of the estimation error for x3 is similar to the
one of x1 and x2, only exhibiting a transient phase of larger
magnitude.

In addition to these figures, let’s define the parameter Λk
as the upper bound of the estimation error Ek on a finite-time
window, i.e.:

Λk = sup
t∈[t1,t1+τ ]

∣∣Ek(t)
∣∣ (20)

where, for relevance, t1 has to be chosen larger than the
response time of the observer to avoid the transient phase.

TABLE II
Λk ASSOCIATED TO Ek , WITH k = 1, . . . , 3, FOR i = 5

ESO / GPI obs. GeLESO
E1 0.0032 0.0017
E2 0.1304 0.0700
E3 2.2785 1.1717

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time [s]

E
st
im

at
io
n
er
ro
r

GeLESO

ESO/GPI obs

Fig. 2. Estimation errors of the state component x1(t)
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Fig. 3. Estimation errors of the state component x2(t)

Table II gives the value of Λk for estimation errors E1, E2

and E3 of state components x1, x2 and x3 for each observation
scheme, with t1 = 20 s and τ = 10 s. From figure 2, figure
3 and table II, it is clear that the proposed Generic Linear
Extended State Observer provides a more accurate estimation
than the higher-order ESO and GPI observers in the literature.

In order to investigate the influence of the number of
extended components in the extended state Xe (10), table III
below gives the value of the parameter Λk for four extended
components only, i.e. for i = 4.

TABLE III
Λk ASSOCIATED TO Ek , WITH k = 1, . . . , 3, FOR i = 4

ESO / GPI obs. GeLESO
E1 0.0060 0.0035
E2 0.2107 0.1235
E3 3.1580 1.8509

The first thing to notice is that, when i = 4, the estimation
accuracy dropped for all the observation schemes, hence giving
evidence of what was stated in Theorem 2. The number of



extended components in the extended state Xe is therefore an
important selection criterion for the design of the observation
scheme. The second element to notice is that the GeLESO still
provides a more accurate estimation than the higher-order ESO
and GPI observers in the literature. Furthermore, comparing
tables II and III, one can also notice that the GeLESO with
i = 4 remains close or is even more efficient than the higher-
order ESO and GPI observers with i = 5.

VI. PERSPECTIVES

In addition to the influence of the number i of extended
components in the extended state Xe, the choice of the
coefficients ak in (4) also needs to be investigated. Indeed,
being able to choose them (as opposed to ADRC where they
are all null) asks the question of their usefulness and influence
on the observer’s performances and future control design.
Some preliminary elements on that matter are given in [26],
along with the cornerstone of Virtual Input Rejection Control
(VIRCO), a control scheme introduced therein.

VII. CONCLUSION

This paper provides a generic observation methodology
that can be applied to a given class of unknown nonlinear
SISO systems affected by uncertainties and disturbances. The
proposed methodology transforms the state estimation problem
of unknown nonlinear SISO systems into the state estimation
problem of chosen LTI systems, along with an unknown virtual
input. This strategy bypasses any identification step and avoids
the mathematical complexity inherent to nonlinear systems.
The state and virtual input estimation is performed with a
Generic Linear Extended State Observer that is introduced
in the paper. This specific observer ingeniously uses the
parameters of the chosen LTI system to introduce extended
state components that take into account the virtual input and its
successive derivatives. Such way to proceed provides a more
accurate knowledge of the virtual input and its dynamics. The
benefits of the proposed observation scheme are confirmed
by numerical simulations involving a Genesio-Tesi chaotic
system affected by a non-constant disturbance. Similar benefits
are expected with any kind of systems, including applications
relying on miniaturized mechatronic devices.
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