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Abstract
This paper is focused on the identification of the in-plane elastic constants of a new design of auxetic 

(negative Poisson’s ratio) honeycomb configuration with curved cell walls by using analytical and 

numerical homogenization techniques. The sensitivity of the elastic constants is determined against the 

various cell geometry parameters. Good agreement between the analytical and numerical simulations is 

observed. We show that the specific curved wall honeycomb configuration proposed in this paper 

possesses a high in-plane shear compliance, tailored anisotropy and the possibility of inducing a negative 

Poisson’s ratio behaviour in baseline honeycomb configurations that would have otherwise positive in-

plane Poisson’s ratios.
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NOTATIONS

A       : Basic wall transverse section.

E1, E2: Young's modulus in directions 1 and 2.

G12      : shear modulus

νs       : Poisson's ratio of basic material.

Es          : Young's modulus of basic material.

l        : Cell wall length.

ν12, ν21: In-plane Poisson's ratios.

ε1, ε2: Plane strains in directions 1 and 2.

        : Cell internal angle.

r         : curved of the basic wall.

t         : Cell wall thickness.

U        : Elastic strain energy.

u1, u2   : Displacement in directions 1 and 2 

respectively.

b        : Height of the cell.

α: curvature ratio, .  r
l 

β  Basic wall aspect ratio, . l
a

γ  Basic wall thickness ratio,  l
t

a          : cell wall base
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1. Introduction

Low density cellular materials are mainly used as a lightweight core rigid and high strength sandwich 

structures. The physical properties of these materials depend on their constituent phase, geometry and 

spatial arrangement of the solid [1]. This type of porous structure has several applications in the civil 

and military fields that require both rigidity and lightweight characteristics. An example of cellular 

material used as lightweight core is the corrugated paper honeycomb [2], which can be used as a base 

material in lightweight and low-cost sandwich elements. The moduli of elasticity, the shear and 

compression strengths have been determined in that work both experimentally and analytically, 

showing that the mechanics of the impregnated material are more consistent than the ones of non-

impregnated cellular solids. It is therefore interesting to evaluate their mechanical properties and 

predict their behaviour under specific loading and environments. Several research studies on such 

systems have been carried out in recent years, particularly about tailored two-dimensional 

honeycombs. Asymptotic homogenization constitutes a means to replace full-scale simulations for 

predicting the equivalent mechanical properties of the lattices [3-9].

The term auxetics indicates structures and materials with negative Poisson’s ratio characteristics. 

Evans and al. [10] have been the first to use this term (from the word ‘‘auxetos”, i.e.  ‘may be 

subjected to increase’). In most cases, the Poisson’s ratio of cellular structures is positive, i.e. the 

material undergoes a contraction along the direction perpendicular to one of the load applications. 

However, a negative value of the Poisson’s ratio means that the material would laterally expand when 

stretched, leading to an increase of its volume [11-13]. A class of foams that exhibited negative 

Poisson’s ratios has been manufactured and presented for the first time by Lakes [14] back in 1987. 

The first model of re-entrant structures with a negative Poisson’s ratio was introduced back in 1985 

by Almgren [15]. The structure was first made in 2 D before being extended to 3D. That pattern, 

which may be applied to different geometric structures such as rods, hinges, and springs led to the 

development of structures that show macroscopic isotropic elastic properties though anisotropic in 

their microscopic details. Lira and al. [16] described the out-of-plane shear properties of the multi re-
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entrant honeycomb configurations. The transverse shear strength properties of zero-Poisson’s ratio 

honeycombs have been described in [17]. The transverse shear modulus of honeycombs with negative 

Poisson's ratio coefficients in the plane have been determined using numerical simulations by [18]. 

The mechanics of re-entrant and centre-symmetric honeycomb configurations has been described 

using various analytical models, which have been essentially based on the hypothesis that the 

behaviour of individual beams or ribs of the cell can be described by elastic engineering beams, 

specific sets of boundary conditions and different cell walls mechanisms (stretching/hinging/bending 

[19]). When loaded on a plane, the honeycomb-shaped cells may be subjected to bending or stretching 

of their walls, as well as the rotations of the connecting junctions (nodes). Several researchers have 

developed mathematical models based on these mechanisms. Gibson and Ashby [1] and Gibson and 

al. [19] developed a 2-D model assuming a beam-like bending of the cell walls. Nkansah and 

Hutchinson [18] however showed that models solely based on bending tend to misrepresent the in-

plane elastic constants of honeycombs for small (positive and/or negative) cell angles. In order to 

improve the bending-based models, Gibson et al [19] and Masters and Evans [20] incorporated the 

phenomena of stretching and rotation of the cell walls. Earlier studies focused on the regular 

hexagonal honeycomb used as the base material for sandwich panels. In-plane properties are widely 

studied to improve knowledge of the mechanical behaviour of cellular materials. Advances in shell 

theories and increasing computational power have improved the models already described by 

elementary theories. Numerous numerical homogenization techniques have been proposed for 

modelling network materials (see Arabnejad and Pasini [21]). A comprehensive review about 

homogenization methods applied to honeycomb structures was presented in [22] but did not report the 

effect of the curvature of the wall at the junctions. Within the last two decades, the availability of 

faster and more sophisticated manufacturing techniques has pushed the development of new cell 

geometries to meet the needs of technological users.

Works from Harkati et al. [4] and Balawi and Abot [23] have proposed a general analytical model to 

predict the elastic moduli applied to a hexagonal cell with curved walls. The model has allowed the 

parametrization of the elastic modulus and relative density as a function of the radius of curvature and 

other cell geometry characteristics. The model takes into account the effects of bending, shear and 
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axial deformations of the cell ribs along the two principal directions of the plane, and especially 

confirmed that the curvature of the walls does not have the same effect along each direction. Malek 

and Gibson [24] have studied the elastic behaviour of periodic hexagonal honeycombs over a wide 

range of relative densities and cell geometries by taking into account nodes at the intersection of 

vertical and inclined elements.

This article proposes a refined analytical model capable to evaluate the effect of the curvature of the 

cell wall and the internal cell angle on the in-plane mechanical behaviour of honeycomb cells defined 

by five homogenized elastic modules, taking into account different types of deformation mechanisms 

in the plane. Fig. 1(a) presents the configuration investigated in this work, in which the sharp edge 

corners are replaced by rounding of radius r.  Fig. 1(b) shows a previous multi-re-entrant 

configuration evaluated by some of the Authors [2-5], while Fig. 1(c) is related to the baseline centre-

symmetric honeycomb structure [1]. 

                                 (a)                                                             (b)                                                       (c)

Figure 1: Honeycomb architectures

a): Present work    b): Previous Authors’ work [5]   c): regular hexagonal

                        

This work is based on the methodologies and results presented in Refs. [3-6]. The main novelties 

introduced here consist in the determination of the in-plane shear modulus (G12) by analytical means, 
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and the development of a refined model that imposes geometric constraints to avoid the contact of the 

curved walls during deformation. The models are validated using three-dimensional Finite Element 

models including asymptotic homogenization conditions. The variation of the Poisson's ratio versus 

the radius of curvature ratio (r / l) for three honeycomb configurations (straight walls, multi-

reentrant and the one described here) and the evolution of the anisotropy versus the curvature ratio of 

the walls has been identified and discussed. The curved wall honeycomb cell configuration described 

by these models shows a very high degree of compliance, especially in terms of shear deformation. 

Quite importantly, the tailoring of the radius of curvature shows that it is possible to control the 

degree of anisotropy and the development of auxeticity in baseline honeycomb configurations (i.e., 

with straight walls) that would normally exhibit a positive Poisson’s ratio behavior.

2. Theoretical analysis

2.1 Refined analytical model

The analytical model developed here is based on Castigliano’s theorem. The honeycomb cell walls are 

considered as beam elements and simultaneously subjected to three types of loading (bending, 

membrane and shear - Fig. 1). In order to avoid contacts and intersections of the cell walls during the 

deformation the condition below is applied:

 (1) 2 sin 2 1 2cosa l r   

According to elastic beam theory, the elastic strain energy U is expressed as [4]:

   (2)
2 2 2

*
0 2 2 2

l

M N T
N M TU U U U dx
EA EI GA

 
      

 


Where N is the axial internal force, T is the shear internal force and M is the internal bending moment. 

In (2) E is the material’s Young’s Modulus, G is the shear modulus, A is the cross-section area, A* is 

the shear reduced area, I is the area moment of inertia and l is the beam length.

The displacement of a beam under the influence of a force P may be expressed as .
P
Uu





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The mathematical formulation of the expressions providing the modules E1, E2, v12 and v21 are detailed 

in previous Authors’ paper [3]. The equations are recalled here with Es the elastic modulus of the base 

material.

  (3)
1

1

cos 2 (1 sin ) 1
sin 2 cos
  

   
 

 
s

E
E u

With:  a/l

      (4)
 

 
 

 
 

2 3

21
22 2

1 3 6(1 ) 2
52 2

6 2 8cos 6cos sin (2 4 )cos
1 2 cos 2 sin 21 12 2 2sin 2cos ( 2 )cos sin

1 2 cos 2 sin 2
3 2 ( 2 )cos sin

v
u

        
     

      
      

      


                                        

For a regular cell    (Gibson and Ashby’s advanced equation for honeycomb [1])

                                                              (5) 
1

2 2 2 12
5

3 cos 1
( sin ) sin 1 (cot 1 )s

E
E v


    


   

   
 

The apparent modulus in direction 2 writes

 (6)
2

2

sin 2 cos 1
cos 2 (1 sin )s

E
E u

   
  

 
 

with

 (7)
 

 
 

 
 

3

212
2

2 3 6(1 ) 2 23 3
52 2

2

12 24 18sin 2 6 cos 2 12 cos 2
1 2 cos 2 sin 2 412 12cos 2 6 sin 2 12 sin 21

2cos 2 sin 23 cos 2 3 cos 2
cos

vu

       
           

            




     
                               
    

Also, in this case, by imposing  = 0 we obtain the result related to a regular hexagonal cell:

  (8)
  

2
3 2 2 12

5

3 sin 1
cos 1 tan 1s

E
E v

 
  

 
  

 
  

 

The Poisson’s ratio of the honeycomb is provided by the following expression :

(9)

 
 

  
 

 

  

3
21

2 2
6(1 ) 2

3 1 52 2

3 2

6 3cos2 4sin sin 2 2 sin 2 1
cos2 sin 2

6 2sin 2 2cos ( 2 )cos2
cos2 sin 22 sin 2 sin 2cos 2 (1 sin )

12 sin ( 2 cos ) 6 2 1 2cos 8cos

v

v

      
    

     
          

       



                             
    

   
  

  
 

 
21

2 2 2
6(1 ) 2

52 2

6cos sin
1 2 cos2 sin 2

12 2sin 2sin 2 cos sin
1 2 cos2 sin 2

3 2 sin sin
v

  
     

      
     

    


                             

 
 
 
 
 
  
 

Finally, the Poisson’s ratio   can be calculated as:
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  (10)

1
21 12

2

E v
E

 

2.2 Shear modulus

Because of symmetry, there is no relative motion between points A, B and C when the honeycomb is 

sheared (see Fig. 2).

                 

Figure 2: Deformation induced by cell wall bending and rotation - Force distribution to evaluate G12.

The shear deflection uc is due to the horizontal displacement of point A, and bending of beam AD and 

its rotation through the angle  at around A point [1].

The rotation angle   can be then expressed by the following formula:

                      (11) 

3

2

1
24 2 2 sin

Fal u
EI l r r





 



With:      (12)

3
2

3

2

2

1 (6 12 12cos 24sin 6 sin 12cos 12 sin 12cos sin 24)

(18 6cos 18sin 3 sin 6 sin ) (3 6 )

r
lu

r r
l l

          

       

 
         

 
 
        



The shear displacement uc (shearing deflection) can be presented as:

  (13)
 

2 3

2 2
48 2 2 sin

c
Fa lu u a

EI l r r 

 
  
   



The shear strain  is given by: 
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 (14)     

2 3

12 2

2 2
sin 2 cos 24 sin 2 cos 2 2 sin

cu Fa l u a
a l r EI a l r l r r


    

 
   
       



One can then calculate the shear stress :

  (15)
2 ( cos 2 (1 sin ))

F
b l r


 


 

After mathematical manipulations and using non-dimensional parameters, one can obtain the 

expression of G12: 

     (16)12
12

G 




    (17)
 

  
 

3
12

2

2

sin 2 cos 1
cos 2 1 sin 12

1 2 2 sin
s

G t
E l

u

   
   


  

         
    



For  = 0 one can obtain the value the in-plane shear modulus of a regular hexagonal honeycomb [1]:

    (18)
 

  

3
12

2

sin
2 1 coss

G t
E l

 
  

     

2.3. Finite element modelling

In order to validate the results found by the analytical approach, numerical models based on finite 

elements method were developed using the ABAQUS commercial code [25]. The models developed 

here are based on studies and simulations performed by several authors [1-6, 16, 26, 27]. The first 

model considers full-scale honeycomb assemblies of 53 mesh cells with quadratic beam elements 

(8304 elements - 3 nodes quadra

tic beams in a plane), while the second one involves the use of 68 mesh cells with 69904 shells 

elements with 4 nodes and 6 degrees of freedom per node (S4R). The different meshes correspond to 

different numerical convergence reached by using beam and shell elements when simulating the five 

elastic constants. The simulation of a tensile stress along the 1-direction provides the elastic modulus 

E1 and the Poisson’s ratio 2 (Figure 3.a). The application of a tensile stress along the 2-direction 

allows to predict the elastic modulus E2 and the Poisson’s ratio (Figure 3.b). The shear stress is 



9

simulated in the xy plane to determine the shear modulus G12 according to the boundary conditions in 

Figure 3.c.

                           

Figure 3:  Numerical model description. (a) and (b) Boundary conditions taken in the simulation of the tensile along direction 1 
and 2 respectively. (c) Boundary condition taken in order to determine G12 . (d) REV

3. Results and discussion

3.1 Effect of the curvature on the uniaxial moduli E1 and E2

The variation of the relative elastic modulus (E1/ES) as a function of the internal angle of the cell  for 

different values of the ratio of the wall curvature radius   r/l   (0, 0.1, 0.2 to 0.6) is shown in figure 

4. In this case the non-dimensional geometrical parameters β=a/l and t/l are fixed and equal to 1 

and 0.05 respectively. The nondimensional modulus E1/ES decreases with the increase of  and 

reaches a maximum value for θ between -14 and -3 degrees; this is valid for every cell wall curvature 

ratio considered. The increase of θ leads to the decrease of E1/ES until a minimum value for every 


