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Abstract

In order to completely fulfill a datacenter power demand, one im-
portant issue is to determine and investigate a reasonable sizing for
Hybrid Renewable Energy System (HRES). Usually, in the context of
datacenter renewable power supply, the energy production is hybrid
and it consists of wind and solar energy production associated with
battery and hydrogen energy. To design the electrical energy system,
one needs to forecast weather conditions (solar radiation, wind speed)
in order to evaluate the energy production yearly. The aim of this
paper is to propose a SARIMA-based model for a particular renewable
energy system. Indeed, thanks to the wind turbine and solar panel
models, it is possible to optimize the overall cost of the global energy
system. We finally validate the proposed model on actual data.

1 Introduction

The twentieth century witnessed a boom in the number of data centers
around the world driven by a rapid growing demand for Cloud services.
Consequently, the energy footprint of the IT sector has increased exponen-
tially and reached unprecedented levels. It is, actually, estimated to con-
sume approximately 7% of global electricity in 2007 [1]. Furthermore, in
2016, statistics shows that data centers demand reached 91 billion kWh of
electricity which is twice more than New York city consumption [2].

In this scenario, with climatic conditions going for drastic reversals, a
global alert concerning the environment, the greenhouse gas (GHG) emis-
sions, air pollution, social concerns and other energy security issues [3, 4]
is raised. Consequently, the attention of many government and researchers
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around the world has shifted to find a new alternative energy sources that
matches with the environment. One of the most popular solution is the
utilization of renewable energy sources as they have been established to be
sustainable, economical, nature friendly, abundant, non-polluting and re-
newable [5, 6]. In fact, the European Technology Platform for electricity
networks of the future, known as ETP Smart grid expected that, by 2020,
approximately 34% of the total electrical consumption will come from re-
newable energy and will have gone more than that by 2035 [7]

Nevertheless, considering the intermittent nature of solar radiation and
wind, and the high capital and operational costs of solar panels and wind
turbines with the necessary energy storage devices, forecasting the next-day
outputs of the power generation systems becomes a major issue to evalu-
ate the appropriate power architecture sizing. Thus, a lot of research teams
around the world and particularly in the coastal area [8, 9, 10] mobilize
their efforts on either solar prediction or wind speed prediction. As a re-
sult, many forcasting methods have been developed by experts around the
world [11, 12, 13] that could be classified following their approach and the
time scale of prediction (e.g., physical approach such as Numeric Weather
Prediction (NWP)). This model solves complex mathematical models using
weather data like temperature, pressure, surface, etc. NWP is usefulness
for medium to long-term forecasts (> 6h ahead) [14, 15]. Also, statistical
approach which is based on training the measurement data by using the dif-
ference between the predicted and the actual wind speeds in immediate past
to tune model parameters such as neural network (NN) based methods, and
Time-Series based models like ARMA [16], ARIMA [17], Grey Predictors,
Linear Predictions, etc. Finally, a hybrid approach exists with a combination
of different approaches like combining short-term and medium-term models
or mixing physical and statistical approaches [18, 19, 20].

This paper focuses on applying a statistic approach for forcasting wind
speed and solar radiation on two different location, Los Angeles and Chicago
in the USA. Considering the history of meteorological conditions in terms of
solar radiation and wind speed at the two selected sites and the mathemati-
cal models of wind turbine and solar panels, one can compute the electrical
production during the time horizon considered. Thus, based on this amount
of energy production, the sizing of a hybrid renewable energy system com-
posed of wind turbines, solar panels, battery and hydrogen storage systems
has to be designed to completely supply a data center whose demand has a
peak power less than 500 kW.

The remainder of the paper is organized as follows. Section 2 presents the
methodology used in order to forecast weed speed and solar irradiation to be
able to designed a hybrid renewable energy systems supplying a datacenter.
This sizing is briefly explained in Section 3. Then, the obtained results are
presented and discussed in Section 4. A conclusion and perspectives are
given in Section 5.
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2 Forecasting Methodology

Before presenting the whole methodology, we start by introducing the type of
data as well as their locations. We here dispose of two types of data: solar ra-
diation and wind speed. The latter could be obtained from various databases
online such as the national solar data base (NSRDB) [21], the Modern-Era
Retrospective analysis for Research and Applications (MERRA2) [22], the
wind prospector from the National Renewable Energy Laboratory (NREL) [23].
In our case, the data are obtained from NSRDB AND NREL. Recall that the
aim of this paper is to propose a statistical approach for wind and solar fore-
casting. For that purpose, based on a review and results obtained by different
researchers mentioning the accruacy of the ARIMA model [18, 17, 24, 25], we
have selected the SARIMA model [26, 27]. In order to verify the robustness
of the SARIMA approach on our application, we will apply the methodology
on two distinct locations having different characteristics.

2.1 SARIMA model

ARIMA is a statisctical approach widely used in today’s world since the
evolution of sophisticated statistical software package. ARIMA has four
major steps in model building- Identification, Estimation, Diagnostics &
Forecast. Then, the general scheme for ARIMA model is translated by:

1. Identification of the model structure.

2. Application of autocorrelation function (ACF) and partial autocorre-
lation function (PACF) in order to identify the orders of the ARMA
model. The parameters of the model are estimated by a maximum
likelihood (ML) function

3. Testing the goodness of fit on the estimated model residuals

4. Using the estimated model for forecasting.

ARIMA model uses the historic data and decomposes it into autoregres-
sive (AR), Integrated (I) indicates linear trends or polynomial trend and
Moving Average (MA) indicates weighted moving average over past errors.
Therefore, it has three model parameters AR(p), I(d) and MA(q) all com-
bined to form ARIMA(p, d, q) model where:

• p = order of AR

• q = order of MA

• d = order of I (differencing)
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The multiplicatif Seasonal ARIMA model namely SARIMA is actually a
variation of the classical ARIMA model. In order to take into account the
seasonal effect of the irradiation and the wind speed, this model is generally
written as SARIMA(p,d,q)(P ,D,Q) where, as in the ARIMA model, p, d, q
and P , D, Q are non-negative integers that refer to the polynomial order
of the AR, I, MA parts of the non-seasonal and seasonal components of the
model, respectively. Mathematically, the SARIMA model is defined as in (1)

φp(B)ΦP (Bs)OdOD
s xt = θq(B)ΘQ(Bs)εt (1)

Where: xt is the forecast variable (i.e., solar radiation), φp(B) is the
regular AR polynomial of order p(), θq(B) is the regular MA polynomial
of order q(), ΦP (Bs) is the seasonal AR polynomial of order P (), ΘQ(Bs)
is the seasonal MA polynomial of order Q, Od is the differentiating oper-
ator that eliminate the non-seasonal non-stationarity, OD

s is the seasonal
differentiating operator that eliminate the seasonal non-stationarity, B is
the backshift operator, which shift one point in time the observation xt (i.e.,
Bk(xt) = xt−k) and finally εt follows a white noise process and s defines
the seasonal period. These polynomials are described mathematically in
Equations (2):

θq(B) = 1 −
q∑

i=1

θiB
i ΘQ(Bs) = 1 −

Q∑
i=1

ΘiB
s,i

φp(B) = 1 −
p∑

i=1

φiB
i ΦP (Bs) = 1 −

P∑
i=1

ΦiB
s,i

Od = (1 −B)d Od
s = (1 −Bs)D

(2)

In order to get the model that fits the best the data, the Akaike Infor-
mation Criterion (AIC) is a statistic measure to compare them. In fact, the
AIC rewards models for a good fit and penalize others for complexity. It
could be written as:

AIC = 2k + ln

(
RSS

n

)
(3)

with k the number of free parameters, n the total number of observations
equal to 468 and RSS is the residual sum of squares.

Finally, using the obtained valid model, one can proceed to the forecast-
ing of the wished period.

2.2 Evaluation of the forecasting performance

The forecasting model is constructed on time series of solar radiation and
wind speed for a duration of 9 years weekly (which means 468 values). Once
the models are formulated, they are used to forecast wind speed and solar
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radiation for the last two years . Afterwards, the averages of the statistics for
the 2 years forecasting results are computed to analyze the models’ accuracy.
Several measurement statistics can be used to examine the forecast accuracy
of different models. Mean absolute percentage error (MAPE) is used very
often to evaluate the performance of the forecasting model. The above-
mentioned statistical quantities are computed as in (4):

MAPE =
100%

n

n∑
t=1

∣∣∣∣xt − x̂t
xt

∣∣∣∣ (4)

where x̂t is the forecast value.

3 Hybrid renewable energy system sizing

The aim of this work is to determine an the optimal size of the stand-alone
hybrid renewable energy sources (HRES) to fulfill the energy demand of the
data center. These electrical sources are divided into 2 different subsystems:

• The primary sources: consist in providing the basic power to supply
the data center and are composed of photovoltaic panels and wind
turbines.

• The secondary sources: are the back up power to supply the data center
in times of need and are composed of batteries and fuel cells.

As the datacenter should be autonomous in terms of energy consumption,
the totality of the energy comes from primary sources. Moreover knowing
that the primary sources operate as intermittent sources in time, we have
to balance the lack of energy production (for example in the winter) by an
over production (summer) during the year. To achieve this balance, the
secondary sources (storage sources) are divided following the type of storage
and operate as follows:

• Long-term storage: where the day of overproduction will balance the
days of underproduction. The electrical resources used in this case is
the hydrogen system

• Short-term storage: where the hours of overproduction will balance the
hours of underproduction during the same day (fluctuations between
day and night). It means that the production will be smoothed over
the day. The electrical resources used in this case is the batteries.

Using the data center demand and the meteorological data downloaded,
one needs to understand the models of the first subsystem in order to proceed
to the sizing of the primary sources.
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3.0.1 Solar Model

To model the relation between the irradiation data and the output power
Ppv of the PV panels, a widely used model [28, 29, 30, 31, 32] is described
by Equation (5):

Ppv = I ×Apv × ηpv (5)

where, I is the hourly solar irradiance in kW/m2, Apv is the area of the
PV panels in m2, and ηpv is their efficiency.

3.0.2 Wind model

The model of the output power of one wind turbine generator Pw that follows
the power curve is shown in Figure 1 [33]. So, the turbine starts generating
power at the "cut-in" wind speed vci. Then, the generated output power
increases with the increase of wind speed from the "cut-in" vci to the rated
wind speed vr. When the wind speed varies between the rated wind and the
"cut-out" wind speed vco, which is the maximum wind speed value at which
the turbine can correctly work, the turbine produces a constant or "rated
power". Once the wind speed goes beyond the "cut-out" speed, the turbine
stops generating for safety reasons.

Power (kW )

wind speed (m.s−1)

output

cut-in speed

rated output speed cut-out speedrated

power

Figure 1: Ideal wind turbine power output

Many other papers, such as [34, 35, 36, 32], have adapted this mathe-
matical model of the wind turbine power output that can be written as in
Equation (6):

Pw =


0 if v(t) ≤ vci or v(t) ≥ vco

Pr
v(t) − vci
vr − vci

if vci < v(t) < vr

Pr if vr < v(t) < vco

(6)
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where v(t) is the wind speed (m.s−1) at any time t (s) and Pr is the
nominal power of the wind turbne.

4 Results and discussions

The data representing the solar radiation and wind speed were measured
on an hourly scale from January 2004 till December 2012 (more than 6
years) in two different location. To be more precise, the endogenous data
of the solar radiation and wind speed time series were measured at Chicago
(Latitude: 41.810539, Longitude: -87.643127, Time Zone: -6 ) and at Los
Angeles (Latitude: 34.57, Longitude: -118.02, Time Zone: -8). Then, in
order to obtain weekly values, we calculated averages per groups of 168
values (168 hours per week). Finally, we have obtained time series of 52
value per year, i.e., 468 values during the nine years. Figures 4d and 4c
showed this distribution respectively for solar radiation and wind speed in
Los Angeles. The first nine years have been used to setup our models and
the last two years to test them. The model has been implemented using R
programming language.
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Figure 2: Weekly solar radiation distribution in Los Angeles

4.1 Models validation

Based on Figure 4d, the measured solar radiation from 2004 till 2012 is quite
seasonal. In fact, the data starts from the first week of January till the
last week of December. Each year, the pic of solar radiation is in July that
corresponds to the summer season where days are quite long. Contrariwise,
the lowest values are obtained in December or in January. This period
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Figure 3: Weekly wind speed distribution in Los Angeles

matches with the winter where days are short. Thus, the solar distribution is
intrinsically seasonal and periodic which validates the choice of the SARIMA
model.

In Figure 4c, the data also starts from the first week of January till the
last week of December. Moreover, it shows a random distribution where data
varies from 3m/s till 14.8m/s. This series presents a seasonality that could
be well seen especially starting from the week 150. The wind speed is quite
low in the winter and increases with the oncoming of summer corresponding
to the thermal hot wind of Los Angeles. Nevertheless, the wind can vary
from one year to another so we cannot confirm the periodicity.

Table 1: Comparison of the statistic criterion AIC for wind speed in both
Chicago and Los Angeles

DATA SARIMA Configurations AIC

Chicago

SARIMA(21,0,21)(1,1,0) 1441,393
SARIMA(11,0,14)(1,1,1) 1359,254
SARIMA(11,0,14)(0,1,1) 1358,813
SARIMA(18,0,18)(0,1,0) 1498,97

Los Angeles

SARIMA(9,0,19)(1,1,0) 1886,61
SARIMA(6,0,6)(1,1,1) 1844,582
SARIMA(6,0,6)(0,1,1) 1839,007
SARIMA(9,0,0)(0,1,0) 2006,21

In order to obtain the model that fits the best the data, different con-
figurations of SARIMA have been applied on the distributions for the two
locations. In each set, 4 seasonal configurations have been applied such as
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the seasonal polynomial AR and MA respectively ΦP (Bs) and ΘQ(Bs) are
set as explained in Table 1

Table 2: Comparison of the statistic criterion AIC for solar radiation in both
Chicago and Los Angeles

DATA SARIMA Configuration AIC

Chicago

SARIMA(10,0,9)(1,1,0) 4162,49
SARIMA(4,0,18)(1,1,1) 4075,66
SARIMA(4,0,18)(0,1,1) 4075,32
SARIMA(10,0,9)(0,1,0) 4283,52

Los Angeles

SARIMA(20,0,14)(1,1,0) 3796,42
SARIMA(13,0,14)(1,1,1) 3735,64
SARIMA(13,0,14)(0,1,1) 3733,59
SARIMA(13,0,20)(0,1,0) 3884,346

Based on results given in Tables 1 and 2 in the two different cities, with
completely different characteristics, one can see that the best AIC obtained is
the one of the model configuration SARIMA(p,d,q)(0,1,1) for both solar radi-
ation and wind speed data. For instance, The SARIMA model(6, 0, 6)(0, 1, 1)
is written during a period of s = 52 as in Equation (7)

(1−φ1B1−φ3B3−φ6B6)xt = (1−Θ1B
s)(1−θ1B1−θ3B3−θ3B3−θ6B6)εt

(7)
Thus, only the latter is maintained as valid models to be used in the

forecasting of the solar radiation and wind speed for a duration of two years.

4.2 Forecasting evaluation

Now coming back to the objective to predict the future meteorological data
with the valid SARIMA(p, d, q)(0, 1, 1) model obtained in the section before,
the results are shown in Figure 4. Moreover, to investigate the model suf-
ficiency, we summarize the useful statistics about the forecasting results in
Table 3 by computing the mean absolute percentage error of all the tested
weeks.

The forecasting model is applied on four years where it compares with
the last two years 2011 and 2012 and continue the forecasts till 2014 weekly.

Based on the solar radiation prevision in Figures 4b and ??, the forecast-
ing curves in blue are quite fitting the real data of the years 2011 and 2012
and follow the seasonality. Moreover, with a MAPE equal to 7 and 15.60 for
the two sites Los Angeles and Chicago respectively, the SARIMA model is
quite validated and accurate.

Figures 4a and 4c show the wind speed forecasting starting from 2011 till
2014. The forecasting curves in blue is following the trend of the real data
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(a) Wind speed in Chicago (b) Solar radiation in Chicago

(c) Wind speed in Los Angeles (d) solar radiation in Los Angeles

Figure 4: Forcasting results of the wind speed and solar radiation for Chicago
and Los Angeles

of the years 2011 and 2012. Nevertheless, the the 99% confidence interval
is quite large and indicates high variability. Thus, these rates should be
interpreted with the noise variance estimated. The SARIMA model applied
on the wind speed in these two cities, Los Angeles and Chicago, is not as
precise as the solar forecasting.

Finally, recall that all interpretations and conclusions presented in this
paper are based on data available for the specific areas.

5 Conclusion

This paper presents a comparison among four distinct solar radiation and
wind speed generation forecasting models. It is shown that in general,
SARIMA model is quite good in the forecasting of the solar radiation dur-
ing years and fits very well the data because of their seasonal distribution.
We also pointed out that the performance of the used model in forecasting
the solar during the years is more precise than the ones for the wind speed
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Table 3: The mean absolute percentage error of the used methods

Data Locations Methode MAPE
Solar
radiation

LA SARIMA(4,0,18)(0,1,1) 7,03
Chicago SARIMA(11,0,14)(0,1,1) 15,60

Wind
Speed

LA SARIMA(6,0,6)(0,1,1) 29,83
Chicago SARIMA(13,0,14)(0,1,1) 12,54

which degrades noticeably for long term previsions. It is hence important
to predict wind speed variation as precisely as possible. This shows the in-
terest to consider other models or characteristics such as Markov Switching
ARMA [37] to improve the precision of the results in order to get an optimal
sizing for the hybrid renewable energy system supplying a datacenter power
demand.
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