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        Abstract 
  A recent article proposed for dynamics a unifying Leibnizian formulation, leading to the quantitative solutions which 

are  usually derived by use of analytical principles (variational, geometrical, dynamical…), each revealing one point 
of view. Here, we show how to derive not only the solutions but also the formal structures that lead to these 
solutions. Consequently, with this presentation, the analytical principles, usually postulated separately and 
independently of one another, appear as theorems.  
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Introduction 

 
In a previous article [1], a dynamical Leibnizian formulation accounting simultaneously for a variety of  
dynamical worlds and an infinity of points of view, has been proposed. This formulation, issued from 
Huygens procedure with one point of view attached to a single world, has been conceptually extended by 
Leibniz to multiple worlds and points of view but without being formalized until recently. This 
formalization includes the different solutions, historically obtained separately by the various analytical 
principles (variational, geometrical…) [2-5]. We present here a general procedure that allows to generate, 
in addition to the solutions already developed in Ref.[1], the formal structures that correspond to the 
analytical principles. These principles, deduced now instead of being postulated, become theorems. 
 
The dynamical Leibnizian formulation [1] which extends Huygens study of frontal elastic collisions, 
combining, in a general way, the relativity and conservation requirements, before any choice of a 
parameter for motion, leads to the operator O = I d/dx, which plays the role of a generator of conserved 
entities. An indetermination appears in its expression through I which is an arbitrary function of the 
motion parameter x [I = I(x)], specified later on [through x = {v, u or w} = {velocity, celerity or 
rapidity}]. The operator O is applied twice. The first application allows passing from one conserved 
entity E to another (p = OE) while the second one (O²) puts a constraint C on the dynamical structure (C = 
O²E), in order to avoid getting more than the two conserved entities (E, p),  required by the dynamical 
problem.  
 
This method has been applied in [1] to Leibniz infinity of points of view, where Id/dx transforms into 
Iµd/dvµ. It allowed ordering (iteratively) this infinite multitude thanks to the index µ that takes infinity of 
values. The strategy, here, is quite different; it remains finite in order to establish links and comparisons 
with the three analytical principles (or formulations) encountered in the scientific literature.    
 
To this end, we start by recalling the dynamical structure developed in Ref.[1], but limited here to 
Einstein’s dynamical world: 
 
     C = E/c² = O²E = Id/dx [IdE/dx] = I²d²E/dx² + I[dI/dx]dE/dx          with     p = OE = IdE/dx           (1) 
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This formal structure corresponding to Eq.(14) of Ref.[1] but adapted to the present investigation (Iµd/dvµ 
 I d/dx) is under-determinate. It imposes a specific world (Einstein’s one: C = E/c²), keeping the points 
of view unspecified.   
 
As shown explicitly in [1], the indeterminate function I (present in p = I dE/dx) corresponds to a general 
unspecified composition law of motion: x’ = T(x, X) = x T X. In the particular case: I = 1, one recovers 
Huygens expression of impulse: p = dE/dx, corresponding to an additive composition law: x’ = x + X.  
 
We shall firstly show that it is possible to derive the fundamental equation of Einstein’s dynamics, linking 
together the two conserved entities E and p, by eliminating the entities I and x from Eq.(1), by use of : O = 
Id/dx = (IdE/dx)d/dE = pd/dE, where we have accounted for p = OE = IdE/dx. One deduces thus:    
    

 O² = I d/dx [I d/dx] = pd/dE[pd/dE]  = p² d²/dE² + p(dp/dE)d/dE  
 

Its application to E leads to: O²E = pdp/dE. When combined with (1) we obtain: 
 
    C = E/c² = pdp/dE        (2) 
 
Its integration  yields the fundamental equation of Einstein’s dynamics: 
 
    E = mc² (1 + p²/m²c²)1/2      (3) 
 
 
                  Simplification of the general under-determinate dynamical structure 
 
Although conceptually simple (C = O²E), the general structure given in (1) is formally cumbersome and 
mathematically complicated to handle. It is possible to simplify it with the introduction of two new 
entities F and G, complementary to E. Precisely, instead of the two entities E and I present in (1), having 
different dimensions, we manage to eliminate them in favor of the two new entities: F and G, having the 
same dimension as E. This allows direct comparisons between E, G and F that suggest different 
identifications, leading to various structures. These turn out to be similar to those corresponding to the 
different analytical principles (or formulations) used in physics. 
 
The formally complicated operator: O² = OO = Id/dx [Id/dx] = I² d²/dx² + I [dI/dx]d/dx, is composed of 
two groups of terms, mixing together second and first order differentiations. It will be replaced by two 
simpler ones, each composed of only one group of terms : O2 = Od/dx = I d²/dx² (second-order operator) 
and O1 = (1/x)O = (I/x)d/dx (first-order operator),  having the same dimension.  
 
This reorganization of the initial formal structure leads to a mathematical form which is much simpler to 
handle and to integrate. Since O2 and O1 have been constructed in such a way that they keep the same 
dimension as O², the introduction of two new entities F and G associated respectively with O2 and O1  
(O2F and O1G) will necessarily have the same dimension as energy E. This formal simplification that 
leads to : 
 
     C = O²E = O2F = O1G     (4) 
  
corresponds explicitly to: 
 
   C = I² d²E/dx² + I[dI/dx]dE/dx = Id²F/dx² = (I/x)dG/dx        (5) 



3 
 

 
As shown in [1], O² and E express respectively an operator and an entity having a clear physical meaning, 
directly linked to the relativity and conservation requirements. As to the new operators  O2 and O1 with 
their corresponding entities F and G, they have no direct physical interpretations. They aim at simplifying 
the initial complicated differential structure that becomes more convenient to solve. 
 
The introduction of the entity F also simplifies the expression of impulse: p = OE = IdE/dx that reduces to 
p = dF/dx (up to an additive constant) since one has:  C = O²E = OOE = Op = Idp/dx = I d²F/dx². 
 
Thanks to the identity: xd²F/dx² = d/dx[xdF/dx – F], one deduces from (5): dG/dx = d/dx[xdF/dx – F] that 
leads to the integral form: G =  xdF/dx – F (up to an additive constant). On gathering the different results 
where neither E nor I appear, one gets:  
 
   p = dF/dx   and  G = x dF/dx – F        (up to additive constants)  (6) 
 
 
                          Identification procedures and corresponding points of view  
 
Since G has the same dimension as E and F, it is quite natural to determine the structure by identifying G 
with E then with F (up to additive constants that one does not need to account for here).   
 
When G = E, if we set x = v, one is left with: 
 
     p = dF/dv,  G = E = vdF/dv – F      (7) 
 
When G = F, if we set x = u, one is left with: 
   

p = dF/du,   G = F = udF/du – F        (8) 
 
The two identifications (or projections): G = E and G = F lead to two points of view that may be 
expressed in a compact way by : v = dE/dp and u = p/m. Indeed, the differentiation of G = E, given in (7), 
accounting for p = dF/dv and  E = vdF/dv – F, leads to dE = vdp or equivalently: v = dE/dp. The 
differentiation of G = F, given in (8), accounting for p = dF/du, leads to du/u = dp/p from which one 
deduces u = p/µ, where µ is a constant of integration that may be identified with the mass (µ = m) without 
loss of generality, in virtue of the conservation properties, getting thus: u = p/m.  
 
On combining (3) with v = dE/dp and u = p/m, it becomes possible to express impulse and energy, in 
terms of v and u. After some calculations and formal manipulations, one is left with: 
 

 p = mv/(1 – v²/c²)1/2    E = mc²/(1 – v²/c²)1/2     (9) 
 
                            p = mu         E = mc²(1 + u²/c²)1/2       (10) 
 
 
Having derived p and E in terms of v and u, one may deduce, from the definition of impulse: p = IdE/dx 
or more explicitly: p = Iv dE/dv  and p = Iu dE/du, the expressions: 
 

Iv = 1 – v²/c²    and    Iu = (1 + u²/c²)1/2     (11) 
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These can be linked to historical and/or conventional writings, associated with the so-called “relativistic 
mass” M and Lorentz factor Γ.  On combining (11) with (9) and (10), one deduces: 
 

p = Mv  and    E = Mc²    with    M = C = m/Iv
1/2 = m/(1 – v²/c²)1/2    (12) 

 

p = mu   and    E = mc²Γ     with  Γ = Iu = (1 + u²/c²)1/2
         c²Γ² – u² = c²     (13) 

 
The determinations of v and u (velocity and celerity), related to M and Γ, given in (12) and (13) result 
from the two different projections expressed by the dynamical constraints:  G = E and G = F. This 
violently contrasts with their usual kinematical (spatiotemporal) definitions [attached to coordinate time 
for v = dr/dt and invariant time for u = dr/dτ]. The point of view attached to v is usually derived from the 
variational formulation while the point of view attached to u  is usually derived from the geometrical 
formulation, expressed in a compact way through: 
 

p = mu       with    u.u = c²      (14) 
 
The equivalence between (13) and (14) is obtained thanks to the introduction of the conventional 
notations u = (cΓ, u) an p = (E/c, p), with a Minkowskian signature applied to the scalar product u.u = c². 
The expression of p = mu  (or its derivative with respect to τ: F = ma)  reflects the vector version of the 
geometrical formulation. In another work, we shall show how one may also derive a scalar version apt to 
deduce kinematics (the space-time metrical structure) from dynamics and to reveal a certain unity 
inaccessible to the vector version.  
 
Comments: Notice that the “relativistic mass” M which coincides with C and  the Lorentz factor Γ which 
coincides with Iu [see (12) and (13)] are determined here by purely dynamical considerations without any 
relation to space-time physics. Dynamics is here autonomous, it contrasts with the variational and 
geometrical points of view, both usually founded on the spatiotemporal constraints imposed by the 
Lorentz transformations.  
 
Historically M is introduced in Einstein’s spatiotemporal physics through p = mv/(1 – v²/c²)1/2 = Mv, so that one 
obtains a relation directly comparable to the one corresponding to Newtonian physics: p = mv. Here, M and v result 
from the particular projection G = E where M coincides with the constraint C (defined by C = O²E), imposed to get 
two and only two conserved entities.  
As to the Lorentz factor Γ, historically defined by the ratio between the infinitesimal variations of coordinate time 
and invariant time [dt/dτ = (1 + u²/c²)1/2], it results from the particular projection G = F where Γ coincides with Iu = 
(1 + u²/c²)1/2, intimately related to the non-additive composition of motion attached to u.  
 
Let us finally note that in addition to G = E and G = F developed above, there is a third solution that 
corresponds to F = E, having the peculiarity of not depending on G = x dF/dx – F, thanks to which the 
points of view attached to v and u have been determined.  
 
If one sets now: F = E with x = w, then p = dF/dx transforms into: p = dE/dw,  so that its combination with 
(3) allows to express Einstein’s dynamics in terms of w, obtaining thus: 
 

p = mc sinh(w/c)    E = mc² cosh(w/c)      (15) 
 
 
This point of view attached to w (called the rapidity), through p = dE/dw, corresponds to the one 
developed, in the second-half of the 20th century, by use of group theory [3-5] which provides to Huygens 
procedure, also based on p = dE/dw, a better rationality and a stronger foundation. 
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Conclusion 

 
The three points of view, derived here in a unified way from the Leibnizian formulation, have been 
developed separately and progressively in the course of physical history. They also have been the subject 
of numerous investigations some of which are based on empirical considerations in direct connection to 
physical measurements [2]. Others have recourse to rational considerations based on well-identified 
mathematical frameworks, particularly, the calculus of variations, corresponding to the usual rationality of 
physics, and more recently modern geometry and group theory, considered by some [3-8] as serious 
candidates for higher forms of rationality.   
 
In another work, we shall derive, as for the above procedure with its three points of view that appear on 
an equal footing (G = E, G = F and F = E),  a different procedure that reveals a certain hierarchy, allowing 
to deduce, from the architectonical approach, a scalar version of the geometrical formulation, which in 
turn will lead naturally to two other points of view, formally identical to those based on the calculus of 
variations and group theory (usually postulated).  
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