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Abstract

Huygens (historical) procedure, which derived inggufrom energy by imposing two basic physical
requirements — relativity and conservation — ispgeed and extended, in order to reveal all possible
dynamics compatible with these two requirementsis Téxtension is characterized by its intrinsic
nature — viewpoint independent — not requiring postulation of a specific motion parameter. It @sge
besides the conventional Newtonian and Einsteidiaramical worlds, other ones, among which those
recently proposed in the frameworks of Doubly Saleé&lelativity and Finsler Geometry. Moreover,
through an iterative procedure (inspired by whatbhiz called an architectonical approach), this
formulation expresses Einsteinian dynamics in ati@hal way, with an infinity of possible parameter
including the velocity, the rapidity and the cefgrideveloped in the history of physics by use of
analytical methods associated with the variatiogdup theoretical and geometrical formulations.
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1. Introduction
As shown by Barbour [1], the relation between tlmservation and relativity principles has been
formulated by Huygens in his study of frontal elastollisions (in 1+1 dimensions). His procedure,
relative to the (parabolic) Newtonian world, usiag additive motion parameter v, is rationally
generalized, in order to characterize all dynarhiadmissible worlds (those which are compatibléhwi
the relativity and conservation requirements) dredassociated points of view.

Historically, each one of the analytical methodari@ational, group theoretical or geometrical)
introduced a particular motion parameter (the viglog, the rapidity w or the celerity u) providirg
specific point of view on Einstein’s dynamics [2-8]

The procedure of Huygens is recalled, and extendextcording to Leibniz architectonical
conceptualization, which looks for all dynamicadlgmissible worlds and associated points of viewis T
method allows to cover the recently proposed dynahframeworks [9-12] that generalize Einstein's
dynamics. We show in particular that, when appliecEinstein’s dynamics, this approach reveals an
infinity of points of view — including those develed in the history of physics.

Remarks: Here, the expressions ‘“intrinsic dynamics” and “relationfshmework” mean
respectively “dynamical structure independent of point of view” and “framework relating together
multiple points of view”.

While an analytical formulation deals with a unigpeint of view [one motion parameter v
related to energy E and impulse p by: v = f(E) ¢)gér their inverse E = h(v), p = k(Vv)], the
“architectonical” approach deals simultaneouslyhvaih infinity of points of view [infinity of motion
parameters: v= fu(E) = gi(p) or their inverse E =(v,) p = g(vy)].

2. Elevation of Huygens procedure to the rank of general principle

2.1 Generalization of Huygens procedure

J. Barbour explained through his equations (9.2134) in Ref.[1], how Huygens, dealing with
frontal elastic collisions, deduced impulse fromemyy by mobilizing the relativity requirement. He
derived the expression of impulse p =mv i@tig called quantity of progression) from the saled
living force (or vis-viva) k= mv2 (ancestor of kinetic energy: T = % mv#ieTmain point is the use of
the finite difference : mv'2 — mv?2, associated within two reference frames (Rnd R): one fixed and

one subject to a uniform additive translation (w = V).
This procedure has been reexamined by Leibniz highdifferential calculus, leading from the
finite difference to the derivative: dT/dv.

The generalization of this procedure substitutgergeral form: E = f(v) to the particular one:
Lr =mv2 and an indeterminate composition law (%, V) =v T V to the additive one: v’ = v + Vush
that: T(v, 0)=vTO=v.

The expression of impulse: p = dE/dv, associatetth whn additive composition law, is thus
transformed into: p = I(v) dE/dv, associated véthindeterminate composition law, 1(v) being acion
of v that will be determined at a later step.

The relativity principle asserts that, for an andgitparameter v, if E = f(v) corresponds to a
conserved entity in a fixed frame of referencectaanterpart: f(v') = f (v + V) = E in another frame of
reference must also correspond to a conservedy.eBtiice any linear combination of two conserved



entities leads to a conserved entity, then theiquéar combination associated with a finite diffiece:
[f(v + V) = f(V)JA(V) where A(V) = Zi1aV¥, verifying A(0) = 0, corresponds to a conservetitgn
When V- 0, one gets: df/dv (up to a multiplicative constrgtt may be identified to unity without loss
of generality, in virtue of the conservation prdjes).

The extension of the above procedure flomell-determinate (here additive) composition taw
an indeterminate one amounts to replace in ) — f(V)[/A(V), f(v+V)byf(vTV), getting
thus: [f(v T V) = f(V)[JA(V). Its infinitesimal counterpart (\ 0) is: I(v) df(v)/dv. Since E = f(v), one
may write: p = | dE/dv.

[Whenthe composition law T(v, V) coincides with the atldi one: v’ = v + V, the indeterminate
function | coincides with unity: | = 1 recoveringus: p = dE/dv.]

We shall introduce - instead of the indeterminadint of view expressed through the couple
(I, v) — an infinity of indeterminate points of weexpressed through the couplgs (). The expression
of impulse: p = | dE/dv becomes infinitely multiplp = |, dE/dy,, the indeterminate entitieg being
functions of y.

They will be expressed (in Section 4) in term&atnd/or p : v = fu(E) = q(p).

This extension from one to infinity of yet indeterate points of view allows to establish
numerous relations including finite and infinitesiimratios, deductible from the infinitely multiple
operators expressed byi d/du = |, d/dw = I3 d/dw = ... reflecting the relational character of the
architectonical framework. This has no counterparthe analytical frameworks where each one deals
with a unique point of view, postulated from thartst

2.2 Elevation of Huygens’ procedure to the rank o& principle

We are to transform Huygens particular proceduvkidh derives — thanks to the relativity
requirement — impulse from a given expression efgy] into an autonomous principle apt to derivéhbo
energy and impulse.

Since the physical problem of frontal elastic isodins requires two and only two conserved
entities (depending on motion) and since the swsbeesapplications to energy E of the relativity
requirement lead to new conserved entities (dERRE/dv2, dE/d\2...), a constraint has to be imposed on
the second application: d2E/dv2, in order to keefy dwo (independent) conserved entities. Such a
constraint avoids the arbitrary number of consemsmtities obtained through successive "derivations”

For Huygens dynamics, this constraint correspondsiiE/dv2 = m, with an extension to the
infinity of points of view: d2E/dy2=m

withp = d,E/dvy, and the limit conditions: (E, puv= (Eo, 0, 0).

The compact notations;/dv, and ¢2/dv,2 correspond to:

d/dw= Ld/dy,  and Advi2 = 1, didvy, 1, didv] = 1,2d2/dy2 + I, diy/dv] d/dv,



This autonomous procedure that we shall call “Huaggeeibniz dynamical relativity principle”
applies to any dynamical world compatible to tHatreity and conservation principles.

For the “hyperbolic” Einsteinian world, instead df2E/dy2 = m , the constraint corresponds to
a linear relation with respect to energy:

d.2E/dv2 = E/c?

The possible points of view will be determinedtiiamally and relationally, in Section 4 [the
resulting points of view will include those expredsin the analytical realm, through the velocitye t
celerity and the rapidity parameters, attached eedgely to the variational, geometrical and group
theoretical formulations.]

It appears that:
dy/dv, = l,d/dv,= (l,dE/dvy,)d/dE = pd/dE = gdE

This relation allows to eliminate the indeterminateiples: (l, v.) — each corresponding to one
point of view — in favor of the unique couple ofnserved entities (E, p) which is independent of any
point of view.

Thanks to this transformation, a sort @ftéring procedure”, the infinitely multiple structure:
d2E/dv2 = 1,2d2E/dy2 + [I, dl/dv,] dE/dv, = E/c? reduces to: pdp/dE = E/c2.

The integral form of this differential equation laictively contribute to the determination of the
infinity of points of view associated with Einst&rdynamical world, as shown in Section 4.

3. Admissible dynamics

The general dynamical structure compatible with tidstence of two and only two
(independent) conserved entities (E and p) netalgdt a well-posed physical problem has to verify:

pdp/dE = F(E, p) AE +yp +n
where A, yandn, are constant coefficients : any other combinatiwiates the conservation
requirement:
Ei+ E2=E'+ EY R+p=p +p2
Such a strong constraint, based on a criterion @fiservation, which makes the initial
indeterminacy [F(E, p)kufficiently determinedNE +y p +n] is crucial for our purpose.
Remark: The passage from (1 + 1) to (3 + 1) dimensionsbeaabtained by replacing p anpdy

three dimensional vectorgs:andy leading thus to:

p .dp/dE =AE +y.p +n



3.1. “Doubly Special Relativity”

This filtering procedure leads to a predictivenieavork and turns out to be general enough to
encompass, in addition to the Newtonian and Einitei doubly particular dynamical worlds, that
correspond respectively tak,(y, n) = (0, 0, m) and X, y, n) = (1/c2, 0, 0), other recently developed ones,
corresponding to the two particular cases: (A,y,n) =@, 0,n) and d, vy, n) =@, v, 0).

The particular caseA(y, n) = (A, 0,n), yielding:
p dp/dE =AE +n D

turns out to correspond to the recently developgthahical framework of: “Doubly Special Relativity”
By using natural units (c = 1) and setting:

A=1-\ B=-2 @)
the integration of (1) may be written in a partily significant form;

E2—p2= f(E)=AE2+BE+C 3
that generalizes Einstein’s dynamics which corradpdo the particular case: (A, B, C) = (0, ®E

Recalling that f(E) = AE2 + BE + C, which verifi€@(E) = 0, is compatible with the relativity
and conservation requirements, the constant casific A, B and C will be determined in such a waatt
one adds to the usual initial condition:-p0, E — Ep < E an upper limit condition: p» Ew, E - Ewm
where the properties: p », E - o that characterize Einstein’s dynamics are assumée valid only
locally when 1 — o. Einstein’s dynamics corresponds then to a loppt@ach valid only for very small
energies in comparison to some upper limit note@yhyin order to satisfy these additional requirements
one shows that the function f(E) should verify tive following constraints: F@ = E? and (&) = 0.

After having derived the set of thenégkible solutions — not reproduced here — onergbsehat
the Maguejo-Smolin dynamical model [9] and the Hikgitner one [10], both belonging to the
framework associated with “Doubly special relatiViexpressed by:

[E2 - p/[1 — (E/m)]* = EH[1 — (B/Em)]? (4)
and
[E2 — p2)/[1 — (E/f@)?] = E/[1 — (RB/Em)7] (5)

belong to the above-mentioned set.
3.2 “Finsler geometry”: (A,y,n) = @A, Y, 0)
Similarly to the previous case, we show here that(\, y,n) = (A, y, 0), one is led to:
p dp/dE =AE +yp (6)

This form turns out to be comparable to the regemtéveloped dynamical framework
corresponding to the research program relative-iosler Geometry”.



After having set:

a=[4\ +y]*?  and oy = (@ +Vy)/2, ay =(a-Yy)/2 @)
the integration of (6) yields:

[y E —p]*¥ [ay E + p}Y*=A  (A:integration constant) (8)

If this case: X, y,n) = (A, y, 0), is submitted to the additional restrictidny, 0) = (1, 0, 0), using
natural units, and identifying the integration dams to squared mass, one is led to:

a=2 y=0 and A=m? (9)

The vanishing of renders the two different coefficients;" and ., indiscernible, for one gets:
ay = ao = al2anday = ag = a/2. Sincea = 2, they become equal to unity:

oy = ay=1 (10)
recovering thus Einstein’s dynamics:
[E—-pl[E+p]=E2—p2=m?

It is possible to cast Eq. (8) into a more syminatibut equivalent form, provided one redefines
p, by considering a linear combination: P = ap +(b&mpatible with the conservation requirement),
passing thus from the couple of conserved entiiep) to the other couple (E, P). Indeed, on rsgtti

P=p-y2)E (11)

which corresponds to a particular linear combimajaith a = 1 and b = ¥2) Eq.(8) takes a simpler
form:

[E — PI"Y< [E + P}V = A (12)
where one recognizes the dynamical structure dpedlby use of Finsler geometry [11, 12].

For the particular casey:= 0, and A = m2, one recovers again Einsteinisagyics.

4. Determination of an infinity of points of view (for Einstein’s world)

Einstein’s dynamical world corresponds to the doubly particular case: (A, Y, n) = (1/c% 0, 0),
with:

pdp/dE = E/c? or its integral form: E = (&2 + c2p?}? (13)

The usual expression: E = mc? (1 + p2/m2c¥, obtained withE, = mc2, plays a major role for the
determination of the points of view derived below.



4.1 Viewpoint dependent structure

We are to establish a self-organization procedure leading to a relational structure involving an
infinity of points of view.

Applied to Einstein’s dynamics the under-determinate system of differential equations shown in
2-2 corresponds to

E/c? = d)2E/dv,? = [,2)d*E/dv,2 + [1, dI,/dv,] dE/dv, withp = d,E/dv, = I,dE/dv, (14)
combining p = d,E/dv,, with: E/c? = d,2E/dv,?2 leads to: E/c? = d,p/dv, = I, dp/dv,, or

(1/m) dp/dv,= (E/mc?) /|, = (1 + pm2cd?/ |, (15, a)

where we have used : E/mc2= (1 + p2/m2c3? derived from pdp/dE = E/c?, corresponding to the

filtering procedure (derived above).

Setting k= (1 + p2/m2c?? (the index d standing for decoupling) in Egs. (15, a) brings into action

adecoupling procedure
E=mc2ly and dp=mdwvq

This decoupled solution: Is = E/mc2=Y, combined with the one corresponding to the additive
point of view (I, = I, = 1 = Y°, a for additive), suggests looking for solutions of the form: Y" (a multiple
scale law, corresponding to a geometric progression). This suggestion, resulting from the decoupled and
additive particular solutions, is strengthened by the property, resulting from the filtering procedure:

Y = I;= (1 + p#m2c®? > 1, for any p that verifies: ...>Y2>Y'>Y’>Y 7 1>Y7?>...

Thus, the combination of these results derived ftbenabove considerations turns out to be in
harmony with Leibniz’s conceptualization relatiwehis “theoretical microscope”, apt to reveal a world
(here Einstein’s one) under an infinity of well-ordered points of view corresponding to: ... > Iq_; = I3 > Ig+
> Ig+2 = Ig+3>... Such an ordering may be specified (or quantified) thanks to the global harmony that one
may deduce from Is = Y > 1, that leads to the unlimited number of inequalities:
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valid for any value of the impulse p and/or the motion parameters v.

full



An infinity of well-determined points of view is so obtained by introducing: I, = Y*>™*into (15, a),
getting thus: U, = Y"' or more explicitly:

U, = (1/m) dp/dv, = (1 + pz/m2c-D2= yr-1 (15, b)
from which results an infinity of integral expressions:

vp=(1/m) [dp/ Y* = (1/m) [dp/(1 + p&/m2c®—Y"2= g (p) (15, ¢)

Each value of p corresponds to a specific point of view. On account of the state of rest: p =0,
vp=0 [p, one isled to an infinity of well-determined motion parameters v, expressed in terms of
impulse p.

It is possibleto derive them in terms of energy E, using the above derived expressions: Y =
E/mc2 = (1 + p2/m2c¥y :

vp= (1/m) JY** (dp/dE)dE = &1/mc) [TY2H /(Y2 — 1)*2]dE = ,(E) (15, d)

Among the infinity of points of view, three of them correspond to those developed in the history
of physics, associated with the concepts of velocity v, celerity u and rapidity w (usually introduced with
the variational, geometrical and group theoretical formulations).

They correspond respectively to: 1 = 4, 1 = 1 and p = 2. Some calculations and formal
manipulations lead to the well-known expressions:

p=mv/(1-v¥c®)"?  E =mc¥(1 - v¥c2)" for v=vy4 (16, a)
p =mu E = mc2(1 + u%c?)"? for u=wv (16, b)
p = mc sinh(w/c) E = mc? cosh(w/c) forw=w, (16, c)

each couple of equations (p, E) expressing a specific point of view.

4.2 The relational character of the present approach

In order to underline the relational character of the present Leibnizian architectonical approach,
let us note that Eq.(15, a) leads to the geometric progression of functions: r = Uy, +1/U, where the ratio r
corresponds to: r =Y = E/mc2 = (1 + p?/m2c?}. This clearly shows how the passage from one point of
view to an adjacent one can be derived iteratively (ad infinitum).

More generally, one has: Uy/U, =1 "™ from which one deduces:

vp= YT dv, = £,(vy) (17)



This formula allows especially to derive the infjnof points of view in terms of anyone of the thre
points of view developed in the history of scienegpressed by the velocity, the celerity or thadiap

Remarks: The extended Huygens procedure, deriving impulse from energy, is based on a finite
difference which is only a particular case of the most general admissible form: a linear combination (up
to an additive constant). Another study explicitly exposes this extension. Moreover, instead of dealing
only with the intrinsic structures developed above through (1)-(12), it is also possible to derive the
corresponding points of view.

We finally show, in another work, how to deduce the three formal axiomatic structures,
corresponding to the variational, geometrical and group theoretical formulations, conventionally used to
derive the three usual points of view given by (16, a)-(16, c), showing, especially how the Lagrangian
(considered as magical by Penrose) arises from this architectonical formulation (thanks to a change of
variable facilitating the integration of the second-order differential equation corresponding to the
velocity) and how the space-time metrical structure emerges from one of the points of view, through the
notion of duality. This last point has been succinctly explained in the third part of a synthetic paper [13],
that deals with the connection between the present architectonical approach and the energy (or scalar)
formulation, known as the “Principle of virtual power”, particularly adapted to the study of electro-
magneto-mechanical interactions in continuum mechanics with singular surfaces and interfaces [14,15].

Epistemology: Let us emphasize that the present work owes much to formal and physical articles [1-6,
9-12], but also to epistemological and conceptual ones devoted to Leibniz philosophy of nature. While
Leibniz investigations were not fully understood and appreciated by his contemporaries, his foundational
thought was taken seriously in the 20" century by scholars such as A. N. Whitehead and K. Gédel who
firmly adhere to what Hans Reichenbach wrote in his book (“The philosophy of space and time”):

“It is the more remarkable that Leibniz, this genuine philosopher, was able to understand the
nature of scientific knowledge to such an extent that, two hundred years later, a new development of
physics and an analysis of its philosophical foundations confirmed his views”.

The present Leibnizian architectonical formulation that accounts simultaneously for a variety of
possible worlds and points of view differs radically from the usual “analytical” formulations, (which are,
by construction, limited to a unique point of view a priori specified and postulated from the start). In the
same way as the Lagrange “analytical” approach is also designated by: “Lagrange-Hamilton formulation”,
we propose to designate the Leibniz “architectonical” approach by: “Huygens-Leibniz formulation”.
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