Dynamics. From analytical principlesto architectonical theorems

N. Daher

FEMTO-ST Institute, (University of Franche-Comt&\RS, ENSMM, UTBM),
15B avenue des Montboucons, F-25030 Besancon CEnGe

naoum.daher@femto-st.fr

Abstract
Arecent article proposed for dynamics a unifyliegonizian formulation, leading to the quantitats@utions which
are usually derived by use of analytipaiciples (variational, geometrical, dynamical,. eqch revealing one point
of view. Here, we show how to derive not only the soluidut also the formal structures that lead to these
solutions. Consequently, with this presentatiore #malytical principles, usually postulated sepdyatind
independently of one another, appear as theorems.
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I ntroduction

In a previous article [1], a dynamical Leibniziarrhulation accounting simultaneously for a variety
dynamical worlds and an infinity of points of viehas been proposed. This formulation, issued from
Huygens procedure with one point of view attacled single world, has been conceptually extended by
Leibniz to multiple worlds and points of view butitkout being formalized until recently. This
formalization includes the different solutions, thigcally obtained separately by the various anedyt
principles (variational, geometrical...) [2-5]. Weepent here a general procedure that allows to gener

in addition to the solutions already developed igf.R], the formal structures that correspond te th
analytical principlesThese principles, deduced now instead of beingupatstd, become theorems.

The dynamical Leibnizian formulation [1] which emtls Huygens study of frontal elastic collisions,
combining, in a general way, the relativity and senvation requirements, before any choice of a
parameter for motiodeads to the operator O = | d/dx, which plays thie of a generator of conserved
entities. An indetermination appears in its exgmsshrough | which is an arbitrary function of the
motion parameter x [I = I(x)], specified later othrfough x = {v, u or w} = {velocity, celerity or
rapidity}]. The operator O is applied twice. Thesti application allows passing from one conserved
entity E to another (p = OE) while the second dD® puts a constraint C on the dynamical struc{Gre
O2E), in order to avoid getting more than the tvwmserved entities (E, p), required by the dynamica
problem.

This method has been applied in [1] to Leibnizriitfi of points of view, where Id/dx transforms into
I.d/dv.. It allowed ordering (iteratively) this infinite uftitude thanks to the index p that takes infirafy

values. The strategy, here, is quite differenterhains finite in order to establish links and canigons
with the three analytical principles (or formulat&) encountered in the scientific literature.

To this end, we start by recalling the dynamicaucture developed in Ref.[1], but limited here to
Einstein’s dynamical world:

C = E/c? = O2E = Id/dx [IdE/dx] = I2d?E/dx2lfell/dx]dE/dx ~ with p = OE = IdE/dx (1)
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This formal structure corresponding to Eq.(14) ef.R] but adapted to the present investigatiad/@v.
— | d/dx) is under-determinate. It imposes a spedciforld (Einstein’s one: C = E/c?), keeping therpisi
of view unspecified.

As shown explicitly in [1], théndeterminate function | (present in p = | dE/dryresponds to a general
unspecified composition law of motion: x’ = T(x, X)x T X. In the particular case: | = 1, one reasve
Huygens expression of impulse: p = dE/dx, corredpanto an additive composition law: X’ = x + X.

We shall firstly show that it is possible to derihe fundamental equation of Einstein’s dynamiiceimhg
together the two conserved entities E and p, logiedting the entities | and x from Eq.(tby use of : O =
Id/dx = (IdE/dx)d/dE = pd/dE, where we have accedrfor p = OE = IdE/dx. One deduces thus

02 = | d/dx [l d/dx] = pd/dE[pd/dE} p? d?/dE? + p(dp/dE)d/dE
Its application to E leads to: O2E = pdp/dE. Whembined with (1) we obtain:
C = E/c2 = pdp/dE 2)
Its integration yields the fundamental equatioEmfstein’s dynamics:

E = mc2 (1 + pz/m2cy (3)

Simplification of the general under-deter minate dynamical structure

Although conceptually simple (C = O2E), the genatalicture given in (1) is formally cumbersome and
mathematically complicated to handle. It is possitd simplify it with the introduction of two new
entities F and G, complementary to E. Precisebteimd of the two entities E and | present in (&yimg
different dimensions, we manage to eliminate therfavor of the two new entities: F and G, having th
same dimension as E. This allows direct comparidogtsveen E, G and F that suggest different
identifications, leading to various structures. Jééurn out to be similar to those correspondinthéo
different analytical principles (or formulationsyed in physics.

The formally complicated operator: O2 = OO = Idftt¥dx] = 12 d/dx2 + | [dI/dx]d/dx, is composed of
two groups of terms, mixing together second arst firder differentiations. It will be replaced hyot
simpler ones, each composed of only one grouprofde @ = Od/dx = | d2/dx? (second-order operator)
and Q = (1/x)0 = (I/x)d/dx (first-order operator), hag the same dimension.

This reorganization of the initial formal structueads to a mathematical form which is much simper
handle and to integrate. Since &xd Q have been constructed in such a way that they ke=game
dimension as 02, the introduction of two new easitF and G associated respectively witha@d Q

(OzF and QG) will necessarily have the same dimension asggniér This formal simplification that
leads to :

C=0%kE =@ =0G (4)
corresponds explicitly to:
C = 12 d2E/dx2 + I[dI/dx]dE/dx = Id2F/dx2 = (lydG/dx (5)
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As shown in [1], O2 and E express respectively perator and an entity having a clear physical nregni
directly linked to the relativity and conservaticeguirements. As to the new operators add Q with
their corresponding entities F and G, they haveinect physical interpretations. They aim at sirfylig
the initial complicated differential structure th@comes more convenient to solve.

The introduction of the entity F also simplifiegtexpression of impulse: p = OE = IdE/dx that resuo
p = dF/dx (up to an additive constant) since ore la= O2E = OOE = Op = Idp/dx = | d2F/dxz.

Thanks to the identity: xd2F/dx2 = d/dx[xdF/dx - Bhe deduces from (5): dG/dx = d/dx[xdF/dx — Ftth

leads to the integral form: G = xdF/dx — F (uatoadditive constant). On gathering the differesuits
where neither E nor | appear, one gets:

p=dF/dx and G =xdF/dx-F (up tdligive constants) (6)

I dentification procedures and corresponding points of view

Since G has the same dimension as E and F, itites gatural to determine the structure by identidyG
with E then with F (up to additive constants tha¢ @oes not need to account for here).

When G = E, if we set x = v, one is left with:

p=dF/dv, G=E=vdF/dv-F @)
When G =F, if we set x = u, one is left with:

p=dF/du, G=F=udF/du-F (8)
The two identifications (or projections): G = E afd= F lead to two points of view that may be
expressed in a compact way by : v = dE/dp and Im=Ipdeed, the differentiation of G = E, given in (7),
accounting for p = dF/dv and E = vdF/dv — F, lealsdE = vdp or equivalently: v = dE/dp. The
differentiation of G = F, given in (8), accountifiy p = dF/du, leads to du/u = dp/p from which one
deduces u = p/u, where [ is a constant of integrdktiat may be identified with the mass (U = mhoitt

loss of generality, in virtue of the conservatigogerties, getting thus: u = p/m.

On combining (3) with v = dE/dp and u = p/m, it bees possible to express impulse and energy, in
terms of v and u. After some calculations and fdammanipulations, one is left with:

p=mv/(l-vacd? E=mc(l - va/ctf (9)
p =mu E = mic¥ u?/c?}? (10)
Having derived p and E in terms of v and u, one oeguce, from the definition of impulse: p = IdE/dx
or more explicitly: p =JdE/dv and p =udE/du, the expressions:

lv=1-v2/c2 and uk (1+ u?c?? (11)



These can be linked to historical and/or convemtiawritings, associated with the so-called “relestiic
mass” M and Lorentz factdr. On combining (11) with (9) and (10), one deduces

p=Mv and E =Mc? with M = C = miff = m/(1 — v2/c®? (12)
p=mu and E =mE?2 with T =lu=(1+u2/c¥? = cT2-u2=c? (13)

The determinations of v and u (velocity and cegritelated to M and", given in (12) and (13) result
from the two different projections expressed by tiymamical constraints: G = E and G = F. This
violently contrasts with their usual kinematicapdtiotemporal) definitions [attached to coordintitee

for v = dr/dt and invariant time for u = dld The point of view attached to v is usually dedvfrom the
variational formulation while the point of view atthed to u is usually derived from the geometrical
formulation, expressed in a compact way through:

p=mu with u.u=c? (14)

The equivalence between (13) and (14) is obtaifehks to the introduction of the conventional
notationsu = (cI', u) anp = (E/c, p), with a Minkowskian signature appliedte scalar productu = c2.
The expression g = mu (or its derivative with respect ®o F = ma) reflects the vector version of the
geometrical formulation. In another work, we stsilbw how one may also derive a scalar versionaapt t
deduce kinematics (the space-time metrical stragtfrom dynamics and to reveal a certain unity
inaccessible to the vector version.

Comments: Notice that the “relativistic mass” M which coideis with C and the Lorentz faciomhich
coincides with J [see (12) and (13)] are determined here by putghamical considerations without any
relation to space-time physics. Dynamics is hertoraamous, it contrasts with the variational and
geometrical points of view, both usually founded the spatiotemporal constraints imposed by the
Lorentz transformations.

Historically M is introduced in Einstein’s spatiatporal physics through p = mv/(1 — v2/2= Mv, so that one
obtains a relation directly comparable to the omeasponding to Newtonian physics: p = mv. Heread v result
from the particular projection G = E where M coihes with the constraint C (defined by C = O2E), osgd to get
two and only two conserved entities.

As to the Lorentz factar, historically defined by the ratio between thernitesimal variations of coordinate time
and invariant time [dtfd= (1 + u2/c??, it results from the particular projection G =wherel’ coincides with | =
(1 + u?/c3?, intimately related to the non-additive compositif motion attached to u.

Let us finally note that in addition to G = E and=GF developed above, there is a thémlution that
corresponds to F = E, having the peculiarity of depending on G = x dF/dx — F, thanks to which the
points of view attached to v and u have been détean

If one sets now: F = E with x = w, then p = dF/thnisforms into: p = dE/dw, so that its combinatidth
(3) allows to express Einstein’s dynamics in teahw, obtaining thus:

p = mc sinh(w/c) E = mc2 cosh(wi/c) (15)
This point of view attached to w (called the rapigi through p = dE/dw, corresponds to the one

developed, in the second-half of thé"2@ntury, by use of group theory [3-5] which prasdo Huygens
procedure, also based on p = dE/dw, a better mditprand a stronger foundation.



Conclusion

The three points of view, derived here in a unifigdy from the Leibnizian formulation, have been
developed separately and progressively in the eoofrphysical history. They also have been theesbj
of numerous investigations some of which are basedmpirical considerations in direct connection to
physical measurements [2]. Others have recoursettonal considerations based on well-identified
mathematical frameworks, particularly, the calcuw@igsariations, corresponding to the usual ratityaif
physics, and more recently modern geometry andpgtheory, considered by some [3-8] as serious
candidates for higher forms of rationality.

In another work, we shall derive, as for the abpracedure with its three points of view that appear
an equal footing (G =E, G=F and F = E), a difa procedure that reveals a certain hierarchgwalg
to deduce, from the architectonical approach, sasaersion of the geometrical formulation, whigh i
turn will lead naturally to two other points of wieformally identical to those based on the calsudii
variations and group theory (usually postulated).
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