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Abstract

In the light of the architectonical approach depeld in a previous article, we derive the threeoreti points of view
developed progressively in the history of physiEsey are obtained in two steps that reveal a ceti@@rarchy
between them. The architectonical framework i< filecoupled, providing thus the geometrical pointiew which

in turn leads, naturally and simultaneously, to mtber points of vieworresponding to the variational and group
theoretical formulations.
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1. Introduction
A first article [1] relative to dynamics was devitéo the development of a unifying architectonical
Leibnizian formulation that includes the quantiatisolutions usually derived by use of analytical
principles (variational, geometrical, group themait..), each revealing one point of viesw second
article [2] went further, showing the possibility a@eriving, on an equal footing, the analyticalistures
that lead to these solutions. Thttse formal structures that correspond to differ@malytical principles
become theorems (i.e. deduced simultaneously ihstEleing postulated separately as usually done).

In this third article, a different strategy is atlegh where a certain hierarchy is revealed in thesage
from the architectonical approach to the analyticahulations. Indeed, by decoupling the architeial
formulation, appears a dynamical point of view whiarns out to be rich enough to derive the space-
time metrical structure and to allow deducing, inadural way, the two points of view correspondiog
the variational and group theoretical formulatiofsis point of view, obtained by the decoupling
procedure, will give rise to the geometrical foratidn expressible in two different (vector and achl
versions.

In Refs.[1, 2], dynamics is obtained, in (1+1) dimsie®ns, through a constraint C imposed on the skcon
order operator O2 (O = Id/dx is a generator of eoved entities). One determines thus the two cepser
entities (energy E and impulse p), required toagetll-posed physical problem (C = O2E with p = OE)
Similarly to a previous work, we start from the samitially coupled architectonical structure, ded in
Ref.[2]:

C = E/c? = O%E = Id/dx [IdE/dX] = 12d2E/dx2 + I[dIX]dE/dx  with p = OE = IdE/dx 1)

Egs.(1) are under-determinate [indeterminate atheopoints of view (O = Id/dx, | being an arbitrary
function of x) and determinate for the worlds : énefinstein’s world (C = E/c?, the constraint C
coinciding with the so-called “relativistic mass” ME/c2, as shown in [2])].
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Thanks to a filtering procedure, the indetermiraaets of view, expressed through the couple: Xlpfx
non-conserved entities are eliminated in favoref tonserved entities represented by the couple)(E
This procedure leads to the determinate (easibgnatle) structure:

C = E/c? = pdp/dE~ E = (& + ¢? p?}* ©)

which is independent of any point of view. As ta thrchitectonical under-determinate second-order
differential (points of view dependent) structurgiven in (1), it is formally cumbersome and
mathematically complicated to solve and to integr#ttis possible however to simplify it, as shoinn

[2], by introducing two new complementary entitfesand G, having the same dimension as E. The three
identifications: G = E, G = F and F = E led to thieell-determinate points of view that turned twube
structurally identical to those postulated by tlaiational, the geometrical and the group theoaétic
formulations, developed progressively in the higtafrphysics.

While in Ref.[2], the three points of view has bgrr at the same “horizontal” level where theypeqr

on an equal footing (G = E, G = F and F = E), tlsatukthe introduction of the simplifying entitiesaRd

G, here the same under-determinate structure, givdfgs.(1), is treated in a different way (with no
additional simplifying entities). Appears then atai verticality and hierarchy between the diffdare
points of view. Precisely, one benefits from thet that the initial coupled under-determined sturet(1)
includes, among an infinity of potential points wkw, a singular one that renders this structure
decoupled. Thus, instead of resorting to new sifyiptj entities, introduced from outside, as in [&]e
structure is examined from within to clear the jpemt articulations it reveals.

The point of view resulting from the decoupling gedure turns out to coincide with the geometrical
point of view. One also realizes that this formatwhich appears initially into a hybrid form (gsr
vector, partly scalar), can be expressed in aathifnanner through a purely scalar formulation wileee
duality notion plays a central role. This scalamfalation presents different advantages, among twhic
the capacity of deriving the space-time metricelcture and the possibility of deducing naturalhd
directly two other well-known points of view. Suehdeductive passage from the geometrical point of
view to two other rational ones, provides this paifiview a certain priority and centrality: anwerse
passage cannot be achieved without postulatingiaddi hypotheses. We finally show how to extend
this formulation from (1+1) to (1+3) dimensions.

In brief, unlike [2] where the three points of viere derived on an equal footing, here appearstaice
hierarchy where the architectonical approach preseth determines the geometrical method which in
turn precedes and determines the variational andrbup theoretical formulations.

2. Decoupling procedure and determination of the corrgponding point of view
The substitution of p = OE into C = O2E, both givexplicitly in Egs.(1), transforms these equations
into:

C = E/c? =1dpl/dx with  p =1 dE/dx )3
from which one deduces: C/I = dp/dx. By equatingpifi constant m (identified with the mass congept)
the dynamical structure becomes decoupled. Thesintheterminate couple (I, X) becomes determinate,

noted by (D, u). This yields the differential stiure:

C/D =dp/du=m with p=D dE/du and D = E/mc? 4)



that may also be written as:

C=E/c2=m D =D dp/du 5)
with
p = D dE/du < DJE-pdu=0 (6)

One deduces thus:

E=mc2D and p=mu @)
where the constant, resulting from the integratbndp/du = m, vanishes, as a consequence of rtie li
condition: u = 0, p = 0. As to the expression ofcdrresponding to: D = (1 + u?/&) it is obtained by
combining (7) and (2), after having identifieg \E#zith mc2 (& = mc?).

In order to establish a link between the decoupladt of view and the geometrical one, let us rthsg
the proportionality relation: p = mu implies:

pdu = udp (8)

Its substitution into (6) leads to the symmetricaim:

D dE —udp =0 9)

at the basis of the duality notion between (Damnl (dE, dp), which can be written in a unified paict
form: u.dp = 0. This is a characteristic feature of the geticed approach developed in the next two

Sections 3 and 4, where one shows how the abowrigksd point of view coincides with the geometrical
formulation, presented in its vector and scalasieers.

3. Link of the decoupled point of view to the geometdal formulation
One first notes that Eqgs.(7) and (9) can be exptessthe unified compact form:
p=mu such that udp=0 (10)
with the notations:
(Elc,p)=p={p+ and (cD,uFu={u} with a=0,1 (12)
where the scalar produatb = ab* =n &b satisfies the Minkowskian signatung= (1, —1).

One deduces from (10) the expressiordu = 0, the integration of which yieldst.u = c2, where the
constant of integration (noted c?) has the dimamseica velocity squared. Eq.(10) may thus be writis:

p=nmu such that u.u= c2 (12)



One recognizes here the usual structure of Eiriateiynamics, written in a compact geometrical form
Let us underline that the scalar produat = ¢, usually based on the space-time metricatstre is, at
this point, independent of space-time which will derived from dynamics after having replaced the
infinitesimal form:u.dp = 0, derived in (10), by its finite counterpamtf = 0 as shown below through
Egs.(16)-(20).

4. The vector and scalar versions of the geometricabfmulations
Let us deduce the dynamical structures correspgrtditthe vector and scalar versions of the geonatri
formulation, intimately related to the Anglo-Saxamd Continental traditions, respectively represgbte
Newton and d’Alembert.

4.1 Fundamental principle of dynamics (vector Newtan approach)
On setting:
F=dp/dt and a=du/dc (13)

wheret is some parameter whose physical interpretatidinbeiclarified later on through (18) and (19),
one may rewrite Eqs.(10) or (12) as follows:

F=ma such that au=0 (14)

The scalar producti.u = c?, given in (12), transforms into the orthogoreationa.u = 0. The vector
expression:F = ma corresponds to the so-called “fundamental prircipf dynamics”, initiated by
Newton through his vector point of view, but apglieere to Einsteinian dynamics.

4.2 Principle of virtual power (scalar d’Alembertieapproach)

The above vectofF = ma) and scalarg.u = 0) expressions given in (14) can be unified iatecalar
formulation, using the notion of a virtual fieldefte a virtual motioru*) that goes back to d’Alembert.
Thus, the vector expressiorF:= ma may be written in a scalar forfFF — ma).u* = 0, provided one
assumes its validity for any virtual motiarf. Thus, the structure corresponding to Egs.(14)artly
vector partly scalar — transforms into a purebiacstructure:

(F-ma).u*=0 such that Fu=0 (15)

known as the principle of virtual power [based ba tluality notion between kinematical and dynamical
entitiesu andF], largely used in the French schools of mathersatitd theoretical mechanics, where the
author received his initial scientific training addveloped his first research in continuum phygcs].
This scalar (also called energy) principle, usuptigtulated and dealt with in direct connectiospgace-
time physics, is not postulated here: it is dedudomah Leibniz’s architectonical approach.

Brief recall: The duality betweemu and F (or its infinitesimal counterpartdp), postulated in the
geometrical method through:F = 0 (or its infinitesimal counterpant:dp = 0), is now deduced. It takes
its source in the general relation: p = | dE/dxipatarized by the decoupling procedure that I¢adg =
DdE/du with pdu= udp. It is the combination of these two relatidghat yields: DdE — udp = 0 or
equivalently the compact form:.dp = 0, given in (10).

5. Emergence of the space-time metrical structure frondynamics
While the space-time notions: (r, t) and their neadr structure are primary in the conventional
(variational and geometrical) formulations, theyeege here from architectonical dynamics. The matric



structure will result fromu.dp = u.Fdr, derived from (10) and (13), where one uses thencotativity
property:u.F = F.u, getting thus:

u.dp = u.Fdt = F.udr = F.dx (16)
where we have set:

dx = ude or u = dxfic a7
Accounting foru = dx/dt andu.u = c2 given in (17) and (12), one gets the spave-tnetrical structure:

dx.dx = c2ce? (18)
written in a Minkowskian compact form or equivalgrib an explicit Lorentzian form:

c2 dt2 — d¥ = c2dr? (19)
where we have set:

dx = {dx*} = (dx° dx") = (cdt, dr) (20)
6. Opening to new investigations

In order to pave the way for the application of sizalar version of the geometrical formulation theo
possible worlds, one shows that Egs.(15), shouledtended as follows:

(F-ma).u*x=0 suchthat fu=0 (22)
with
f=dp/dt, F=dP/dt and (E/c,p)=p={p*} and (cC,pFP=§F% o =0,1 (22)

Obviously, whernthe Einsteinian world is considered:= E/c2, one recovers the structure given in (15)
since one has them: = P andf = F, but if one considers other worlds, as those dpezl in [1] and
reflected by the constraint C, these equalitiesnatevalid anymore. As an exercise, one may detiee
Newtonian dynamical world by setting: C = m (irsteof C = E/c?).

In addition to the fact that the architectonicalnfiework constitutes a safe basis for the geometrica
formulation, in its two versions (vector and scpldet us emphasize that the scalar version isadlgtu
more general and universal than the vector verdiatoes not only lead naturally to two other peiof
view, as shown in Section 7, but it also turnstoube universal (applicable to other dynamical asy!
Indeed, unlike the vector version based~on ma, with a.u = 0 which is none other than the differential
form of u.u = ¢2, corresponding to Einstein’s space-time $tmecdx.dx = c2de?, the scalar version, based
on the duality notion:f.u = 0, given in (21), corresponds to DdE — udp =ddrfiwhich one deduces, by
setting: v = u/D, the first Hamilton canonical etjoa v = dE/dp which is universal (applicable toyan
dynamical world).



7. Natural emergence of two additional points of view
Let us show how the above decoupled point of vithat led to the geometrical formulation, allows
deriving, in a natural way, two other points ofwjethe structures of which turn out to be identital
those of the variational and group theoretical fdations.

Since the combination of: p = D dE/du with udpdugvalid only for the decoupled point of view) disa
to the two equivalent forms:

DdE-pdu=0 and DdE—-udp=0 (23)
their division by D yields the two remarkable ambsilar properties:

dE-pdw=0 and dE-vdp=0 (24)
with two new parameters w and u, defined by:

dw=du/D andv=u/D (25)

It is remarkable that the parameters w and v, édénespectively with the rapidity and the velogity5].
These are usually given by the two formulationsedasn group theory and the calculus of variations
while they originate here from the geometrical fatation which in turn takes its source in the
architectonical approach, through a decoupling gdace. Let us finally underline the structural rieks

of (23) that leads naturally and immediately to)(2hile the inverse passage is not possible without
recourse to additional hypotheses.

8. Quantitative determination of the three points of vew
By combining (2), satisfying &= mc?, with p = mu, p = dE/dw and v = dE/dp destlifrom (7}, and
(24) respectively and after some calculations anch&l manipulations, one is left with:

p=mu E = mc¥(1i2/c2)? (26)
p = mc sinh(w/c) E = mc2 cosh(w/c) (27)
p=mv/(l-va/c¥d? E=mc?(l-vac (28)

where the parameters u, w and v indicate the paoihtsew attached to the celerity, the rapidity ahd
velocity respectively. Let us recall that the theteictures given in EQs.(26), (27) and (28) arduted
here from the architectonical approach while they asually derived by postulating three different
physical principles, mathematically expressed by tgeometrical, group theoretical and variational
formulations respectively.

9. From (1+1) to (1+3) dimensions
This derivation of dynamics in (1+1) dimensions kish generalizes the investigations performed by
authors like Barbour, Landau, Sampanthar, Lévy-ethl Provost and Comte, recalled in Refs.[1-6] of
our synthetic paper [1] — can be extended to (tH3ensions.



Regarding the form of (2), obtained by use of tiierfng procedure that led to the (points of view
independent) structure: E/c2 = pdp/dE, the expoesgdp should be replaced by:dp withi=1, 2, 3
(b dp = pdp: + pdp: + Eedps). After integration, the expression of energy: BEs? + c2 p2}? transforms
into: E =[R2 + c2 pp]Y? withp p = p2 + p? + p2

For the extension of the spatiotemporal points iefvy one replaces u and v, byand v where the
definition: v = u/D, with D = (1 + u?/c® transforms into: v= u/A with A = (1 + uui/c2)*.

As to the extension of Eqs.(26)-(28), after adaptime simplifying notation:
ue = (uu)*¥c, w= (Wwwi) e and o= (vvi)Yc (29)

one is left with:

pi = mu E = mc2(1 +&)"? (30)
p=mw [sinh(w)/wd E = mc? cosh(y (31)
P = mvi/(1 — w?)'? E = mc/(1 - 9)*? (32)

By eliminating w, w and v from (30)-(32), one recovers the basic relatiors Bnc2(1 + ppi/m2c2)}?,
linking together the conserved entities E and p.

One also verifies that: p = D dE/du transforms:ipto= A 0E/0u;. This extension attached to the celerity
also applies to the rapidity w (satisfying: p = d&) and the velocity v (verifying: p = (1 — v3/ddE/dv

as shown in Egs.(9)-(11) of Ref.[2]), leading thasp = 0E/Ow: and p = (1 — wi/c?) OE/ovi. These
considerations will be developed extensively inudufe work, devoted to a systematical study of
architectonical dynamics in (1+3) dimensions.

Thanks to this extension from (1+1) to (1+3) dimens, the above results reveal that Egs. (10)-(22)
remain formally identical, except that= 0,1 with the signaturej = (1, —-1) transformintax =0, 1, 2, 3
with the signaturer) = (1, -1,-1, -1).

10.Conclusion

Besides its generality and unifying character, dnehitectonical approach violently contrasts witle t
analytical ones based on kinematics, corresponirgpatiotemporal definitions [attached to coortina
time for v = dr/dt (variational method) and invariant time far=udr/dt (geometrical method)]. Here,
dynamics is autonomous and does not require argsedjae consideration like for the variational and
geometrical points of view, usually founded on Hmpatiotemporal constraints imposed by the Lorentz
invariance. On the contrary, as shown above, theespnd time notions, the Lorentz invariance aed th
different points of view can be deduced from thébhi&ian architectonical approach instead of being
postulated, leading thus to a better foundatiophysics.
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