Supporting efficient test automation using
lightweight MBT

Elodie BERNARD*, Fabrice AMBERT*, Bruno LEGEARD*}
*FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS Besancgon, France
T Sogeti, Lyon, France
¥ Smartesting, Besancon, France
[elodie.bernard |fabrice.ambert|bruno.legeard] @ femto-st.fr

Abstract—The Agile and DevOps transformation of software
development practices enhances the need for increased automa-
tion of functional testing, especially for regression testing. This
poses challenges both in the effort that needs to be devoted to
the creation and maintenance of automated test scripts, and in
their relevance (i.e. their alignment with business needs). Test
automation is still difficult to implement and maintain and the
return on investment comes late while projects tend to be short. In
this context, we have experimented a lightweight model-based test
automation approach to address both productivity and relevance
challenges. It integrates test automation through a simple process
and tool-chain experimented on large IT projects.

I. INTRODUCTION

Software development and delivery drive organizational and
business performance in a wide range of industrial and applica-
tion sectors, for a growing number of companies. Accelerating
the pace of bringing software changes to production is a key
element of competitiveness. This acceleration is now supported
by a continuous approach to development and deployment
(DevOps), and requires a deep transformation of development
processes, technologies, practices and organizational culture.
Testing of IT Systems has become a major bottleneck for
many large companies and SMEs. Besides the ever-growing
complexity of software systems, their indispensable quality
requirements have led to dramatically increased verification
and validation costs'. A fine-grained analysis of existing
testing procedures reveals however lack of alignment between
the business view of testing and implementation in automated
testing?.

The approach presented in this paper addresses the dual
question of the relevance of automated tests and the pro-
ductivity in their creation and maintenance: how to improve
the efficiency of automated functional tests by aligning a
business-oriented vision of the workflows to be tested and the
implementation of test actions?

Model-Based testing (MBT) has been an important research
focus for at least two decades, but as stated by Arcuri [1],
despite strong academia effort and intensive research work,
these techniques are used rarely in industry, because of the
complexity of using symbolic model-based approaches for

'see World Quality Report 2019-2020 - Available online:
https://www.sogeti.com/explore/reports/world-quality-report-2019.
2see State-of-DevOps Report 2019 - Available online:

https://services.google.com/fh/files/misc/state-of-devops-2019.pdf.

software engineers. Our research work aimed at using simple
workflow notation to link workflow modeling, intuitive for
functional testers, and keywords to automate low-level test
actions (at GUI or API level). The main contributions of this
paper are:

1) a lightweight modeling approach for test generation.

2) the management of several abstraction level to facilitate
the alignment of tests with business needs.

3) the mapping between high level test action and low level
keyword.

4) the management of abstract and concrete test data.

In the rest of this paper, we start in Section II by presenting
the related state of the art, then in Section III we describe in
detail the lightweight MBT as we use it. In section IV, the test
automation process is detailed, section V discuss about some
best practices to reduce maintenance effort on automation
artifacts. The section VI illustrate the use of these practices
through the presentation of two experiments in real context.
Section VII presents some conclusion and point out future
work.

II. RELATED WORK

Model-based-testing (MBT) and keyword driven testing
(KDT) are two techniques commonly used in the field of
testing. In the literature, some papers have been written
about these techniques in a decorrelated way, i.e. only MBT
techniques and for others only KDT techniques. We have
therefore studied on the one hand the papers dealing with
these two subjects independently and on the other hand those
combining them. In order to respond to the problems and
challenges of time to market and automation we study recent
work that adopts similar approaches to the one presented in
this article.

o Lightweight model: Business Process Model and Nota-
tion (BPMN) rather than UML
o Automation: Data driven / Keyword driven

In the context of the MBT, several notations, textual or
graphic, can be used to express the model [2]. Among the
graphic models, some are attached to the representation of
the system under test by a state machine (Statechart for
example). Others, and the work presented here, focus on
process modelling. For this purpose, BPMN models are often

used. In [3], the authors present the ETAP-Pro platform. The
system under test is expressed through a BPMN model. The
tool then evaluates the structure of the model and determines
the execution paths in the model. Each path and activity in
the BPMN model is identified by a keyword to facilitate
its reuse. The tool then produces a set of test cases, in the
form of Gherkin scripts, to cover the identified paths. The
scripts in Gherkin language, are then completed by the test
automation engineer in order to be executed. The test execution
verdicts are injected into the BPMN model by colouring the
different elements. There are also another work on BPMN
[4], which focuses on test case generation in an XML format.
Our modeling approach is close to BPMN but allowing the
generation of test cases directly in test tools or more simply
in Excel format (see next section). For KDT, the objectives
frequently put forward are the facilitation of automation by
facilitating the management of the scripts [5], [6]. These two
solutions only manage the KDT part and not the MBT part,
but today more and more solutions tend to combine the two
by integrating test generation, as which evokes the integration
of MBT in these future works [7]. Nevertheless, MTB and
KTD are already often combined as presented above for the
ETAP-Pro platform, and other [8].

III. LIGHTWEIGHT TEST MODELLING

The adoption of MBT by industry is progressing slowly, and
at the same time, the need for better and more automated soft-
ware testing methods grow. So we believe that experiment and
develop new methodologies and good practices will strongly
help testers to support efficient test automation.

The main objectives of our approach of lightweight test
modelling [9] is to simplifying the modelling notation and
increasing the user experience of the MBT. To achieve this,
we use an MBT tool: Yest, produced by Smartesting.

Yest is a test design and implementation tool based on visual
representations of workflows and business rules. It supports
an efficient software testing process for both manual and
automated test execution.

In our tool, the approach is to represent the workflow to be
tested (and only the part to be tested) and to keep it as simple
as possible depending on the test objectives (Figure 1). In
the same way, the tool provides a test case generation based
on the coverage of nodes and paths, allowing to cover only
what is specified by the user, without proposing all possible
combinatorics.

To guarantee the simplicity of use of our tool we work with
a limited number of modelling elements (Figure 2). There are
three different kinds of inner nodes: task, choice point and
subprocess. In the case of external nodes, one of them is the
start point and the others are ending points. All nodes are
linked by connectors to describe the flow. Task nodes describe
actions on the SUT while choice points control the flow within
the workflow. Subprocess is used to introduce a new process
as a node of the current process. The subprocess has its own
flow graph. Within a workflow, the tasks and choice points are

'

Go to the website of train tickets reservation

!

Create an account &—— —» Select Book then Train tickets
(]
Entrer the informations to book a train ticket
Enter account creation informations #
Validate the research
Verification of v
information redirect Error during
- - - happened ? no the research
error incorrect information es
Error account +y

creation Select a train

]

account created

Train selected

Fig. 1. Example of workflow

associated to decision tables witch detail the cases to be tested
and manage the flow for test generation.

Artefacts | Descriptions

Start point: marks the start of the process

End point: marks the end of the process

Task: describes actions to execute on the
SUT to test a behavior, and corresponding
expected results

Choice point: select the appropriate
following flow depending on previous actions
Sub process: creates a sub process

Subset: defines a subset

- Connector: joins the different artefacts

Fig. 2. Artefacts of the Lightweight MBT tool

In order to increase the user experience of the MBT tool
we will present in this paper a set of methodologies and
good practices to facilitate the automation process. We work
notably to improve the use of the MBT approach by keeping a
certain level of abstraction during the modelling phase and by
facilitating the transition between test cases and test scripts.

IV. TEST AUTOMATION PROCESS

This section describes the automation process implemented
(Figure 3). Although there are many different kinds of automa-
tion technologies, the process described below can be applied
to different types of software applications: web, desktop,
mobile apps. The first step is to model the test process (see
Figure 4), the objective is to make a visual representation of
the system under test by integrating requirements, data and
other relevant elements. This makes possible the automatic
production of a test case that can be used for manual testing.
If we want to limit the test process to manual tests, the process
can be stopped here, otherwise we can continue by completing
the adaptation layer in order to automatically produce test
scripts.

Our test automation approach is based on keyword-driven.
The test cases generated by the visual representation are

converted into automated test scripts, where the test actions
described in the model are transcribed into test automation
keywords with parameters (the test data).

We will describe the automation process using an example.

Modeling the
test process

A. Modelling the process

Automatically
produce test
cases

Complete the
adaptation
layer

Fig. 3. Test automation process

We want to test a set of behaviour in an ERP-based
application focused on project management. Here is a list of
requirements that should be tested:

o It is possible to create a project.

« It is possible to consult all my projects, know their name,

status and date of creation.

o It is possible to consult for each of my projects a time
line indicating the phase in which the project is located
(plan, design, develop, or complete).

o It is possible to change the phase of my project and
observe the progress on the time line.

o It is possible to consult the tasks on each of my projects.

o It is possible to consult the latest activities on the home-
page.

o It is possible to consult the projects dashboard, in the
dashboards, and to have a summary of the number of
projects, and the percentage of complete project, design,
develop, plan.

Figure 4 shows the workflow designed with the modelling

tool in order to produce the test set covering these require-
ments.

start

iii
L]

Connect to the application

¢ choose an interface

» 8

Test the projects interface Test the projects dashboard Test the home interface

1] I 2 Y | g1

\\ i

end

Fig. 4. Main workflow

According to the requirements, we can observe that the
workflow test the different part of the application: the projects
interface, the projects dashboard and the home interface. Each
element annotated with a number (1, 2 and 3) is a sub-
process describing in more detail the test step through tasks
and decision tables. Figure 5 details the “Test the projects
interface” sub-process (number 1 in figure 4): Starting by
opening the project interface, then creating a new project, and

checking if the project appeared in the project’s list, with the
expected data. Next, the project stage can be changed and
checked in the project’s list.

v

Open the project interface [

v

Create a new project s

;

Check the project's list i

continue tests ?

*no

yes
Change the project stagef &

Fig. 5. project workflow

B. Automatically produce test cases

Once workflows has been modelized, the tool provides test
cases, based on these and decision tables. Even if the tool
offers the possibility to produce test cases, the user can change
everything in these proposed test cases or can create new ones.
In Figure 6, there is an example of a test case produced by the
tool, it covers in figure 4 the action ’Connect to the application’
then *Test the projects interface’. Words in blue in the test case
are design data values . For example, the data ”stage” here is
set to "Plan”.

NS Expected results

The application is running

Actior
- Connect to the application
Open the project interface

Create a new project :

The project interface is opened

The project is created
Choose the project name : Automation project
The status : Not Started

— Data : stage]
The stage:% Data value : Plan ‘

Check the projects's list
4 Its status is Not Started

Check the project pipeline
n Check the project date of creation

For the project Automation project
Change the project stage to Design
. Check the projects's list
8

“ Check the project pipeline

Fig. 6. Test case to be automated

The project Automation project is in the projects's list.

Its stage is Plan
The project pipeline is in line with the project stage (Plan)
The project date of creation is today

The project stage is changed

The project Automation project is in the projects's list.
Its status is Not Started
Its stage is Design

The project pipeline is in line with the project stage (Design)

The test cases produced by the model can be converted into
test scripts. To do this, each test action (in figure 6, number
from 1 to 9) will be linked to one or more keywords. In the
same way, the abstract data sets (design data) in the test cases
are transformed into concrete data in the scripts. To generate

the test scripts, the tool supports the mapping of each test
action with a concrete automation keyword. More details are
given in section IV-C2 where the link between step 3 (see
figure 6) and a keyword is shown.

C. Complete the adaptation layer

In order to complete the adaptation layer, a set of steps is
defined and we will present each of these steps.

1) Define a Keywords dictionary: The first step to com-
plete the adaptation layer is the keywords definition. These
keywords are set in an Excel file using a table, which includes
the names of the keywords and their parameters.

Class Keyword paraml

Keywords createNewProject projectName

param2 param3
projectStatus projectStage

Fig. 7. Keywords dictionary

The Figure 7 contains the definition of the Keyword “cre-
ateNewProject” with three parameters: projectName, project-
Status and projectStage. It will be used along the example.In
the tool, we load the keywords Excel file, then it is possible
to map the different actions of the scenarios with the adapted
Keywords.

2) Link the action with the automation keywords: In Yest,
the first step is to realise the mapping between test actions and
the automation Keywords. Here is an example of the mapping
for action 3, ”Create a new project” of the test case in figure
4:

createNewProject ¥ | projectName = project_name =

projectStatus = | project._status

projectStage = project_stage \

The project pipeline is in line with the project stage
(project_stage)

Check the project pipeline
Check the projects's list The project project_name is in the projects's list.
Its status is project_status

Its stage is project_stage

Connect to the application

Create a new project :
Choose the project name : project_name

The status : project_status

The stage : project_stage 1

Fig. 8. Mapping with the automation keywords

Each action is linked with an automation Keywords, the
action highlighted (in the Figure 8) is associated to the
automation Keyword ‘“createNewProject” with three param-
eters the project’s name, the status and the stage. And for
each parameter of the keywords we will be able to link the
parameters of the test case directly: the values of the design
data (as it is the case here in the figure above), or with other
values.

To use other values: two options are possible, choose new
values or implementation data. For new values, it is very sim-
ple: here, during the completion of the adaptation layer, instead
of using “’project_name” for the ’projectName” data, you can
directly write in the cell the data value for ”project_name”. In
the Figure 9, on line 3 a new data value has been used: “my

project”. Then to use implementation data, a data set must be
created in the tool (shown in the Figure 9). For each design
data value “project_name” we associate an implementation
data value “project_name_db” representing base ids. These
are real data from the application’s databases and that we put
here by a copy-paste of an extract of the application. It is thus
possible to use instead of the design data as it is the case on
line 1, the implementation data corresponding to it, as it is
done on line 2 using the “’project_name_db” data.

1 createNewProject ¥ | projectName = project_name
Name of —
(4] project_name [4] project_name_db
At et project | project_name_
D_ata set 1 Dataset1 Automation project | projet_number_02154
in Yest — :
2 Dataset2 Agile Projet projet_number_02178
3 Dataset3 Regular projet projet_number_02189

2 createNewProject v | projectName = project_name._db

3 createNewProject ¥ | projectName = my project

Fig. 9. Mapping data in the keywords

3) Code the automation Keywords: Once the mapping
between test action and keywords has been performed or in
parallel it is required to code the automation Keywords. We
use Java and Selenium to concretize the Keywords.

public static void createNewProject
(5tring projectName, String projectStatus, String projectStage)q{
driver.findElement({By. id("AddNewButton"}).click(};
driver.findElement(By.id("PROJECT_NAME")).clear();
driver.findElement(By.id("PROJECT_NAME")).sendKeys (projectMame);
new Select{driver.findElement(By.id("PROJECT_STATUS"))).
selectByVisibleText(projectStatus);
new Select(driver.findElement(By.id("PROJECT_PIPELINE_ID"))).
selectByVisibleText("Project Pipeline");
new Select(driver.findElement(By.id("PROJECT_STAGE_ID"})).
selectByVisibleText(projectStage);
driver.findElement(By.id("btn-save")).click(};

Fig. 10. Example of Keyword code

An automation Keyword (in Java code) is a sequence of
actions performed on the SUT and is corresponding with a
specific Keywords used in the test cases. The Figure 10 takes
an overview of a keyword implementation. The first action of
the Keyword above is to click on the button allowing to create
a new project. Then entering the project’s name, status and
stage, and finally click on the save button. Each automation
keyword is used to run the test script.

D. Automatically produce test scripts

Finally, once the keyword code produced, and each test ac-
tion of the test case is connected with one or more automation
keywords, the generation of test scripts is possible. The Figure
11 is the script produced by Yest with the associated test
case. It is substantially similar to the test case presented in

the Figure 6 which is the test case chosen for the automation.
The script is the sequence of keywords corresponding to the
mapping performed previously. Each green number preceding
code lines correspond to the action on the test case. A Keyword
can cover several actions (as for the actions 4, 5 and 8, 9). The
blue number correspond to special Keywords call, not directly
in line with the test case but useful to the execution of the
script. Their calls are set up in Yest and directly generated,
no additional operations on the script has to be done to allow
the script execution. In the tool, the production of the script
is done quickly once all the previous steps are completed. A
simple click allows the generation of the script in the runtime
environment (via the path of a Java project, for the use of
Selenium, or directly in UFT or Ranorex solution for these
technologies).

public void execute () {
Reywords.constructDriver() ;

@ Reywords.logIn();

© Reywords.goToProjects() ;

Connect to the application
Open the project interface

Create a new project : @ Reywords.createNewProject(

Choose the project name : Automation project "Automation project",
The status : Not Started

The stage: Plan

"Not Started",
"Plan") ;

Check the projects’s list © Reywords.checkProjectsList(
o tName: "Automation project,
"Not Started",

“Plan®) ;
Check the project pipeline an®)

© Rreywords.checkProjectDate() ;

a
2
2
=
z
@
T
8
a
&
7
-3
)
g
E

For the project Automation project @ Reywords.changsProjectstage(

Change the project stage to Design "Automation project",

Check the projects's list

o Reywords. checkProj
o -

“Automation project",
"N Started",

Check the project pipeline "Design") ;

Reywords.destroy driver();

Fig. 11. test script

V. BEST PRACTICE TO REDUCE MAINTENANCE
WORKLOAD FOR AUTOMATION ARTIFACTS

In order to maintain a set of automated scripts it is necessary
to managing different kind of artifact, such as data, models,
object repository, keywords and scripts.

A. Managing test data

Test data have different levels:

e Data from the model: this is the data derived from
requirements, or useful to manage the workflow (data
who causes changes in the process).

o Data in Keywords: this is the data derived from test
cases (Data from the model), or added by the tester for
automation purposes.

o “Implementation data”: this is the data extract from the
database application.

The main challenge in test data management, in the context
of automation, is to ensure the link between these different
levels of data.

1) Data from the model: This kind of data are created in
the model by decision tables, they are called design data. Each
new column in decision table creates a new data (if the column
does not exist in a previous table) and each new row creates
a new data value. These values are visible in a dictionary that
provides an overview of all the data used in the workflow. In
this way, it is possible to manage the use of data globally, in
the workflow as well as in test cases. The modification of the
data values in the dictionary is allowed, which permit to update
both the data values in the paths and in the existing test cases.
In order to limit the volume of data, it is a good practice to
define only the data that are necessary, i.e. data derived from
business needs or useful to manage the workflow. Typically,
in the test process, if there is a connection phase requiring a
login and password, if the value of their data is not relevant,
they should not be present in the table. However, if there are
requirements for the ID and password, the data can be defined
in the table.

2) Implementation Data: The difficulty with implementa-
tion data is that it cannot always be used directly in test cases
because it is not always persistent. For example we want to
check an age in an application, let’s say older than 25 years.
This data in the application is a date in mm/dd/yy format. If
we want to control the user’s age when registering, each year
the date of birth will have to change to cover the acceptance
criteria.

However, in the test case, the data can be directly set to 25
years old” and thus be perennial. Here the example is simple
and the correspondence between the design data “age” and the
implementation data “date_of_birth” is rather easy to do. In
other cases this exercise can be rather more complex.

In all cases it is crucial to be successful in linking the design
data and the implementation data. With the Yest tool, this is
possible. After generating the test cases, it is possible to link
each design data with an implementation data through data sets
created in the tool. In this way a clear view of the traceability
between the data in the test cases and the data in the SUT is
kept.

3) Data in the keyword: Keywords manipulate 3 types of
data:

e processing data

o design data: from test cases

o implementation data: from the SUT

Each of these data can be passed as a parameter to each
of the keywords. The processing data is not or only slightly
dependent on other data. They are really specific to each
keyword and are designed to make particular treatments. (Log-
ging, passing of particular parameters, etc.) On the other hand,
design and implementation data are closely linked and have
different roles. Design data can be used as it is in keywords or
can be transformed to allow business rule processing. On the
example of the control on the data “age” with the values “more
than 25 years” or “less than 25 years” this can lead to two
different treatments. For the implementation data, they can be
used with little or no transformation. The data in the keywords
is the result of design and implementation data management.

Without an accurate view of the data in the SUT and in test
cases, it is complicated to manage data in keywords. With Yest
you can choose to pass design data or implementation data as
keyword parameters depending on the operations you want to
perform. Moreover, this choice is made at the step level and
not at the full test case level in order to ensure granularity of
data. The advantage here is that one can directly link the data
in the test design tool and in the keywords for automation. This
advantage is not negligible because the tool allows to generate
the test scripts and thus update the data used in the keyword
parameters.These data and their interactions are summarized
in the Figure 12.

/g‘" N mtweinht MBT tool

Data in
Implementation

the
keyword

B "« design data
@menta@ Cﬂ'_ng\;atlon data

- /

Fig. 12. Overview of data management

In order to manage the above-mentioned data, we apply a
precise process. First of all, it is important to define the design
data in Yest. These data can be abstract data and allow to
cover the business requirements, without necessarily having
concrete values existing in the SUT. Then a link will be
created between each test action and one or more keywords.
As mentioned the keywords manipulate 3 types of data:
design data, implementation data and processing data. Through
datasets in Yest we associate design data with implementation
data if required. Once this is done, we can use the design or
implementation data in the keywords according to the choices
made previously, and add new parameters and their values if
needed. Once the Yest adaptation layer is completed, we can
publish the test scripts with the adapted data values. In case
of changes in the Yest side data, we can quickly update the
scripts to keep them up to date. It is this data management
that keeps the automated scripts up to date and thus facilitates
the maintenance of the automated test case assets.

These data are important because in the context of the
improvement of the automation process, certain tests are
executed several times with a set of different data. Typically,
if we want to test a connection interface, it can be interesting
to test the connection with different identifier. If the identifiers
are present in the database, we execute the test in a loop to
check the different profiles.

The data utilisation begins in the model, at this level this
is a functional tester that entered data. So he provides data
with the level of abstraction of his choice. He can provide
directly data recorded in a database/application (when it is
possible) or to choose to enter abstract data. The functional
tester does not have to reflect about the automation when he
complete his model. However, if in some specific case he
can enter the data visible in the application (for example, a
text in drop-down list), the gap between the different type of
data is small and allow a weak maintenance. More the data
in the model are far from the data in the SUT more the data
management is complex.

So to enter data in the model as close as possible to
the data present in the database/application is a good practice
to facilitate the data management. Nevertheless, it does not
need to try to enter all the data of the application. It must
keep in mind that the model contains uniquely data useful
to verify the requirements but not the data useful to execute
the test script. There are keywords that contain these data.
In data management phase, the keywords have an important
role because they allow handling data collected from the test
action and converting them to exploitable data in the SUT.
Thus, we have to be rigorous with the way to deal with the
data in the adaptation layer in order to guarantee a good data
management.

B. Models

Regardless of the way a project is built, whether it is in
Agile or V-Cycle, our approach is based on building a set of
models that will allow us to generate test cases to verify the
SUT’s functionalities. In order to verify a large application, it
is common to build several models that use common behaviors.
By common behavior we mean a group of steps: actions
and expected results that are similar. Usually this can occur
for the connection phase which can be common to several
test cases covering different functionalities. The good practice
is to integrate in the models a “shared” “connection” sub-
process that describes the connection behavior. This ”shared”
sub-process is a model integrating all the steps necessary to
establish the connection to the application and which can
be integrated into any other model. In this way, when we
create a new model to test a new behavior, it is possible to
reuse existing connection processes to build the process to
be tested. This technique reduces the time needed to produce
new scenarios using existing artifacts. In addition, having a
common process for a specific behavior reduces maintenance
time. Indeed, if a change occurs on the connection phase, it
is easy to modify the process related to the connection and
all the processes that use the connection process will be up to
date, without modifying each main model one by one. A good
practice is therefore to identify the different behaviors of the
application and spot the ones that can be used in several test
cases and thus create a set of shared sub-processes that can
be used several times rather than specific and unique models
In the example of the figure 13, in the ”One practice” and

”Best practice” area, we consider that in models 1 and 2, the
behaviors are similar at the beginning of the process. Instead
of creating different sub-processes like in the “One practice”
area (sub-process 1.1 and 2.1) it is better to use the same
sub-process (sub-process 1.1) as shown in the ”Best practice”
area.

Best practice

Test project artefacts

"shared"
sub-process
1

"shared" "shared"
sub-process |l sub-process
2 B]

Main model 1 Main model 2

One practice
Test project artefacts
"shared" "shared"

sub-process

"shared"
sub-process
1 2 3

sub-process
Main model 1 Main model 2

Main model in detail

Main model in detail

Main model 2

Main model 1

Main model 1 Main model 2

"shared"
sub-process

sub-process
model 2.1

"shared"
sub-process
1

sub-process
model 1.1

"shared" "shared" sub-process

sub—pruce k model 1.2
8

Fig. 13. Models best practice

sub-process

model 2.2

sub-process
2

C. The object repository

The object repository is a library containing all the objects
of the SUT required for automation, which are stored in
the automation solution. These objects are buttons, fields,
forms or any other object on which you want to perform
actions to test the application. If we want to test a connection
interface, we will have in the object repository the field
“identifier”, “password” and a button “submit”. Depending on
the automation technology used, the object repository is built
differently. Nevertheless, one common point is that the objects
must be precisely identified to facilitate maintenance. Usually,
the identification of objects is done via a “path” leading to
the object. The path is more or less complex depending on
the type of SUT. In the case of web applications, objects are
identified by an xpath, or an id (among others). Having an id
to identify an object is the best way to facilitate the automation
process and its maintenance. Indeed, even if the object moves
in the structure of the application, the script will still be able to
find an object, unlike an xpath which is volatile and subject to
change with application updates. So, in case we don’t have an
id, and we have to use an xpath, we have to make sure that the
xpath is enough global to find the object if its position changes.
However, this solution is weak because an xpath should not be
overly global as it can select several objects instead of one and
thus lead to incorrect behavior. A good practice to facilitate the
creation and maintenance of the object repository is therefore
to choose the best identifier for the objects. The best identifier
is probably the id. If it is not available, we need to identify the
strongest property (i.e. the one that will be the most unique
and less subject to change) of the object to identify it. For
example, the name of the object, its text, its class or any

other property that should not change and select the item
uniquely. Then these objects must be organized efficiently in
the automation solution to allow easy updating. The objects
can be classified by interface or functionality depending on
the way the application is implemented.

D. The keywords repository

The keywords are the automation functions to reproduce the
behaviours of the SUT. Regardless of the technology used,
they have a name, and parameters (data). These and other
properties must be managed to facilitate their maintenance.
Here are the properties that we have treated in order to
facilitate the management of keywords:

1) the name of the keyword: This may seem trivial but it
is of major importance in order to facilitate the creation of
scripts and their maintainability. In our approach we consider
the work of the test analyst and the test automation engineer
in a similar way. It is therefore necessary to set up a naming
system that allows the test analyst to understand the scripts and
the automation engineer to manage his keyword library. The
name of the keywords must be meaningful and correspond to
the operation he is going to perform. For example “connect”,
”bookAFlight (Departure, Arrival)” are descriptive names and
use data that a test analyst can understand and use to complete
the automation adaptation layer.

2) parameters (data): As in the example above for the
function “bookAFlight(Departure, Arrival)” two parameters
are used: the departure city and the arrival city. The difficulty
in the management of these parameters is that they have to be
defined in a suitable format to be the most robust as possible
to change. Here the parameters are waiting for a string: there
are different properties to take into consideration. If the test
analyst chooses ”paris” as the departure city and the SUT waits
for ”Paris” it is possible that the test fails because of a manage-
ment of upper and lower case. In this situation, the automation
engineer should perform a treatment on the data passed as
a parameter to ensure that a capital letter is present for the
first character of the parameter and, if this is not the case, to
integrate it. In other circumstances, it should not be managed
because the test will be aimed at verifying the property that the
SUT must receive the exact name of the city, respecting the
upper case at the beginning of the word. The difficulty is the
management of the parameters, which values are expected and
accepted. For this reason, the test analyst and the automation
engineer must work together and define correctly the expected
behavior of the functions as well as the format and data values
accepted in the parameters. In some cases the automation
engineer may set up keywords for field completion in general,
such as a ’completeField(”FieldToComplete”, “FieldValue™)”
function where the analyst may enter “fieldLogin” as the field
to be completed and “myld” as the value of the field to be
completed. In this kind of case the test automation engineer
will have to provide the values from the object libraries to
the test analyst to allow this technique to work. Hence the
importance of managing the object repository as mentioned
above.

3) the granularity of keywords: Its management is essen-
tial to facilitate their implementation and maintenance. The
difficulty will be to choose which degree of granularity to
implement and when: should we write a connection function,
or sequence the completion of fields and the validation of a
form to make the connection. In order to best manage this
granularity we have established 5 factors that vary according to
the granularity: the reusability of the keyword, its maintenance
effort, the understanding of the script product (for the test
analyst and the automation engineer) and the investment to be
made on one hand by the test analyst and on the other hand
by the test automation engineer. The following table (Figure
14) classifies the granularity in 3 levels: low, medium and
high and according to these levels of granularity the same
scales are applied to the factors. In addition 3 colors are used
green, orange and red depending on whether the factor is good,
medium or bad.

investment of the test
automation engineer

maintenance | understanding of the | investment of the test

ranularity | reusability
g effort script analyst

thigh

medium

" r
[high. flow | llow
T
igh lhigh llow

llow

Fig. 14. Keyword’s granularity and factors

A high level of granularity can be represented by a key-
word of the type “completeField(”FieldTocomplete”, “Field-
Value”)”: it can be used to check various functionalities and
fields. Thus we can see that on a high level of granularity
the reusability of keywords is high which is very good point,
however it requires a high investment of the test analyst. The
automation engineer has to create the keyword library but it
is limited and requires less effort to maintain. On the test
analyst side, he has to use a lot of keywords to detail basic
functionality. This leads to poor readability scripts because
they only include steps for filling fields and clicking buttons
that are not representative of the business behavior behind
them. The main advantage of high granularity is therefore that
it is reusability.

A medium level of granularity can be represented
by a keyword of the type “chooseABooking-
Tool(“URLOfBookingTool”)”: it can be used to check
cases where we want to choose a booking site. For example,
this function could allow to choose a booking site regardless
of the site, therefore the code of the keyword must be adapted
to identify the site where the test is carried out and adapted
the keyword to allow the reservation on each of them. For a
medium level of granularity, all the factors have a medium
degree except the maintenance effort, which can be high. The
investment of the test analyst and the automation engineer
are both moderate because it requires the same effort for
the analyst as for the automation engineer. This is explained
by the fact that the keywords are enough understandable to
bring a part of the business vision, so the scripts are rather
understandable. On cons, maintenance effort can be complex
because the keywords are not dedicated to a specific context,
it is necessary to be careful when updating a particular

context to avoid breaking the other contexts.

A low level of granularity can be represented by a keyword
of the type “bookAnHotel(”Arrival”, "Departure”, "Hotel”)”:
it can be used to check hotel booking on a particular software.
For this level of granularity the reusability is low because a
very specific function will not be able to be reused on a regular
way in a totally different script than the one for which it
was created. Usually low granularity keywords cover a precise
perimeter and cannot be used on other features but can be
useful for regression testing where testing of features must be
sequenced. As the functions have a low granularity level, the
understanding of the scripts is facilitated because they contain
keywords with meaningful names allowing to understand the
actions performed in the script from the business point of view.
Thus the investment of the test analyst is limited because it is
easy for him step by step to reproduce the SUT’s behaviour
and complete the adaptation layer but not for the test automa-
tion engineer. He will have a wide number of keywords to
implement and which will be dedicated to a specific behavior.
Moreover the keywords is devoted to a specific behavior, so
maintenance effort is harder because keyword updates must
be done for each of the test perimeters, for a large number of
keywords. The following table (Figure 15) gives an example
of functions that can be used for different levels of granularity.

Iigh level of granularity Medium level of granularity Low level of granularity

completeField chooseABookingTool lbookAnTotel
("URL”,”bookingURL”) (“URLOfBookingTool”) (“Arrival”,”Departure”,”Hotel)
clickOnButton IbookAnHotel

(“validate™) (‘Arrival’, "Departure’, "Hotel’)
completeField

(“Arrival, “ArrivalDate”)
completeField
(“Departure”,”DepartureDate”)
completeField
(‘Hotel”,"HotelName”)

Fig. 15. Example of keywords by granularity

Thus the best practice to apply here is to intelligently switch
between keywords of low, medium and high granularity. The
creation of a library of high granularity keywords is beneficial
to give autonomy to the test analyst and allow him to automate
simple behaviors. When the use of these keywords causes too
long or incomprehensible scripts, it is necessary to switch
to medium and low granularity keywords. Prefer medium
granularity keywords if the function can be used in different
contexts and high granularity if it will be dedicated only to the
given perimeter. By combining these 3 levels of granularity it
is possible to achieve a balance between each of the 5 factors
and thus facilitate the implementation and maintenance of the
keywords.

E. Scripts

Scripts are probably the most difficult automation artifact to
maintain because they are dependent on data and keywords.
So if the data or keywords are invalid, scripts cannot work.
Indeed, a script is a sequence of keywords that reproduces
the behavior of the SUT. If the behavior of the SUT changes,
the whole script can be potentially impacted. For example,

if a change occurs just after the connection, all the scripts
may need to be reviewed. If a large number of scripts
exist, reviewing each script and adding new keywords can be
extremely complex. In our experiment, we use Yest to generate
test cases and test scripts. We advise you to keep the model
up to date. If a new behavior appears in the application (or
new data), we add these new behaviors and data to the model.
Then we regenerate the test cases, complete the adaptation
layer, to add a new keyword and data, and link it to the new
test action, and regenerate the test script. This way, we don’t
have to modify each of our scripts, but simply replace the
obsolete scripts with the new ones.

Applying these different good practices helps to maintain
the test scripts, and to facilitate the management of the
automation process. In the next section, we will show how
we apply these methodologies on a large IT project.

VI. EXPERIENCE REPORT

In the section above we have presented a set of approaches
and good practices to facilitate the automation process and
maintenance. Here we will describe how we applicate all of
them to test a web application on two large IT project. In
order to experiment the approach in two different contexts,
we carried out a study in one perimeter of an Agile project
in the middle of development (after 10 months of projects by
restarting at the tests on a perimeter) and in the other case,
an Agile context as well but by conducting the experiment on
a short cycle of 10 days to see if the approach was suitable
for short iterations. In addition, we have used two different
automation frameworks: Selenium for the first experimentation
and UFT for the second in order to test the approach on two
different technologies and make sure that good practices can
be applied in both cases.

A. I’ experiment

1) Description of the SUT: In our experience we focus on
one aspect of the application: the evaluation process.

The principle of the evaluation process is to realise the
control of the employee competences. For that purpose, the
evaluator can choose among the trade, the watch-group and
the evaluation type (that he has the access according to his
rights) and he follows a step set to realise an evaluation. So
just for the preparation phase of the evaluation an evaluator
that have the access to two trades, three watch-group and
two evaluation type can realise twelve different evaluations.
Depending of the trades and watch-groups the evaluation
is carried out differently with new actions to be produced.
Moreover other particularities is applied during the evaluation
process increasing the number of possible behaviour. So the
test of the evaluation is complex by the number of possible
behaviours due to a large combination of data.

2) Modelling the test process: In order to test the evaluation
process, we have created a set of processes by applying the
concept discussed previously. We have created three main
processes: that we call process A, B and C. In order to
present the common points existing between each of these 3

main processes we have represented in Figure 16 an overview
of the way each of the main processes share common and
independent sub-processes. In blue appears the common sub-
processes, in green the independent sub-processes linked to
the main process A, in orange those for the main process B
and in purple those for the main process C.

These processes describe the evaluation process with
changes for each test objectives. Each main process contains
a set of five common sub-processes (in blue in Figure 16) and
additional sub-processes to test specific behaviours. Each of
the main processes A and B contains one different additional
sub-process ("Quote a key point case A” in green for the
main process A and “Quote a key point case C” in purple
for the main process C).The last main process (B) contains
five additional sub-processes in orange. Moreover, some sub-
process contains common sub-processes in order to facilitate
the maintenance and the creation of new main process. We
are studying several ways to model in order to find the most
effective method to model, to create new processes and to
maintain. Most of sub-processes contain only one task and are
dedicated to a specific functionality of the application. Indeed,
whenever a behaviour (for example the connection) is used
more than once for the test, we create a new sub-process and
we call this new sub-process where it is needed. The creation
of a sub-process of one task takes less than five minutes to be
done and the same for making a change. The time passed on
the modelling phase represent 30% of the automation process.

3) Automatically produce test cases: The main process A
to test the evaluation in the most basic way generates a single
test case of 10 steps. It does not use any particular data, hence
the production of a single test case.

The main process B generates two scenarios of 55 and
61 steps. That’s because two complex cases are verified: on
the one hand, the overall progress and, on the other hand a
synthesis.

To finish the main process C generates six scenarios on
average of 19 steps each. This can be explained by the fact that
a combinatorial approach to ratings and watch groups is used
here. In case C we perform actions quasi similar to case A,
except we produce 6 test cases in contrast to case A where only
one test case is produced. Here it is the use of combinatorics
that influences the number of test cases produced. Hence the
importance of good data management in order not to increase
the number of product test cases.

All of these nine scenarios are converted into scripts.

4) Complete adaptation layer: In order to complete the
adaptation layer, we have created a Keywords dictionary con-
taining 30 keywords. These keywords have a fine granularity
and allow to cover all the 33 test actions of the scenarios.
For the data mapping we use in most cases the data extracted
from the scenarios and we adapt the keywords code according
to the data extracted. It allows functional testers to keep an
high abstraction level in the scenarios while allowing the script
generation. The coding of the keywords (1400 lines of code)
and the construction of the objects repository represent 60%
of the time of the automation process. This percentage and the

e

Prepare an evaluation
k24
¥

Choose evaluation area
1S
v

Choose evaluate agent il

¥

{ N)

Quote a key point case A

Quote a key point case B Quote a key point case C

ks ks e
'
Check progress axis
1S
¥

{)

Check overall progress Check the synthesis

&1 2]
| '
| Check the report
| bt
. L Finish the evaluation / L
&8
end

Fig. 16. Main processes content

number of lines of code are due to the difficulty to create a
stable Selenium code and the large possibility of behaviours
of the application.

5) Automatically produce test scripts: Finally, once the
adaptation layer is completed, we success to generate 9 scripts,
using the 30 keywords and generating 400 lines of code. These
scripts are executed in an execution environment by using for
some script only the data issued of the scenarios and for the
other a set of data extracted of the database. For example, the
script allowing to realise a “simple” evaluation is executed in
a loop with data changes in each loop.

B. 2" experiment

1) Description of the SUT: The second project was carried
out in the field of insurance and deals with the marketing of a
new offer, in the context of the sale of guarantees on various
products. This results in the launch of a new web application
allowing the subscription to a product. This subscription gives
rise to a precise business path through a series of steps. The
data manipulated are mainly numerical amounts linked to rules
for managing sales turnover, calculating franchises, etc. The
key point in the tests was to be able to manage the different
types of data mentioned above: design, implementation and
keywords.

2) Modelling the test process: During our experimentation
we operated on a limited perimeter because we wanted to
verify the approach in a context of short cycle (sprint of
10 days). As a result, we sought to cover a selected set of
28 business requirements in this 10-day periode. In order to
cover these 28 requirements, we carried out a total of 29
processes. Each of them allows us to cover in detail each
of these requirements. With this segmentation, it was easy
to build regression business test cases and to cover multiple
functionalities. In addition, the visual representation of the
requirements provided a better understanding of the business
requirements. Indeed, each requirement being represented by
a visual sequence of simple tasks, such as “Enter a turnover”,
then ”Control the franchise amount”, it was simple to represent
all the steps when signing a contract. During this experiment
some business aspects were forgotten in the modeling of the
test process. For example, elements modeled on day 1 were
reviewed on day 5. In such cases it was easy to find the
elements concerned in the model and thus quickly updated. As
a result of our experimentation we were able to cover 100%
of the requirements through the models.

3) Automatically produce test cases: In order to cover
all requirements, 37 test cases were generated by the tool.
This number makes it possible to cover each functionality
independently and also crosswise through end-to-end testing.
The tool allows the generation of “the minimum” number of
test cases in order to promote the maximum coverage of the
requirements. This is a significant advantage to facilitate au-
tomation by limiting the number of test cases to be automated
and later to be maintained.

4) Complete adaptation layer: In order to complete the
adaptation layer, as for the first experiment we have created
a dictionary of keywords. These keywords have a variable
granularity in order to keep the scripts readable. We have
therefore created functions to complete fields as well as to
complete interfaces. In order to manage our data during the
completion of the adaptation layer we used two types of data:
design data and implementation data. For each of the design
data existing as an equivalence class we created a data set
to replace it by the real value it takes in the SUT, i.e. the
value of the implementation data. Thus the scripts produced
will be executable. In our study we produced 6 keywords in
order to test our approach and to verify if a limited number of
keywords could be used to verify a set of system properties.
Here we have been able to cover all regression tests, i.e. 5 test
cases verifying a set of properties.

5) Automatically produce test scripts: Similar to the 1st ex-
periment, the generation of scripts occurs once the adaptation
layer is completed. In the end, 5 test scripts were produced,
covering our objectives. We were able in a given short time
to build the proposed approach from scratch, proving that it
can be adapted to short cycle and iterations.

VII. CONCLUSION AND FUTURE WORKS

The establishment of the automation process on a large
IT project spotlights a set of observations. First, the use of

the lightweight MBT approach helps to design test cases and
allows to keep a good vision of the tested business process.
Indeed, by keeping a model with a high abstraction level, it
is possible to discuss around the model and directly to extend
test objectives by changing the model. Moreover, the creation
of a set of sub-process regrouping the common behaviour of
the application helps to realize rapidly new main processes
and reduce the maintenance of each process. We observed a
design time reduced by 30% and an update time divided by 2.
Although at first sight the use of this approach seems to speed
up the implementation of automation and reduce maintenance
time, we have not been able to measure the exact gain between
a traditional approach and the one we propose. Our future
work could be to carry out in parallel two experiments on the
same project but applying two different approaches and thus
measure the results obtained. However the proposed approach
provides an overall process for creating and maintaining
automated tests. But the implementation of keywords must
respect the good practices of structured keyword coding [10].

Some good practice has to be established to facilitate the
work between the functional tester and the automation engi-
neer. Notably for data management and an efficient reusability
of the keywords and its parameters. Indeed, if the keywords
wait for a specific data and data is different script execution
will fail. So, it’s important to create keywords able to adapt
to minor change of data values (like upper case instead of
lower case for example). Nevertheless, a good practice is to
use existing data in the dictionary (in the case of the use of
Yest) when it is possible, in order to guarantee the production
of test cases easy to automate.

REFERENCES

[1] A. Arcuri, “An experience report on applying software testing academic
results in industry: we need usable automated test generation,”
Empirical Software Engineering, vol. 23, no. 4, pp. 1959-1981, Aug
2018. [Online]. Available: https://doi.org/10.1007/s10664-017-9570-9

[2] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of
model-based testing approaches,” Software Testing, Verification and
Reliability, vol. 22, no. 5, pp. 297-312, 2012. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/stvr.456/full

[3] A. C. Paiva, N. H. Flores, J. P. Faria, and J. M. Marques, “End-to-end
automatic business process validation,” Procedia Computer Science,
vol. 130, pp. 999 — 1004, 2018, the 9th International Conference
on Ambient Systems, Networks and Technologies (ANT 2018) /
The 8th International Conference on Sustainable Energy Information
Technology (SEIT-2018) / Affiliated Workshops. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050918304666

[4] P. Yotyawilai and T. Suwannasart, “Design of a tool for generating
test cases from bpmn,” in 2014 International Conference on Data and
Software Engineering (ICODSE), Nov 2014, pp. 1-6.

[5] Z. H. He, X. Zhang, and X. Y. Zhu, “Design and implementation of
automation testing framework based on keyword driven,” in Advanced
Manufacturing and Information Engineering, Intelligent Instrumentation
and Industry Development, ser. Applied Mechanics and Materials, vol.
602. Trans Tech Publications, 10 2014, pp. 2142-2146.

[6] D. Garg, A. Singhal, and A. Bansal, “A framework for testing web
applications using action word based testing,” in 2015 Ist Interna-
tional Conference on Next Generation Computing Technologies (NGCT).
IEEE, 2015, pp. 593-598.

[71 R. Hametner, D. Winkler, and A. Zoitl, “Agile testing concepts based
on keyword-driven testing for industrial automation systems,” in JECON
2012 - 38th Annual Conference on IEEE Industrial Electronics Society,
Oct 2012, pp. 3727-3732.

[8] T. Takala, M. Maunumaa, and M. Katara, “An adapter framework for
keyword-driven testing,” in 2009 Ninth International Conference on
Quality Software. 1EEE, 2009, pp. 201-210.

[9] B. Elodie, A. Fabrice, L. Bruno, and B. Arnaud, “Lightweight model-
based testing for enterprise it,” in 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
April 2018, pp. 224-230.

[10] R. Rwemalika, M. Kintis, M. Papadakis, Y. L. Traon, and P. Lorrach,
“On the evolution of keyword-driven test suites,” 2019 [2th IEEE
Conference on Software Testing, Validation and Verification (ICST), pp.
335-345, 2019.

