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Abstract

The use of grid nano-indentation as a full-field measurement tool to investi-

gate the properties of heterogeneous materials is described. Contrarily to the

reported approaches which rely on statistical analysis, the mechanical prop-

erties fields are analyzed herein relying on a topological description of the

sample. The spatial convolution function is approached using Hertz contact

theory, and the obtained convolution kernel is used to retrieve the mechani-

cal properties of the different phases. This approach is exemplified on results

obtained at very low contact force (and thus very high spatial resolution) on

a composite material sample made of micrometer-sized fibers in a polymeric

matrix.
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1. Introduction

It is today well known that predicting the global mechanical behavior

of composite materials requires more than the mechanical properties of its

constituents. Depending on the nature of the phases and on the process-
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ing of the composite, the constituents may be either intimately linked (at

the crystallographic level) or they can be very poorly linked, for example

just by adhesion. Additionally, differences between thermal expansions of

the different materials may also lead to fracture at interfaces during the fab-

rication process, and residual stresses induced by crystallization of a given

constituent can dramatically affect the overall properties or result in graded

properties [1]. For this kind of materials, the classical mixture law based

on the mechanical properties of the constituents is generally not sufficient

to fully reproduce the particular macroscopic behavior of the composite it-

self. The addition of either supplementary phases, whose properties differ

from the constituents of the composite, or zones characterized by a gradient

of properties is necessary [2, 3]. The experimental characterization of such

interfacial phases thus becomes a critical issue [4, 5]. Two strategies can be

envisaged to correctly describe the behavior of the composite :

• The first is based on the adjustment of the macroscopic experimental

mechanical response, using a model that takes into account this supple-

mentary phase in a representative volume element (RVE) [6, 7]. This

strategy is essentially numerical but it requires the knowledge of the

mechanical behavior of the phase.

• The second one is the characterization of interfacial mechanical prop-

erties, which requires very local characterization methods. These two

ways are obviously complementary.

A wide range of local mechanical characterization is now available. Atomic

force acoustic microscopy (AFAM) [8] and in particular contact-resonance
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atomic force microscopy (CR-AFM) [9] are today rather popular. CR-AFM

inherits a very good spatial resolution from the very sharp AFM tip, so that

it is a very good choice for who is interested in characterizing interfacial

mechanical properties [10, 11]. The quantitative analysis of the measured

contact stiffness may however turn to be difficult because of the not so well

defined contact geometry (because of the initial tip geometry and because

wear usually makes this geometry evolve during the scan) [12]. Alternatively,

the very well defined (and calibrated) geometry of indenters makes the inves-

tigation of heterogeneous materials by instrumented indentation very promis-

ing [13]. The development of high-speed nanoindentation allows to quickly

and accurately map the mechanical properties of composite materials with a

high spatial resolution and to generate hardness or indentation elastic modu-

lus fields quite easily. Large amount of experimental data are then collected

and are to be processed. Classically, the measured properties are analyzed

statistically, assuming Gaussian distributions. Each mode in the experimen-

tal distribution is thus assumed to correspond to a particular phase [14, 15].

Hardness, elastic modulus, volume fraction of each phase are extracted. The

spatial information is then used afterwards to correlate the localization of

the different identified phases with their corresponding mechanical proper-

ties [16].

The above-cited works actually assume that scale separation apply so

that each phase is always probed individually, thus neglecting the interac-

tion between the phases. Homogeneization has thus naturally been intro-

duced in order to analyze nano-indentation data [17, 18]. These two families

of approaches thus rely on two extreme assumptions : either one considers
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individual phases are probed or one assumes the sole response of the ho-

mogeneized composite material is recorded. Probing graded materials, and

especially small interfacial regions thus clearly challenges these approaches

and requires to relax these assumptions. This is somehow similar to what

has been done to analyze nano-indentation results on thin-film materials

[19, 20, 21, 22]. This problem has been preferentially addressed using finite-

element simulations for two-phase [23, 1] or graded [2] materials, so that

interpreting nano-indentation results means a large computation cost. The

notable exception is an in-depth sensitivity analysis which has however been

conducted in a perturbative framework for very specific inclusion geometries

[24].

In the case of fiber/matrix composites, the presence of an interlayer at the

interface is strongly suspected but rarely evidenced [3, 25, 26], even though

its behavior is critical [27, 28]. Unfortunately, this interlayer is expected to

be very thin (less than 1 µm thick) and so, is very difficult to detect and even

more to characterize [1, 29, 4, 5]. In this contribution, Polyetherketoneketone

(PEKK) reinforced with carbon fibers composite materials has been tested.

Samples have been probed perpendicularly to the fibers. Such materials are

classically tested by indentation, which allows to clearly distinguish matrix

from fibers in terms of hardness and elastic modulus. It will be shown in Sect.

2 that this sample also clearly challenges the statistical approach. In Sect.

3, a method based on a geometrical description of the sample is presented.

It assumes the maps obtained by grid nano-indentation result, as for an

imaging process, from the convolution of the actual property field with a

function depending on the experimental conditions. For the sake of simplicity,
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the latter is approached using Hertz contact theory. An influence coefficient

based on a priori known informations is defined in order to deconvolve elastic

properties of the matrix and the fiber. This method is directly compared to

the classical ones. A significant gradient of elastic properties is revealed. The

center of the fiber is actually found to be softer than the circumference, and

the modulus profile in the matrix close-by the fibers is approached.

2. Grid nano-indentation

This section describes the experimental conditions as well as the statis-

tical analysis of the grid nano-indentation results. The sample consists in

a composite material made of PEKK resin together with carbon fibers [30].

These are HexTow AS4 carbon fibers provided by Hexcel as 12000 filament

tows, whose longitudinal modulus is about 240 GPa as reported in [31], in

line with the manufacturer’s specifications [32]. The prepreg has been man-

ufactured using an aqueous impregnation semi-industrial line, with a target

volume fraction equal to 55% [33]. Cross section of this sample has been

embedded and subsequently polished.

2.1. Nano-indentation measurements

Nanoindentation has been performed using an ultra nanoindenter (UNHT)

from Anton Paar. A Berkovich indenter has been used. Indentations are

force-controlled. Both loading and unloading rate are set to 120µN.min−1.

For this instrument the noise levels have been estimated as 0.05µN in force

and 0.03 nm in displacement by the manufacturer. N = 225 indentations

have been performed at Fm = 60µN maximum load (see Fig.1). All the

indentations are located on or close by a single carbon fiber, with a nominal
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grid spacing equal to 1µm. The location of the indentations with respect to

the fiber has been verified by atomic force microscopy. Indentation hardness

and elastic modulus have been extracted using the Oliver and Pharr method

[34].

Contact stiffness S at maximum force Fm, and maximum displacement hm

have been extracted from the experimental loading curves. The unloading

curve has been fitted using a power law, yielding its exponent m. Using

S, Fm, hm and m, the contact depth hc has been calculated [34, 35, 36].

The shape of the indenter, giving the tip area calibration as a function of

the contact depth Ac = f(hc), was calibrated using fused silica. It allows

to calculate the projected contact area Ac from hc. Hardness H and the

apparent contact modulus Eeq are then calculated from

H =
Fm

Ac

(1)

S = 2Eeq

√

Ac

π
(2)

1

Eeq

=
1− ν2

i

Ei

+
1− ν2

M
(3)

This stiffness is hereafter translated into the Young’s modulus M of the

equivalent isotropic material, assuming that its Poisson’s coefficient is ν = 0.3

and considering Ei = 1141 GPa and νi = 0.07 for the indenter material. For

transversely isotropic materials indented orthognally to the isotropy plane,

M results from the contribution of 4 of the elastic constants of the material

and may be approached using for instance the closed-form expression by

Delafargue [37] :

M

1− ν2
= 2

√

√

√

√

c11c33 − c213

c11

(

1
c44

+ 2√
c11c33+c13

) (4)
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Figure 1: Optical view of the nano-indentation imprints (field of view is 50× 40µm).

, c33 being the longitudinal modulus. Using c11 = 10 GPa, c13 = 36 GPa,

c33 = 240 GPa and c44 = 10 GPa yields M = 54.4 GPa, thus illustrating the

elastic stiffness tensor average performed by nano-indentation measurements.

The contact area is also translated in the following in a contact radius a =
√

Ac

π
.

2.2. Statistical analysis

A statistical analysis of elastic moduli relies on the cumulative density

function, F(Mc) built from the experimental values of elastic moduli M̄e (e

ranging from 1 to N). The properties of the different phases are estimated by

assuming a Gaussian distribution of the elastic modulus of each individual
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Figure 2: Experimental and estimated cumulated density functions for different Np values.

phase. The parameters Mn and ∆Mn
, describing the modulus of the phase n

and the corresponding standard deviation, respectively, are thus estimated

by minimizing

η2cdf =
N
∑

e=1

[

F(M̄e)−
Np
∑

n=1

ωn

2

(

1 + erf

(

M̄e −Mn√
2∆Mn

))

]2

(5)

Figures 2, 3 and 4 display the experimental and estimated cumulated den-

sity functions for 2 ≤ Np ≤ 7, and Table 1 shows the corresponding results.

Parameters optimization is achieved as described in [38]. The minimum value

of the cost function η2cdf represents the discrepancy between experiment and

the calculated cumulative density function. It is presented in Tab. 1, to-

gether with the parameters describing the moduli distributions for various

Np values. η2cdf globally decreases with Np. However, its values does not
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Figure 3: Experimental and estimated cumulated density functions for different Np values

: zoom on the area corresponding to indentations on the fiber.
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Figure 4: Experimental and estimated cumulated density functions for different Np values

: zoom on the area corresponding to indentations on the matrix.
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Figure 5: Localization of the indentations belonging to the different phases for Np = 5.

change so much from Np = 5 to Np = 7 thus indicating that the model

is over-parametrized for Np ≥ 5. Whatever the chosen Np value, fiber and

matrix phases are clearly distinguished.

The resin exhibits an elastic modulus about 5.5 GPa. The distribution

corresponding to the fiber appears to be more spread than the one of the

matrix. The standard deviation obtained for Np = 2 perfectly illustrates

this phenomenon. It provides ∆Mmatrix
= 0.2 GPa and ∆Mfiber

= 17.7 GPa.

Increasing the Np value makes intermediate value of elastic modulus appear.

Focusing on Np = 5, the spatial location of the five modes in the distribution

is displayed on Fig.5. It suggests that the center of the fiber is softer than

the boundary. It also shows that the properties measured in the region of
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Table 1: Elastic moduli identified by statistical analysis as a function of the number of

considered populations.

Np 2 3 4 5 6 7

ωn 0.71 0.42 0.42 0.41 0.28 0.4

0.29 0.35 0.33 0.3 0.39 0.31

0.22 0.15 0.06 0.03 0.05

0.1 0.11 0.06 0.04

0.12 0.11 0.12

0.13 0.06

0.02

Elastic moduli 5.5± 0.24 5.4± 0.1 5.4± 0.1 5.4± 0.1 5.4± 0.1 5.4± 0.1

(GPa) 46.7± 17.7 5.8± 0.4 5.8± 0.3 5.8± 0.3 5.8± 0.3 5.8± 0.3

52.1± 11.7 39.4± 22.1 7± 0.8 5.3± 0.03 7± 0.6

56.3± 4.3 42± 23.2 7.1± 0.8 11.4± 7

55.8± 4.9 44.5± 21.2 52.8± 14.4

55.9± 4.7 54.5± 4.5

58± 0.3

Min η2cdf 2.9× 10−6 3.8× 10−7 2.3× 10−7 1.1× 10−7 1.0× 10−7 1.1× 10−7
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the resin close by the fiber is affected by the presence of the fiber as it could

have been expected. It is also clear that the standard deviations associated

to the measurements performed inside the fiber are higher than the ones

performed in the resin. This mapping together with the value of standard

deviation strongly suggest that a gradient of mechanical properties is present

inside the fiber. However, such a statistical analysis is unable to describe and

characterize more precisely this graded material.

3. Grid nano-indentation data processing

Grid nano-indentation is clearly a way to collect a vast amount of me-

chanically redundant experimental data. In order to make the most of this

redundancy, it is proposed, contrarily to the approach recalled in Sect. 2.2,

to make use of some a priori information related to the geometry of the spec-

imen under scrutiny. The convolution kernel translating this geometrical

description into the measured indentation moduli map is approached, and

the corresponding deconvolution procedure is applied to estimate the elastic

properties of the constituents of the sample described in Sect. 2.

3.1. Geometrical description

It is assumed that the probed zone depicted in Fig.1 may be simply

described by a two-phases half-space. Namely, the measurement area is as-

sumed to be described by a matrix material in which a single infinite straight

fiber whose direction is orthogonal to the indentation plane is included. The

full half-space is denoted as H and the cylinder occupied by the fiber is

denoted C.
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Figure 7: AFM topography of the nano-indentation imprints (µm).
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Figure 8: Elastic modulus Mexp as a function of the distance to the fiber center.

The problem geometry may thus be described by Fig. 6. The indents

positions P , the fiber position and its radius R are obtained by least-square

fitting of the AFM topography (acquired after the indentations) presented in

Fig. 7, so that all the geometrical parameters in Fig. 6 are experimentally

known. In particular, the fiber radius R = 3.19 µm and the indents positions

are identified. This first allows to display the elastic modulus Mexp and the

contact radius a as a function of the distance d to the fiber center, owing to

the cylindrical symmetry of the problem.

The results are displayed in Fig. 8 and Fig. 9, respectively. These clearly

show two different phases, namely a fiber much stiffer and harder than the

matrix. It should however be outlined that some outliers may be identified

15



0 2 4 6 8 10 12
5e-2

0.1

0.15

0.2

0.25

0.3

0.35

distance from the fiber center ( m)

c
o

n
ta

c
t 

ra
d

iu
s 

(
m

, 
F

=
6

0
 μ

 N
) 

μ

μ

Figure 9: Indentation radius a as a function of the distance to the fiber center.
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at d ≃ 7.5µm. These correspond to indentations performed close by the

fiber on top of Fig. 1. The results in Fig. 8 allows to clearly distinguish

the matrix and the fiber. An interfacial zone where the measured modulus

clearly results from (at least) both the fiber and the matrix is also clearly

visible. This convolution effect is sometimes approached by finite-element

analysis of the indentation test [1, 39]. The following sections are devoted

to a rather different approach. The convolution kernel is approached using

analytical expressions and numerical (but straightforward) integration. This

very simple computation then allows for the quick estimation of the spatial

resolution corresponding to the experimental conditions. The corresponding

deconvolution procedure is then applied to retrieve the mechanical properties

of the phases.

3.2. Convolution kernel

The contact radius is experimentally determined and corresponds to the

loading value at which the material properties are estimated in the standard

procedure (see Sect. 2.1) [34]. It is thus assumed that the elastic fields

under the indenter may be approached by those deriving from Hertz’s contact

theory [40], and one restricts herein, for the sake of simplicity, to elastic

isotropic materials described by their Young’s modulus E and their Poisson’s

ratio ν. It should then be outlined that the strains ǫij scale as

ǫij =
3F (1 + ν)

4πEa3
ǫ⋆ij(a, ν, ρ, z) ∀i, j (6)

and that all the ǫ⋆ij(a, ν, ρ, z) are known explicitly at any point defined by

the cylindrical coordinates (ρ, z) with the origin at P . The reader interested

in the detailed expressions may refer to [40] for instance. The scaled strain
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energy density e(a, ν, ρ, z) may thus be computed for any point of the half-

space as a function of the ǫ⋆ij(a, ν, ρ, z).

These fields vanish quickly when moving away from the contact area,

highlighting the fact that all points in the half-plane do not equally con-

tribute to the measurement. The key is therefore, for a given geometrical

configuration, to approach the contribution of each phase (each point) to the

overall measurement. This is very similar to an homogeneization procedure,

and as for classical homogeneization, several choices are possible.

It is chosen herein, for the sake of simplicity, to use the fields (6) as test

fields. The overall behavior is then obtained by summing the contribution of

each phase to the total strain energy. For the geometry depicted in Fig. 6 :

M(P )

∫

H
e(a, ν, ρ, z)dV = Mfiber

∫

C
e(a, ν, ρ, z)dV+Mmatrix

∫

H\C
e(a, ν, ρ, z)dV

(7)

The scaled strain energy density e(a, ν, ρ, z) thus acts as a convolution ker-

nel describing the weight of each point in the half-space on the measured

indentation modulus. This construction is the equivalent of a Voigt bound

in classical homogeneization, and again, any other homogeneization scheme

could have been chosen.

Eq. 7 may be recast by defining the influence coefficient I(ν, a, P, R) :

I(ν, a, P, R) =

∫

C e(a, ν, ρ, z)dV
∫

H e(a, ν, ρ, z)dV
(8)

The Poisson’s ratio is arbitrarily set to ν = 0.3 for both the phases in

the following, so that the influence coefficient I(ν, a, P, R) is computed by

standard (Gauss-Kronrod) quadrature. For the considered geometry, the
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Figure 10: Computed influence coefficient I(ν = 0.3, a, P,R) as a function of the distance

to the fiber center (dots) and the fit by an error function (solid line).

integrations are performed for z ranging from 0 to 10 × a and for ρ also

ranging from 0 to 10× a. It is obvious this expression is independent on the

probed elastic properties besides the Poisson’s ratio.

The obtained values are displayed on Fig. 10 as a function of the distance

to the fiber center. It varies from 0 (far from the fiber) to 1 (at the fiber

center), and the rather steep change at the matrix/fiber interface suggests

that any stiffness gradient at the interface should be resolved. The computed

influence coefficient is approached by an error function :

I(ν, a, P, R) ≃ 1

2
erfc

(

d(P )− Rf

δ

)

(9)
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Rf is a fitting parameter, which is adjusted together with δ to approximate

the influence function. It allows to estimate the spatial resolution δ in the

interface region and the fitting procedure yields δ = 190 nm, thus setting the

resolution limit at the interface for this particular set of measurements.

3.3. Deconvolution

Using the influence coefficient defined in Eq. (8) allows one to translate a

geometrical description of the sample into the observed indentation modulus

field. Under the assumptions defined in Sect. 3.2, the indentation modulus

at point P , M(P ) reads

M(P ) = MfiberI(ν, a, P, R) +Mmatrix(1− I(ν, a, P, R)) (10)

This section is devoted to the retrieval of the indentation modulus of each

phase from the grid measurements.

3.3.1. Formulation

For any measurement point P , the contact radius a(P ) is known as well as

the measured indentation modulus Mexp(P ) (Sect. 3.1). As a consequence,

one has one equation 10 for each measurement point P . This large set of

linear equations (here : N = 225 equations) depends on two parameters,

namely Mfiber and Mmatrix. This set of equations may be written

MMp = Mexp (11)

with

M =

















I(ν, a, P1, R), 1− I(ν, a, P1, R)

I(ν, a, P2, R), 1− I(ν, a, P2, R)
...

...

I(ν, a, PN , R), 1− I(ν, a, PN , R)

















(12)
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and

Mp = [Mfiber,Mmatrix]
t

Mexp = [Mexp(P1),Mexp(P2), · · · ,Mexp(PN)]
t (13)

The linear system (11) is largely overdetermined and is thus solved in a

least-square sense to provide the solution

Ms
p = (MtM)−1(MtMexp) (14)

together with the residual field R

R = MMs
p −Mexp (15)

which is to used to assess the quality of the solution.

3.3.2. Example assuming a uniform fiber

This procedure is applied to the experimental data described in Sect. 3.1.

Solving the linear system (11) yields

Mfiber = 56.1 GPa

Mmatrix = 8.06 GPa

and the corresponding residual is displayed in Fig. 11. It should be out-

lined that most of the residual arises from the fiber, whose indentation

modulus seems to display a linear dependence to the radial position. The

value for Mfiber is however consistent with the reported longitudinal modu-

lus (240 GPa, see Sect. 2.1). One should also highlight that the indentation

modulus obtained for the matrix significantly differs from the one obtained

by the statistical analysis (see Tab. 1). This indicates that the proposed

sample description is not adequate.
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Figure 11: Computed residual assuming a uniform indentation modulus in the fiber.
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3.3.3. Example assuming a graded fiber

In order to enrich the description of the sample, one further assumes that

the fiber displays a radial gradient of indentation modulus

Mfiber(r) = Mcenter + (Medge −Mcenter)
r

R
(16)

, so that three material parameters are now to be identified. Applying the

same procedure yields

M(P ) = McenterI(ν, a, P, R)+(Medge−Mcenter)Ir(ν, a, P, R)+Mmatrix(1−I(ν, a, P, R))

(17)

with

Ir(ν, a, P, R) =

∫

C
r
R
e(a, ν, ρ, z)dV

∫

H e(a, ν, ρ, z)dV
(18)

The same deconvolution procedure is applied to yield

Mcenter = 37.7 GPa

Medge = 64.7 GPa

Mmatrix = 7.99 GPa

thus outlining the significant modulus gradient in the fiber, which is very

similar to the results obtained in [1] by the use of extensive finite-element

simulations for similar fibers. Such a modulus gradient is also observed by

other local characterization techniques [41].

The corresponding residual is also displayed in Fig. 12. It clearly shows

that most of the residual now comes from the matrix region right next to the

fiber. Again, the indentation modulus obtained for the matrix differs from

the value obtained by the statistical analysis. This further calls for a better

description of the sample out of the fiber.
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Figure 12: Computed residual assuming a radial distribution for the indentation modulus

in the fiber.
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3.3.4. Example assuming graded fiber and matrix

In order to enrich the description of the sample, one further assumes that

the matrix displays a radial gradient of indentation modulus below a cut-off

radius RI = 4µm. Its modulus now reads

Mmatrix(r) =
MbulkR−MIRI

R− RI

+ (MI −Mbulk)
r

R− RI

if R ≤ r ≤ RI

Mmatrix(r) = Mbulk if r ≥ RI

, so that four material parameters are now to be identified. Applying the

same procedure yields

M(P ) = McenterI(ν, a, P, R) + (Medge −Mcenter)Ir(ν, a, P, R) +Mbulk(1− I(ν, a, P, R))

+
RI(Mbulk −MI)

R− RI

(I(ν, a, P, RI)− I(ν, a, P, R))

+
MI −Mbulk

R− RI

(RIIr(ν, a, P, RI)− RIr(ν, a, P, R)) (19)

The deconvolution procedure then yields

Mcenter = 42.7 GPa

Medge = 59.0 GPa

Mbulk = 5.4 GPa

MI = 71.2 GPa

The corresponding residual is also displayed in Fig. 13. It clearly shows

that adding a linear dependence of the matrix modulus close by the interface

significantly improves the overall residual, thereby proving a much better

description of the sample properties. It should be outlined that the residual
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Figure 13: Computed residual assuming a radial distribution for the indentation modulus

in the fiber and a radial gradient of the indentation modulus in the matrix up to a distance

RI = 4µm.
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is now almost 0 in the matrix far from the fiber, contrarily to the previous

modelings (see Figs. 11 and 12). The remaining residual in Fig.13 also

suggests that a more complex modulus distribution in the matrix close-by

the fiber is to be identified. This approach by successive enrichment of the

sample description clearly reveals, at least qualitatively, the presence of a

very steep modulus gradient in a ring which is about 800 nm thick around

the fiber. This is made possible by considering the data collected in grid

nano-indentation as field information and processing these as they result

from an imaging process : adding some a priori information on the sample

description allows one to deconvolve the measured data and reveal features

whose size approaches the resolution of the imaging process.

The residual may be further analyzed with Fig. 14, which has been

obtained by combining :

• The normalized topography z(x,y)
max |z(x,y)|

• The normalized residual |R(x,y)|
max |R(x,y)| obtained by linear interpolation

from the measurement points where it is available, outside the graded

ring.

This figure therefore allows to localize areas where the proposed modeling

is not adequate and to compare these with topographic features. It can be

seen from this figure, and also by comparing to the topography displayed in

Fig. 7, that the residual is not spatially correlated to scratches or defects.

It is mainly dominated by the presence of a second fiber, which affects the

measured moduli but is not taken into account in the analysis. This allows

us to conclude that these defects do not significantly affect the values in
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the matrix. This also highlights how the residual can (and should) be used

together with material knowledge to drive any modeling enrichment.

Finally, the robustness of the proposed approach may be further illustrated

by comparing the indentation modulus obtained for the matrix with the

proposed method (Mbulk = 5.4 GPa) with the value obtained by statistical

analysis (5.4±0.1 GPa for Np > 2 in Sect. 2.2). This agreement validates the

proposed description. Results obtained in the bulk matrix further illustrate

how making use of the geometrical description regularize the final properties.

These geometrical assumptions are strong assumptions : the indentation

modulus is for example imposed to be uniform in the matrix phase (outside

the graded ring), so that the effect of few local defects would be smeared

out in the final results. This is thought to be the origin of the robustness

of the proposed method. Should these assumptions be inadequate (because

of heterogeneities resulting from scratches or polishing defects), the residual

field should be affected.

4. Conclusions

It is proposed herein the use of grid nano-indentation as a full-field mea-

surement tool to investigate the properties of heterogeneous samples, relying

on a geometrical description of the sample. The spatial convolution function

is approached using Hertz theory, and the obtained convolution kernel is used

to retrieve the mechanical properties of the different phases of a composite

material sample made of micrometer-sized fibers in a polymeric matrix. It

particularly allows to approach the structure of the sample at the finer scale,

and revealed herein a very steep modulus gradient for the matrix material
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in a thin ring around the fiber. Such a description could be obtained by a

successive enrichment, which is driven by the residual of the projection onto

the convolution kernel. This analysis method is thus expected to provide

some useful insight into interfacial regions of composite materials.

Acknowledgments

Saber Chelaghma (IRT St-Exupéry) and Jean-Noël Périé (Institut Clément
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[23] Durst K., Göken M., Vehoff H. (2004) Finite element study for nanoin-

dentation measurements on two-phase materials. J. Mater. Res. 19:85.

[24] Argatov I.I., Sabina F.J. (2020) Contact stiffness indentation tomogra-

phy: moduli-perturbation approach. International Journal of Engineering

Science 146:103175.

[25] Ureña A., Rams J., Escalera M.D., Sánchez M. (2005) Characteriza-

tion of interfacial mechanical properties in carbon fiber/aluminium matrix

composites by the nanoindentation technique. Composites Sciences and

Technology 65: 2025-2038.

[26] Diez-Pascual A.M., Gomez-Fatou M.A., Ania F., Flores A. (2012)

Nanoindentation assessment of the interphase in carbon nanotube-based

hierarchical composites. J. Phys. Chem C 116(45):193-200.

33



[27] Liu Z., Zhao F., Jones F.R. (2008) Optimising the interfacial response of

glass fibre composites with a functional nanoscale plasma polymer coating.

Composites Sciences and Technology 68: 3161-3170.

[28] Hodzic A., Kim J.K., Lowe A.E., Stachurski Z.H. (2004) The effects of

water aging on the interphase region and interlaminar fracture toughness in

polymer-glass composites. Composites Sciences and Technology 64: 2185-

2195.

[29] Hausild P., Cech J., Materna A., Matejicek J. (2019) Statistical treat-

ment of grid indentation considering the effect of the interface and the

microstructural length scale. Mechanics of Materials 129:99-103.

[30] Chelaghma S., DeAlmeida O., Margueres P., Perie J.-N., Passieux J.-C.,

Vinet A. (2018) Characterization of multifunctional composite materials.

JEC Composites magazine 125:62-65.
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