A Case-based Approach for introducing
Testing Tools and Principles

Frédéric Dadeau
Univ. Bourgogne Franche-Comté
FEMTO-ST Institute/DISC, CNRS
Besancon, France
frederic.dadeau @femto-st.fr

Abstract—We present, in this paper, teaching material and
experience report on teaching software testing to 3rd year
bachelor’s degree students. Our approach covers a wide range
of techniques from unit testing, to functional testing, through
test-first design and black-box testing. To motivate students, we
rely on the use of a running case study, that is developed and
tested all the way through. This paper presents both teaching
material and experience report based on the feedback that we
get from the students, and the observations we made regarding
the discovery of the software testing aspects.

Index Terms—Case-based Learning, Unit testing, Test Driven
Development, Integration, Functional Testing, Agile Approach

I. INTRODUCTION

Testing is one of the most, if not the most widely-spread
technique that can be used to ensure software quality in the
industry. Over the years, testing has become a first class citizen
in software development processes and teams [16]. The recent
evolution of software development teams into agile teams
and the associated increasing tool support, notably continuous
integration, led to an evolution of the practices, about which
students have to be educated.

As such, teaching software testing has become a key issue
in computer science curricula [14]. In order to have students
ready for working into software companies or simply to teach
them that software quality is what they will be paid for, it is of
primary importance to teach them software testing tools and
practices, if possible, in a dedicated course.

The course that we describe here is a third year bachelor
course, named Tools for software development which focuses
on various high-level and low-level aspects of software de-
velopment: source control software, coding standards, agile
methods (with a focus on Scrum), and a large part dedicated
to testing. This latter is covered by lectures and tutorials on
structural testing, and practical sessions dedicated to a concrete
usage of the various tools that students will likely have to use
once they will be working as professional software developers.

We present, in this paper, the teaching approach that we
have implemented in our university, in the computer science
curriculum, to introduce software testing to students. We will
mainly focus on the practical sessions, for which we rely on
a case study that is:

Jean-Philippe Gros
Univ. Bourgogne Franche-Comté
FEMTO-ST Institute/DISC, CNRS
Besancon, France
jean-philippe.gros @ femto-st.fr

Fabien Peureux
Univ. Bourgogne Franche-Comté
FEMTO-ST Institute/DISC, CNRS
Besancon, France
fabien.peureux @ femto-st.fr

o small enough for the students to master the software
development part, so that they can focus on the testing
part of the course,

« realistic, to get students involved on a subject to which
they can relate and which will motivate them, and

« tailored to cover all the aspects of software testing, from
the discovery of the unit testing drivers until continuous
integration and functional testing.

Especially, we intend to cover the following aspects of the
software testing activities: unit testing, integration testing,
functional testing, and practices: source control, continuous
integration, test-driven development.

The contributions of this paper are:

o teaching material used for two years on introducing
software testing tools and practices to 3rd year (bachelor)
students using a realistic case study,

« teaching material used for several years to introduce agile
approaches in a playful way, and

« lessons learned, on both sides, on this experience.

The paper is organized as follows. Section II presents the
context of the course, the background of the students, and the
teaching objectives. Section III describes the teaching material
that we propose, tailored to this year’s (2019-2020) case study.
Section [V describes how we use testing learning to intro-
duce agile approaches which most frequently promote testing
practices. Section V provides a complementary feedback from
the students point of view and from the teaching point of
view. Finally, section VI concludes and presents the future
improvements that we plan to implement.

II. TEACHING TESTING AT THE UNIVERSITY

At the university of Franche-Comté, the computer science
curriculum consists in a Bachelor’s degree (in 3 years) that can
be completed by a Master’s degree (in 2 additional years).
The curriculum focuses on software development, with two
specialties focused on software engineering, and distributed
systems, the two historical research activities of the supporting
research laboratory, the Computer Science Department of the
FEMTO-ST Institute.

frederic.dadeau@femto-st.fr
jean-philippe.gros@femto-st.fr
fabien.peureux@femto-st.fr

A. Student’s Background

In our university, the students start their computer science
curriculum with a general semester in science and technol-
ogy, which includes general courses on mathematics, physics,
computer science, electronics, and mechanics. From the 2nd
semester, they then specialize into computer science and
mathematics. The two subsequent years of the bachelor’s
degree are then mostly dedicated to computer science, in
which students discover a broad set of concepts (algorithmics,
complexity, logics, modelling, design, etc.), programming lan-
guage paradigms (object-oriented, functional, shell, etc.) and
environments (operating systems, networks, web, databases,
etc.). The Bachelor’s degree count about 1.500 hours of
teaching, which is the average in France, and represents, as
every bachelor’s degree, 180 ECTS (European Credit Transfer
Scale).

When they start the classes, the students have a good
knowledge and practice of Java, since it is the language they
learn in first year, and which is also the support of the object-
oriented programming class in second year. Notice that, until
now, there is no computer science teaching in high school. In
general, students present good programming skills in various
paradigms: object-oriented, system, web, etc.

At this step, the students already know testing because some
of practical courses, such as algorithmic, use test suites to
evaluate their work. In their mind, tests are something positive
and useful, but they do not necessarily see how to do it.
In addition, they sometimes separate the activity of testing
from the activity of software development. In general, students
add some tests after the project is finished instead of testing
regularly. Most of the time, they use manual tests, and they
do not look for automation in the test execution. The goal of
this course is to reshape their opinion on this subject.

B. Learning Objectives and Outcomes

The syllabus presents the learning objectives as follows,
we only present here the objectives related to testing.

At the end of the semester, the student will be able to:

o explain the principles of software testing,

o cite and describe the main code coverage criteria,

o write and execute unit tests in an xUnit environment,

o automatically assign a test verdict using assertions,

o evaluate the quality of the tests using code coverage or

with a mutational analysis,

e develop a piece of software using a continuous integration

environment.

To achieve these objectives, we propose to rely on case-
based learning in which a single case study is used as a
running example to illustrate the various aspects and concepts
of software testing.

C. Organization and Technical Choices

The course has a standard schedule for French universities,
meaning that it counts around 55 hours in face-to-face sessions

augmented with personal work from the students. This moti-
vates to use freely-available tools, so that student can work
at home. The teaching staff is composed of two associate
professors, one professional software developer (who presents
the source control software and coding standards — which is
not the focus of this paper), and one PhD students who teaches
some of the practical sessions.

Lectures represent 15 hours and are divided into three
categories, one related to testing principles, with a focus on
structural testing [9], one related to collaborative work such
as source control and coding standards, and one related to
software engineering in general, and agile methods [10], in
particular.

The first two points are mainly covered by the lectures and
tutorials. Most of the practical sessions related to white-box
testing are focused on introducing software testing in practice
in order to have students ready, at the end of the semester, to
master the main tools that can be used at each stage of the
software development process. This paper is focused on these
particular sessions.

Our approach relies on the use of a simple-but-realistic case
study that will motivate the students. The idea is to develop
the different pieces of the case study (namely the different
classes) and apply the appropriate testing tool, or technique,
to validate it.

As we do not want students to be stuck by a technical
issue in programming, we have decided to select Java as
the language in which development will be made. Indeed, as
explained earlier, Java is the first language that the students
have learned and it is the one that was the most used during
their curriculum. Besides, the tooling related to Java is quite
extensive, and free integrated development environment dedi-
cated to this language exist (IDEA IntelliJ, Eclipse, NetBeans
notably).

We made the choice not to focus the lessons on writing tests
only, as we believe it is important to keep both programming
and testing, so that (1) testing is not considered as an activity
that is aside from coding, (2) testing has to become a reflex
when starting programming.

The techniques and tools that we aim to teach to our students
are addressed through successive sessions that we now detail.

III. TEACHING MATERIAL “TOOLS FOR PROGRAMMING”

Each year, we implement our educational program on a
realistic example. Last year, we focused on a supermarket
scanner. This year, we focused on a Japanese subway case
study. We first describe this case study before detailing the
different sessions that use this case study.

A. Chikatetsu, a case study on the Japanese subway

In Japan, the subway (or chikatetsu — literaly: “underground
railroad”) is an interesting system for a case study. The fare
of the travel is determined by the distance that the traveler is
supposed to travel: the farther he goes, the higher the fare. If
the ticket that is used is not loaded with enough money, fare
adjustment machines can be used to add some credits to the

tickets, in order to open the exit barrier. Notice that jumping
over the barrier would simply not be acceptable.

We took the example of the Sapporo subway network, which
is quite representative of such a network, composed of three
lines, and around 50 stations.

The case study consists in implementing such a system. The
design of the system is already made and is part of the informal
specification. The set of classes that compose the system,
along with their API, and a description of their operations
is provided. Figure | shows the class diagram that is used
to illustrate the description. Similarly to the case studies that
we have already used, the chikatetsu system contains 4 main
entities:

o the Station class is used to represent the station and
their associated lines that cross the station. Each station
is located a given kilometer point for a given line.

o the Network class represents the set of stations that
compose the subway network. Some properties are ex-
pected from the network, for example: it should contain
only stations that are all linked to each other, and all
station names should be different.

o the Ticket class represents transport tickets which may
be intended either for adults or for children, and which
are initialized with a certain amount of money, which can
later be modified.

e the Barrier class represents barriers that can be
opened, to enter or to exit the station, by introducing
a ticket in it.

The data model of the different classes is left unspecified
and students are free to implement the methods as they
wish. Nevertheless, we expect the methods to comply to the
signature that is specified, and to conform to the behavior that
is described in the informal specification that is provided.

Similarly to a real-world exercise, we put them into the
situation where a developer has to implement a set of features
that have to be integrated later on with others pieces of
software. It is thus of utmost importance that the students
respect the methods’ signatures (name and parameters) and
do not modify them (spoiler: they will modify them).

We now detail how we make use of the different classes that
have to be implemented as a support for different exercises
aiming to discover and apply testing tools and methodologies.

Station Network
#. ..
+getName(): St - -
getName(): ring T |+initialize(File)
+getlines(): Set<String| +getlines(): Set<string?
+0 ‘
+... ()
e, .1 0
entdred kndus
.
* +
Ticket i
uses Barrier
#, . - - — - - —— - — - = =
- +enter(Ticket): bool
+isChild(): bool +exit(Ticket): bool
+getAmount(): int
+o 0

Fig. 1. The class diagram of the case study

[En Transport > £ frufc.3info.oprog > @ Station

Station

Element Missed Instructions~ Cov.© Missed Branches - Co
© Station(String, String, int, double) EEEEEEE———— 0% n
@ getNumberForLir 0% ni
@ getDistanceForline(String) e 0% ni
@ getLines()] 0% ni
@ hashCode() — 0% n
@ equals(Object) e 0% n/
@ addLine(String, int, double) || 0% ni
@ removeline(String) | | 0% ni
@ Station(String), 100 % n/
@ getName(), — 100 % n/
Total 15 of 20 25% 0of0 n

Fig. 2. An example of the JaCoCo HTML report

B. Educational Sequence

We describe here the different sessions that we carry out
with the students. For each, we describe the theme and the
objective of the session, and we present it on the running
example. Each session is a face-to-face session of three hours,
in computer rooms. However, most of the session require
students additional time to finish the work at home.

1) Unit Testing: The first session is dedicated to discover
the basic tools used for unit testing.

This session is also the setup of the development environ-
ment. We rely on the IntelliJ [4] IDE (Integrated Development
Environment), coupled with a Maven [1] architecture, so that
the source files can be organized in a standard manner.

a) Objective: The goal of the session is to write the code
of a simple Java class, write JUnit [0] tests to validate it, and
finally use the JaCoCo [5] code coverage tool to evaluate the
“completeness” of the test suite. We illustrate the generation
of code coverage reports, and show them the usefulness of the
coverage report integrated into the IDE. We expect the students
to write test cases with appropriate observations (assertions)
in order to establish a test verdict. At this stage, this latter is
mainly based on using getters that will retrieve some of the
internal values of a subset of the data model.

b) On the case study: The students are asked to develop
the Station class which is the most basic unit of the
system. In general, we try, when possible, to add one method
that requires some algorithmic issues, such as a checksum,
so that students may rely on the code coverage criteria that
they have seen during the lectures and tutorials. As the case
study is not very complex, students should easily reach a
100% code and branch coverage, relying on the JaCoCo tool,
whose reports can be shown in Fig. 2.

2) Test-Driven Development: The second session is dedi-
cated to improving the knowledge of unit testing, and discov-
ering Test-Driven Development (TDD) [11].

a) Objective: The goal of this session is to write a
class that reads from a file to instantiate a (sort of) database.
This kind of exercise is a good support for Test Driven
Development. Indeed, the specification describes a file format
(generally, a Comma-Separated Values file), which is supposed
to describe a set of instances of the class developed during the

Namboku,

5, Kita-Jtni-Jé, 3.9
Namboku, 6, Sapporo, 4.9
Namboku, 7, Odéri, 5.5
Namboku, 8, Susukino, 6.1

Tézai, 8, Nishi-JGitchdéme, 7.5
Tézai, 9, Odéri, 8.5
Tézai, 10, Bus Center—-Mae, 9.3

Fig. 3. Sample of the Sapporo network CSV file

previous session. In this context, the specification provides the
passing cases, and all the possible error formats that have to be
captured by the code and that will raise exceptions. We provide
a first example file, which contains a valid data set, which can
easily be modified by the students to introduce invalid records.
It thus makes full sense to, first, design the test file that will be
used by a test case, and then design the test case that will load
this file, before implementing the code that will read the file
and treat the possible error that is supposed to be contained in
the test file. As errors are signaled by exceptions, this session
shows how to establish a test verdict based on the presence or
absence of an exception.

b) On the case study.: In this session, the students have
to develop the Network class which initializes a subway
network by reading a set of data that will be used to instantiate
the stations that compose the network. Figure 3 shows an
excerpt of the file which describes the network of Sapporo.
For each line (in the CSV file), we have the name of the
subway line, the number of the station for the line, the name
of the station, and finally the kilometer position.

Error cases can be of two kinds. Format errors represent all
errors that are related to the CSV file format: empty fields,
incorrectly-typed fields, wrong number of fields, etc. Invalid
network errors relate to the structure of the network itself: all
stations should be numbered with an ascending numbering,
for a given line there are no gaps in the numbering, all
kilometer positions are ascending as the station number
increases, no station is isolated on the network, etc. Both
kind of errors are signaled by dedicated exceptions.

3) Specification-Based Testing: In order to show students
that testing can also be a standalone activity, in which they may
have to validate someone else’s code, this session is dedicated
to the writing of test cases only, based on the specification of
the class.

a) Objectives: The goals of the session is to force
students to read, analyze and exploit the specification for
writing test cases. The idea is to see the code as a black
box, which is provided as a compiled Java class (one for each
student). The objective is to find out if the class contains an
error, and to explain why there is an error. We do not expect the
students to locate the error, but rather refer to the specification
and explain why the assertions they wrote have failed.

b) On the case study: This session is dedicated to the
Ticket class which has a simple lifecycle that can be

described using a state machine, as depicted in Fig 4. The
ticket is first issued when it has been initialized with a given
amount of money. When passing through an entry gate, the
ticket records the station in which the gate is located. When
passing an exit gate, or if the ticket is reused, for re-entering
a station, it becomes invalidated. It is possible to question the
current amount of money on the ticket, and the station name,
but it is impossible to know the current state of the ticket,
which forces students to design more complex observations,
in which one must attempt to perform a given action to check
if it is authorized or not. This session is the occasion to make
the students aware of situation in which they do not control
the code that is written and have to deal with the (limited)
observation points provided by the system. Each student
receives an implementation of the class which may (but not
necessarily) contain an error.

4) Mocks and Spies: As unit testing is performed, it is, by
essence, a key issue to test classes in isolation, by mocking
other classes [17]. To illustrate this to the students, we rely
on two concepts, namely mocks and spies. A mock is a fake
object that is setup to behave as needed for a considered unit
test case. A spy is similar to a mock but it is used to fake a
part of an existing object. This may notably be used to replace
some methods of the object under test.

a) Objectives: The goal of the session is to master the
mocking tool and its principles to write test cases in isolation.
To achieve that, we introduce the Mockito library [8] that is
well-known in the Java community and makes it possible to
define both mocks and spies.

b) On the case study: This session consists in designing
and testing the Barrier class which is central in the system.
Indeed, this class is related to the station. A barrier is located
in a given station. It is also related to the network, as we
choose to delegate the computation of the fares to the barrier.
Finally, the barrier interacts with a ticket, as the barrier may
be used to enter the station (in this case, the barrier should
open with an issued ticket and it should record the station
on it), or to exit the station (in this case, the barrier should
open if the ticket has enough money compared to the fare
that is computed based on the shortest path between the
entry station and the current station). The other classes have
to be mocked, so that the methods of the barrier (one for
entering and one for exiting) can be invoked in the different
interesting situations (normal usage, re-entry with an already
used ticket, etc.)

adjustFare(...) adjustFare(...)

entering(...) : true rﬁ entering(...) : false
. ISSUED »| ENTERED »| INVALID @
F} invalidate()

invalidate()

Fig. 4. The state machine associated to the Ticket class

5) Integration Testing: After having tested classes in isola-
tion, the next step is to test the correct integration of classes.
a) Objectives: The goal of this session is to make
students understand the difference between unit and integration
tests. This session aims to write tests that use the system
classes in integration. The idea is to remove the mocks that
were introduced previously and add new test preambles (to
set up the different objects) and assertions (to evaluate if the
effects of methods of the previously-mocked objects —which
could not be observed— have correctly been applied).

b) On the case study: The session focuses, once again,
on testing the Barrier class. The students start from their
previous test cases, but they have to design a full network,
and instantiate tickets with the appropriate parameters and
put them in the right state. Thus, students have to check that
the effects of the methods that were invoked are effectively
applied and propagated through the system. Especially, they
need to make sure that the ticket, which was faked before,
has recorded the entry station once the entry barrier has been
opened.

6) Continuous Integration and Software Evolution: Con-
tinuous Integration (CI for short) consists in a tool-supported
environment which combines a source code repository, a build
server, and test suites, so as to continuously build the software
on the repository and run the tests each time a developer
commits its code.

a) Objective: The goal of this session is to introduce the
principles of continuous integration, through the setup of a
CI environment, and the collaborative development of a set of
additional features to the current version of the application.

b) On the case study: The first part of the session is ded-
icated to the set up of the continuous integration environment.
We have decided to work with the Gitlab [3] source control
environment, which provides the possibilities of scripting the
execution of test cases. Gitlab integrates well with Maven
builds, and makes it possible to easily build the application
and run the tests in a Docker container on the server side. In
addition, Gitlab CI keeps track of the different builds, notifies
the developers in case of failures, and makes it possible to
retrieve the last build and get the console log of the build and
the test execution to detect where errors are located.

In addition, we ask the students to implement an evolution
of the software. Due to a lack of time, this year, we did not
implement this part, but we had planned to ask the students
to add a limitation in the ticket validity (e.g. the traveler has
one hour to exit the station before invalidating the ticket),
and to implement the use of a travel card to pass the barrier.

7) Functional Testing: Once a whole system has been
designed, it is mandatory to perform functional tests, at the
system level. As the system is relatively small, integration
tests can be seen as very close to functional tests as both
may involve all the classes of the system. To tackle this
misconception, we propose to the students that they test the
system in a web-based simulator.

a) Objective: The goal of this last session is to both
teach the difference between integration testing and functional
testing, and to make students discover test execution robots,
namely Selenium IDE and Selenium Driver [7]. To achieve
that, we design, each year for each considered case study,
a web-based application, of the form of a simple video game
that simulates the real-world application on which the students
have worked all the semester.

b) On the case study: We have designed a web-based
video game in which the player can manage characters that
enter a subway station, buy tickets, take trains to reach other
stations, adjust the fare of the ticket, and exit the station.
Figure 5 displays the main screen of the application in which
it is possible to handle a character and have it buy tickets
(see Fig. 7), pass through the barriers, and reach a train to go
to another station (see Fig. 6). The application is available at:
https://fdadeau.github.io/chikatetsu

The students have to discover the Selenium IDE plug-in
which is installed on a web browser, and can be used to record
test sequences and replay them in the context of regression
testing [15]. Then, their objective is to write Java unit tests
that drives the browser using the Selenium Driver library that
has the ability to launch a web browser and input commands
in it. At the same time, they both practice functional testing,
and discover the application they know in real-life situation.
Notably, they can discover that some behaviors that were
possible in the code of the application is not necessarily
possible in practice. For example: tickets are invalidated once
they are used to pass an exit barrier, and an invalidated ticket
can not be used to pass a barrier. An interesting test case is
to invalidate a ticket before using it to try to enter a station.
However, in practice, it is impossible to retrieve a ticket after
having passed the exit barrier, as the barrier "keeps” the tickets
when exiting.

C. Evaluations

We describe here how the practical sessions are evaluated.
In order to better motivate the students we ask, before the
next session, to upload their code and their associated tests to
evaluate them. The evaluation usually consists in the following
three steps.

a) Running a reference test suite on students code:
The goal of this step is to evaluate if the students have
correctly implemented the requirements that are described in
the specifications. To achieve that, a full test suite, designed by
the teaching team, is run on the students code. The objective
is, for their code, to pass all the tests.

b) Running students tests on a reference implementation:
The goal of this step is to evaluate if the students have correctly
tested their implementation. By detecting test cases that fail
on the reference implementation we are able to detect false
positives, typically tests that are run correctly on their code, but
which are not correctly designed, notably due to an erroneous
interpretation of the informal specification.

In addition, we weight the score obtained at this step by
the number of tests that were designed. The idea is to force

https://fdadeau.github.io/chikatetsu

Fig. 5. Station playground

the students to have shorter tests, each focused on a specific
feature, rather than long tests, that check several features at
once. This is considered as a good practice for locating errors
and debugging code.

¢) Running students tests on mutants of the reference
implementation: The goal of this step is to evaluate the
relevance and the completeness of the students test suites.
Before running their test, we first remove those which failed
on the reference implementation. Once the test suite passes on
the implementation, we run it on a set of mutants.

The mutants are manually designed, based on the reference
implementation, and represent erroneous implementations of
the informal specification. To ensure that the mutants are not
equivalent, we make sure that our reference test suite is able
to kill all the mutants. This is also, as a side-benefit, a way to
strengthen the reference test suite.

After each session, we take some time to run automated
scripts that perform the evaluation on the students code. A
feedback message is sent to the students to inform them of
their results and the common mistakes that they have done,
and how to improve their code/tests.

IV. CONNECTION TO AGILE PRACTICES

The last part of the course aims to put testing into perspec-
tive and evaluate its strengths and weaknesses in an operational
development context.

This objective is addressed by introducing software agile
development and underlying the benefits expected by the
intensive use of the test, as promoted by the agile approaches.
This topic gives rise to a more general introduction to software
engineering methods and practices. This lesson firstly consists

IFED
Susukino

Fig. 7. Ticket vending machine interface

in presenting the motivations of the Software Engineering and
introducing a brief history of methods, i.e. from waterfall
cycle to current agile approaches. Secondly, it focuses more
specifically on the motivations and global principles of agility
as described in the Agile Manifesto [12]. Finally, the agile de-
velopment method Scrum [19] is used to explain agile project
management and team organization, while the 13 practices
defined by the eXtreme Programming (XP) [13] method are
presented to illustrate development practices. Obviously, a
particular attention is given to the practices studied by the
students during the previous sessions of the course, namely
acceptance testing, unit testing and continuous integration that
automates and makes systematic the execution of tests.

In order to make students aware of agile principles in a
playful way, a practical teamwork, inspired from the “Marsh-
mallow” challenge, is organized over a dedicated 3 hour
session. This playful game basically consists, by team of 4
students, to build a free-standing Eiffel tower only using sticks
of spaghetti, adhesive tape and one marshmallow, which must
be placed on the top of the structure. Figure 8 depicts some of
the resulting Eiffel Towers that were built. Teams have to apply
an agile approach to build their tower. Concretely, it consists
in conducting 5 to 7 sprints including the sprint planning (2
minutes), the building period (5 minutes), the sprint review
and retrospective (2 minutes). Previously, each team populates
during a 30 minute release planning the product backlog by
identifying and defining the building tasks they decide to do.
After the game is finished, the rest of the lesson, about 1 hour,
is dedicated to a general debriefing discussion.

This game is intentionally not linked to computer science

Fig. 8. Results of the Eiffel Tower Game

activities. This choice is motivated by the desire to focus the
attention of the students on agile project management by a
short experience, and not to disrupt this learning goal with
IT techniques. However, reconciling agile and testing issues
is performed during the general debriefing. To reach this goal,
one the one hand, the debriefing consists for each student to
give feedback about the problem his team was faced and how
the team succeeded to mitigate them or not, etc. On the other
hand, the teacher takes notes during the game and relies on it
during the debriefing to make students react or question about
decisions or attitudes. They are also used to illustrate what
agility promotes or tends to present as a good practice. In
this context, a lot of situations can be used to point out the
characteristics of testing.

For example, one usually hear, many times in many groups,
the exclamation “Don’t touch it, you will break it!”. This
typical comment allows the teacher to highlight, within soft-
ware development, the role of testing to change this sentence
into “Do not be afraid, you can touch it to make it better.”.
Writing test cases, structural and functional as well, allows
developers to validate the code they are producing, but it also
makes it possible to gradually build up a battery of tests that
can be used to detect regression. Moreover, the continuous
integration process enables to automate and systematize their
execution (no human intervention is needed), and therefore
multiplies their benefits since they are systematically executed
whenever necessary. In this context, developers are informed at
the soonest that a regression occurs and they can immediately

react to fix it. In the worst case, within such a continuous
integration process, we can also explain how the source code
version control system makes it possible to rollback without
damage to the last stable version of the source code.

In addition to these benefits, the teacher can also alert the
students that it is necessary to master the number of test
cases. Notably, since test case scripts are code, they necessarily
require maintenance effort. Time execution can also become
a problem. The given message is clearly about the benefits of
testing and its capacity to increase the quality of the developed
solution. But we also underline that this leverage capacity has
a price to pay, and this price has to be managed.

To sum up, the main lesson about testing we want to convey
to students during the debriefing is that testing is not only a set
of techniques: these essential practices also require a dedicated
expertise to be used in a relevant and efficient way. Nowadays,
as promoted by agility, developers need to master this skill.

V. LESSONS LEARNED

We present here the lessons we have learned from this two
years experience. We start by classical (or frequent) errors
made by the students, and we then present the feedback that
was given by the students.

A. Observations on the Students Work

We observed two main issues during the students work,
which caused some troubles with the evaluation of their code
and tests.

First, we had to admit that students do not read the specifi-
cations. Indeed, we left some pieces of the software behavior’s
unspecified, on purpose, without any specific indication on the
behavior that was expected. We expected students to ask us
questions about them. Surprisingly, students are very reluctant
to ask such essential questions, as they seem to be used to have
a full description of the application available and thus, they do
not seem to conceive that the specification can be erroneous
or even incomplete. At the same time, many consider that if
something is not specified, they are free to implement it as
they like. Thus, they regularly make implementation choices,
which, sometimes, do not correspond to the expectations. This
experience was the occasion for them to learn that the client
does not always fully describe what he wants, and that, in this
case, inventing or choosing for him is not an option.

Second, we discovered that sometimes, students are tempted
to modify the classes, either by adding additional methods in
the classes, or by directly changing the API (i.e., the operations
signatures) of the classes they had to develop, just because they
thought they “would not have done it like this”. In these cases,
it is simply impossible to evaluate their code (as our reference
test cases do not compile with the modified signatures) or their
tests (as our reference implementation does not comply with
the invocations of the API that is performed in the tests). These
experiences were the occasion for the students to learn that
once a development team has agreed on a design, this design
can not be changed by an individual without the consent of the
rest of the team, as other developers may rely on this design.

Even though these two negative experiences happened while
we expected students to simply follow the instructions, we
were grateful that we had the opportunity to teach them that
they made a mistake, and why they made a mistake. We
believe that the use of such case studies, makes it possible
to encounter representative issues that a developer may face
during the testing phase.

B. Feedback from the Students

We collected the feedback from the students at the end of
the semester using an online form.

a) Regarding the content of the course: In order to
evaluate the learning outcomes, we asked the students to
evaluate their knowledge and confidence in their ability to
perform the expected objectives (described in Sect. II-B. A
large majority of the students considered that they were “able”
or “very able” w.r.t. the learning objectives that were defined.

All students were mainly satisfied by the lesson, and ac-
knowledged that this course is useful for their professional
life. However, some of them did not quite understand the
purpose of the agile exercise, and did not relate it with software
engineering.

b) Regarding the organization of the course: We also
learned from the feedback of students these two years. Last
year, the supermarket scanner case study was quite dense and
a large number of students got lost. So, this year, we decided
to simplify the case study to make it more accessible to the
students. Thus, the students could more efficiently focus on
the different concepts that were taught.

In addition, we also reshaped the content of the sessions
w.r.t. last year. Initially, in order to show the interest of IDEs,
during the first practical session the students were not using
an IDE but only a file editor and a terminal to compile the
code. Nowadays, students use IDEs naturally and they saw this
preliminary session as a regression, so we decided to remove
it to focus more on the testing aspects. This year, we had the
possibility to dedicate a full session to black-box testing which
was successfully understood by the vast majority of students.

VI. CONCLUSIONS AND FUTURE IMPROVEMENTS

The course that we presented is integrated in the computer
science curriculum of the University of Franche-Comté. It
aims to be an active pedagogy class in the sense that students
are put in real-world situations, using industry-strength tool,
and applied to a realistic case study.

We believe that this course make students gain some ma-
turity. First, because they learn tools and techniques that will
help them to improve the quality of the software they develop.
Second, and more importantly, because it is one of the first
courses in the curriculum in which they are not the designer
of the system they have to develop. This places them in a
real-life situation in which they do not only develop a code
for themselves, but also for, and with, other developers.

The feedback from the students is very positive, as it
helps them understand the importance of testing. This course
is considered as a good introduction to testing techniques,

and methodologies, that will be consolidated during the two
subsequent years in the Master’s degree:

o In the first year of the Master’s degree the students follow
a course on compiler construction, coupled with a course
on software engineering, which will, again, put them
in a real-life situation, this time in larger teams (6-8
developers), in order to practice an agile approach in the
context of software development.

e In the second year of the Master’s degree, closed to
research activities, the students can follow an optional
course on model-based testing in which similar case stud-
ies can be employed. Notably, the Java implementation
can be used as a model, coupled with the ModelJUnit
tool [18], in order to predict the expected behavior of the
system on the web application simulator.

For the future years, we plan to draw a better relation be-
tween the structural coverage criteria seen during the lectures
and the tutorial and the practical sessions. Especially, we are
looking for an integrated tool that could be used to measure
paths coverage to be employed in the first practical sessions,
such as CodeCover [2].

REFERENCES

[1] Apache maven project. https://maven.apache.org/.

[2] Codecover — an open-source glass-box testing tool. http://codecover.org/.

[3] Gitlab — the first single application for the entire devops lifecycle. https:
/Iwww.gitlab.com/.

[4] Intellij idea. https://www.jetbrains.com/idea/.

[5] Jacoco java code coverage library. https://www.eclemma.org/jacoco/.

[6] Junit. https://junit.org/junit4/.

[7] Selenium automates browsers. that’s it! https://selenium.dev/.

[8] Tasty mocking framework for unit tests in java. https://site.mockito.org/.

[9] Paul Ammann and Jeff Offutt. Introduction to Software Testing.

Cambridge University Press, New York, NY, USA, 1 edition, 2008.

Sondra Ashmore and Kristin Runyan. Introduction to Agile Methods.

Addison-Wesley, Upper Saddle River, NJ, 2014.

Beck. Test Driven Development: By Example. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew

Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve

Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for

agile software development, February 2001. http://agilemanifesto.org.

Kent Beck and Andres Cynthia. Extreme Programming Explained:

Embrace Change. Addison-Wesley Professional, 2" edition, 2004.

ISBN 978-0-3212-7865-4.

Edward L. Jones. Software testing in the computer science curriculum

— a holistic approach. In Proceedings of the Australasian Conference on

Computing Education, ACSE’00, pages 153-157, New York, NY, USA,

2000. ACM.

H. K. N. Leung and L. White. Insights into regression testing (software

testing). In Proceedings. Conference on Software Maintenance - 1989,

pages 60—69, Oct 1989.

William E. Lewis and W. H. C. Bassetti. Software Testing and Con-

tinuous Quality Improvement, Second Edition. Auerbach Publications,

Boston, MA, USA, 2004.

Tim Mackinnon, Steve Freeman, and Philip Craig. Extreme program-

ming examined. chapter Endo-testing: Unit Testing with Mock Objects,

pages 287-301. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001.

Mark Utting. How to design extended finite state machine test models

in Java. In Model-Based Testing for Embedded Systems, Series on

Computational Analysis, Synthesis, and Design of Dynamic Systems,

pages 147-170. CRC Press, 2011.

Ken Schwaber. Agile Project Management With Scrum. Microsoft Press,

2004. ISBN 073561993X.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

https://maven.apache.org/
http://codecover.org/
https://www.gitlab.com/
https://www.gitlab.com/
https://www.jetbrains.com/idea/
https://www.eclemma.org/jacoco/
https://junit.org/junit4/
https://selenium.dev/
https://site.mockito.org/
http://agilemanifesto.org

	Introduction
	Teaching Testing at the University
	Student's Background
	Learning Objectives and Outcomes
	Organization and Technical Choices

	Teaching Material ``Tools for Programming''
	Chikatetsu, a case study on the Japanese subway
	Educational Sequence
	Unit Testing
	Test-Driven Development
	Specification-Based Testing
	Mocks and Spies
	Integration Testing
	Continuous Integration and Software Evolution
	Functional Testing

	Evaluations

	Connection to Agile Practices
	Lessons Learned
	Observations on the Students Work
	Feedback from the Students

	Conclusions and Future Improvements
	References

