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Abstract

This paper proposes a modular and control oriented model of a double flexible-

link manipulator stems from the modelling of a spatial flexible robot. The

model consists of the power preserving interconnection between two infinite di-

mensional systems describing the beam’s motion and deformation with a finite

dimensional nonlinear system describing the dynamics of the actuated rotating

joints. To derive the model, Timoshenko’s assumptions are made for the flexible

beams. Using Hamilton’s principle, the dynamic equations of the system are

derived and then written in the Port-Hamiltonian (PH) framework through a

proper choice of the state variables. These so called energy variables allow to

write the total energy as a quadratic form with respect to a state dependent en-

ergy matrix. The resulting model is shown to be a passive system, a convenient

property for control design purposes.
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1. Introduction

Starting from the early 80’, the modelling of flexible robots has always

been an important research topic, due to the need of high precision control

for lightweight robots in industrial and spatial applications. The most common

way of deriving the equations that describe the dynamics of a flexible manipu-

lator is to use the Lagrangian principle [1]. Once flexibility is considered, the

kinetic and potential energies depend on space dependent variables. To use the

Lagrangian principle, the Lagrangian is approximated by the “Constant Mode

Shapes Technique (CMST)”, driving to a set of Ordinary Differential Equations

(ODEs). In the literature, the same kind of procedure has been exploited for

robots with flexible-joints [2], flexible-links flexible-joint [3], and flexible manip-

ulators with also prismatic joints [4]. The Euler-Lagrangian modelling proce-

dure, for general Flexible mechanism has been precisely detailed in the book

of Junkins [5]. In this book, the Euler-Lagrangian procedure is used to derive

infinite dimensional models of flexible mechanisms, including the double links

manipulator with Euler-Bernoulli’s assumptions. These equations have been

written using the operator formalism in a compact form in [6] such to be able

to design a control law and to analyse the asymptotic behaviour of solutions.

A similar model has been used in [7] and [8], where respectively an adaptive

and a special structure PD controller have been designed, and the closed loop

behaviour analysed. In [9] are provided the required functional analysis tools

for the study of well-posedness and stability of infinite dimensional systems, as

well as some control strategies for flexible robots expressed in this framework.

Among the literature, particular attention is devoted to the modelling and sta-

bilization problem for single flexible link manipulators [10–12]. In this work

we decided to use the PH framework to model the double flexible manipulator

such to explicit the passivity properties of the systems, useful for control design

purposes.

In the last decades an approach based on the extension of the Hamilto-

nian formulation to open distributed parameter systems has been developed for
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modelling and control. It has been initially introduced for finite dimensional

nonlinear systems described by ODEs [13, 14], and then generalized to infinite

dimensional systems described by partial differential equations (PDEs) in more

recent years [15–17]. This provides a standardized framework for control design,

especially suited for energy based control strategies both for finite dimensional

[18, 19] and infinite dimensional systems [20, 21]. The PH modelling allows to

express a system as the composition of different elements that exchange energy

in a power preserving way. To this extent, the infinite dimensional model of a

clamped-free flexible beam with Timoshenko’s assumptions has been derived in

[22]. In a similar manner, also the single flexible link manipulator model has

been expressed as an infinite dimensional PH system [23]. A juncture element

between the previous literature on flexible robot modelling and the PH frame-

work could be found in [24]. Instead of the infinite dimensional boundary valued

problem proposed in [23], the authors of [24] propose a finite dimensional model

described by a set of nonlinear ODEs derived with Lagrangian equations from

the discretized energy of the manipulator.

Figure 1: [Credits: www.nasa.org] Canadarm2 robotic arm attached to the International

Space Station.

The aim of this paper is to use the PH formalism to derive a control ori-
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ented and physically meaningful model of the double flexible-links manipulator

for spatial applications, as the Canadarm2 mounted on the International Space

Station (ISS) showed in Figure (1). This robotic arm has seven actuating mo-

tors: three located in the first joint, one located in the second joint, and other

three located in the end-effector. In this manuscript we only consider one motor

in the first joint, such to assume that the motion of the overall arm remains in

a plane, and we do not consider the three motors at the end effector since they

do not affect the robot’s dynamics. Throughout the rest of the paper, since

the mass of the manipulator is negligible compared to the ISS, we make the

assumption of neglecting the base dynamic, i.e. we consider the manipulator as

connected to the ground framework. The PH framework allows to explicit the

passivity property of the system that can be exploited for control law design.

After the model derivation, a PH structure preserving discretization procedure

(based on the mixed finite elements method [25]) is used to derive a finite di-

mensional version of the proposed infinite dimensional model.

2. Infinite dimensional modelling of the double flexible-link manipu-

lator

In this paper, the double flexible-link manipulator is considered as depicted

in Figure 2. The system is composed by two flexible links connected with

actuated revolute joints, i.e. motors. The motor fixed to the ISS has only the

shaft moving, while the other has both the stator and the shaft participating to

the motion.

F0 represents the reference frame connected to the stator of the ISS, Fi,

i = {1, 2} are the frameworks connected with the shaft respectively of the first

and the second motor, and θi(t) ∈ R represent their rotation with respect to the

F0 frame. With z1 ∈ [0, L1] and z2 ∈ [0, L2] we identify the spatial coordinates

along the beams, belonging respectively to F1 and F2. The deflection of the

two beams with respect to their own axis z1 and z2, has been denoted with
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Figure 2: Flexible two links manipulator.

w1(t, z1) ∈ L2(0, L1) and w2(t, z2) ∈ L2(0, L2)1, while with φ1(t, z1) ∈ L2(0, L1)

and φ2(t, z2) ∈ L2(0, L2) have been defined the relative (with respect to their

own frame) rotation of the beam cross section. The beams are supposed to have

a constant rectangular cross section width Lw,i, thickness Lt,i and area As,i =

Lw,1Lt,i, i = {1, 2}. All the physical parameters of the system are positive real,

and their meaning are given as follows: Ih,1, Ih,21, Ih,22, Ih,3,mh,2,mh,3 represent

respectively the rotary inertia of the shaft of the first motor, of the stator of the

second motor, of the shaft of the second motor and of the payload; mh,2,mh,3

represent respectively the mass of the second motor and of the tip payload at the

end of the second link; Ei, Ii i = {1, 2} are respectively the Young’s modulus

and the moment of inertia of the cross section. The inertia of the cross section

of a beam with a rectangular section is defined as Ii =
L3
w,iLt,i
12 ; ρ1, ρ2, Iρ1, Iρ2

are respectively the mass per unit length and the mass moment of inertia of the

cross section of both beams. The mass moment of inertia of the cross section

is defined as Iρi = Iiρi
As,i

; K1,K2 are defined as Ki = kiGiAi i = {1, 2}, where

ki is a constant depending on the shape of the cross section, Gi is the shear

1For the sake of simplicity, with w′ has been denoted the spatial derivative of w, i.e.

w′ = ∂w
∂z

and with ẇ the time derivative of w i.e. ẇ = ∂w
∂t

.

5



modulus and Ai is the cross sectional area.

The model is derived through the Hamilton’s principle. Since the system

under study is a pure mechanical system, the energy will be composed by a

kinetic and an elastic part. In this paper, the Timoshenko beam’s assumptions

are used to define the kinetic and potential energy related to the flexible links.

The following assumptions are used for the model derivation for i = {1, 2}.

Assumption 1. The following hold throughout the remainder of the paper:

1. w1θ̇1 ≈ 0 and w2θ̇2 ≈ 0.

2. The zi axes are always perpendicular to the beam’s cross sections, and in

particular they correspond to their principal axes of rotation.

3. The zi axes are always perpendicular to the plane of the manipulator’s

motion.

2.1. Hamilton’s principle

Taking into account Assumption 1, the Kinetic energy of the system writes

[5, 6]:

Ek =
1

2

∫
L1

0

[
ρ1

(
z1θ̇1 + ẇ1

)2
+ Iρ1

(
θ̇1 + φ̇1

)2]
dz1 +

1

2
Ih,1θ̇

2
1

+
1

2
Ih,21

(
θ̇1 + φ̇(L1)

)2
+

1

2
(mh,2 +m2 +mh,3)

(
L1θ̇1 + ẇ1(L1)

)2
+

1

2

∫
L2

0

[
ρ2

(
z2θ̇2 + ẇ2

)2
+ Iρ2

(
θ̇2 + φ̇2

)2]
dz2 +

1

2
Ih,22θ̇2

2

1

2
mh,3

(
L2θ̇2 + ẇ2(L2)

)2
+mh,3 cos (θ2 − θ1)

(
L1θ̇1 + ẇ1(L1, t)

)(
L2θ̇2

+ẇ2(L2, t)) +
(
L1θ̇1 + ẇ1(L1)

)
cos (θ2 − θ1)

∫
L2

0

[
ρ2

(
z2θ̇2 + ẇ2

)]
dz2

where m2 =

∫
L2

0
ρ2dz2.
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The potential energy follows directly from the Timoshenko’s assumption on

the flexible beams,

Ep =
1

2

∫
L1

0

[
K1

(
∂w1

∂z1
− φ1

)2

+ EI1

(
∂φ1
∂z1

)2
]
dz1

+
1

2

∫
L2

0

[
K2

(
∂w2

∂z2
− φ2

)2

+ EI2

(
∂φ2
∂z2

)2
]
dz2.

Since we assume to model a manipulator for spatial applications, gravity is not

taken into account. The Hamilton’s principle states∫ t2

t1

(δL+ δWnc) dt = 0,

where L = Ek − Ep is the Lagrangian, δL is the variational derivative of the

Lagrangian, δWnc represents the virtual work of the non-conservative forces,

while t1, t2 ∈ R+, t2 > t1 represents two successive instants of time. The non-

conservative forces correspond in our case of study to the torques provided by

the two motors τ1, τ2 ∈ R and the friction present in the mechanism. In the

following we do the conservative assumption of not considering internal friction

in the beam, but we assume that this friction operates only at the boundaries. As

will be shown in Section 2.3, this leads to damped boundary dynamic equations.

Hence, the virtual works’ variational derivative writes

δWnc = γ1(θ̇1 + τ1)δθ1 + γ2ẇ1(L1)δw1(L1) + γ3φ̇1(L1)δφ1(L1)

+ γ4(θ̇2 − θ̇1 − φ̇1(L1) + τ2)δ(θ2 − θ1 − φ1(L1))

+ γ5ẇ2(L2)δw2(L2) + γ6φ̇2(L2)δφ2(L2)

For the sake of brevity, it is not showed the tedious procedure involving in-

tegration by parts that allows the derivation of the following equations from

Hamilton’s principle.
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2.1.1. ODEs associated with the motion of the actuated rotating joints

The ordinary differential equation governing the dynamic of the Shaft of the

first motor θ1 writes

∂

∂t

(
Ih,1θ̇1

)
+
∂

∂t

∫ L1

0

[
ρ1z1

(
z1θ̇1 + ẇ1

)
+ Iρ1

(
θ̇1 + φ̇1

)]
dz1

+
d

dt

(
L1 (mh,2 +m2 +m3)

(
L1θ̇1 + ẇ1(L1)

))
+
∂

∂t

(
Ih,21

(
θ̇1 + φ̇1(L1)

))
+
∂

∂t
L1 cos(θ2− θ1)

(∫ L2

0

[
ρ2

(
z2θ̇2 + ẇ2

)]
dz2 +mh,3

(
L2θ̇2 + ẇ2(L2, t)

))
=

+
(
L1θ̇1 + ẇ1(L1)

)
sin(θ2 − θ1)

(∫ L2

0

[
ρ
(
z2θ̇2 + ẇ2

)]
dz2

+mh,3

(
L2θ̇2 + ẇ2(L2, t)

))
+ τ1 − τ2 + γ4(θ̇2 − θ̇1 − φ̇1(L1)), (1)

while the ordinary differential equation governing the dynamic of the Shaft of

the second motor θ2 is given as follows:

∂

∂t

(
Ih,21θ̇2

)
+
∂

∂t

∫ L2

0

[
ρ2z2

(
z2θ̇2 + ẇ2

)
+ Iρ2

(
θ̇2 + φ̇2

)
+

∂

∂t

(
ρ2z2

(
L1θ̇1 + ẇ1(L1)

)
cos(θ2 − θ1)

)]
dz2 +

d

dt

(
Ih,3

(
L1θ̇1 + φ̇2(L1, t)

))
d

dt

(
L2mh,3

((
L2θ̇2 + ẇ2(L2, t)

)
+
(
L1θ̇1 + ẇ1(L1, t)

)
cos (θ1 − θ2)

))
= +τ2 −

∫ L2

0

(
L1θ̇1 + ẇ1(L1)

)
sin(θ2 − θ1)ρ2

(
z2θ̇2 + ẇ2

)
dz2

− γ4(θ̇2 − θ̇1 − φ̇1(L1)) (2)

2.1.2. PDEs describing the first flexible beam

From Hamilton’s principle, one can get the set of partial differential equa-

tions describing the absolute movement with respect to F0 and the elastic de-

formations of the first flexible beam as follows:
∂
∂t

(
ρ1

(
z1θ̇1 + ẇ1

))
= ∂

∂z1

(
K1

(
∂w1

∂z1
− φ1

))
∂
∂t

(
Iρ1

(
θ̇1 + φ̇1

))
= ∂

∂z1

(
EI1

∂φ1

∂z1

)
+K1

(
∂w1

∂z1
− φ1

)
.

(3)

The above two PDEs describe respectively the translational and the rotational

dynamic of every cross section of the first beam.
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The whole deformation has been referred to the z1 = 0 part of the beam

i.e. δw1(0) = δφ1(0) = 0. The resulting boundary deformation δw1(L1) 6= 0,

δφ1(L1) 6= 0 drives, through the Hamilton’s principle, to two ordinary differen-

tial equations describing respectively the translational dynamic of the z1 = L1

part of the beam, and the rotational dynamic of the stator of the second motor.

Hence, the boundary conditions write as:

K1

(
∂w1

∂z1
(L1)− φ(L1)

)
+
∂

∂t

∫ L2

0

[
cos(θ2 − θ1)ρ2

(
z2θ̇2 + ẇ2

)]
dz2

+
d

dt

(
mh,3

((
L1θ̇1 + ẇ1(L1, t)

)
+ cos (θ2 − θ1)

(
L2θ̇2 + ẇ2(L2, t)

)))
+
∂

∂t

(
(mh,2 +m2)

(
L1θ̇1 + ẇ1(L1)

))
+ γ2ẇ1(L1) = 0, (4)

EI1
∂φ1
∂z1

(L1) + τ2 +
∂

∂t
Ih,21

(
θ̇1 + φ̇1(L1, t)

)
+γ3φ̇1 = 0 δw1(0) = 0, δφ1(0) = 0.

(5)

2.1.3. PDEs describing the second flexible beam

The set of PDEs describing the absolute movement with respect to frame

F2 and the elastic deformations of the second flexible beam writes as follows:
∂
∂t

(
ρ2

(
z2θ̇1 + ẇ1

)
+ ρ2

(
L1θ̇1 + ẇ1(L1)

)
cos (θ2 − θ1)

)
= ∂

∂z2

(
K2

(
∂w2

∂z2
− φ2

))
∂
∂t

(
Iρ2

(
θ̇2 + φ̇1

))
= ∂

∂z2

(
EI2

∂φ2

∂z2

)
+K2

(
∂w2

∂z2
− φ2

)
(6)

with boundary conditions

K2

(
∂w2

∂z2
(L2, t)− φ(L2, t)

)
+
d

dt

(
mh,3

((
L2θ̇2 + ẇ2(L2, t)

)
+ cos (θ2 − θ1)

(
L1θ̇1 + ẇ1(L1, t)

)))
+ γ5ẇ2(L2) = 0 (7)

EI2
∂φ2
∂z2

(L2)+
∂

∂t
Ih,31

(
θ̇2 + φ̇2(L2, t)

)
+γ6φ̇2(L2) = 0, δw1(0) = 0, δφ1(0) = 0.

(8)
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2.2. PH formulation of the flexible beams

The application of Hamilton’s principle returns two sets of PDEs describing

the cross section translational and rotational dynamic of both beams, together

with six ODEs describing the evolution of the boundary conditions. The system

can be naturally split into three main parts: the first flexible beam (first set

of PDEs), the second flexible beam (second set of PDEs) and concentrated

inertia dynamics (set of ODEs). The energy variables of the infinite dimensional

systems (3) (6), are defined as

ε1,t = ∂w1

∂z1
− φ1, ε2,t = ∂w2

∂z2
− φ2,

ε1,r = ∂φ1

∂z , ε2,r = ∂φ2

∂z2
,

p1,t = ρ1

(
∂w1

∂t + z1θ̇1

)
,

p2,t = ρ2

((
∂w2

∂t + z2θ̇2

)
+(

L1θ̇1 + ẇ1(L1)
)

cos(θ2 − θ1)
)
,

p1,r = Iρ

(
∂φ
∂t + θ̇1

)
p2,r = Iρ2

(
∂φ
∂t + θ̇2

)
(9)

where, ε1,t, ε1,r, p1,t, p1,r ∈ L2(0, L1) and ε2,t, ε2,r, p1,t, p2,r ∈ L2(0, L2). The

state vectors of the two beam systems are defined as x1 = [p1,t p1,r ε1,t ε1,r]
T ,

with the state space X1 = L2([0, L1],R4) and x2 = [p2,t p2,r ε2,t ε2,r]
T , with

the state space X2 = L2([0, L2],R4). The inner product in both state spaces is

defined as the natural inner product in the L2 space with a slight modification:

〈xai, xbi〉Xi = 〈xai,Hixbi〉L2
. The modification is such that half the square norm

of xi ∈ Xi defined through the previously defined inner product, corresponds to

the energy of the system. Hence, the Hamiltonian of both infinite dimensional

systems writes,

Hi =
1

2
||xi||2 =

1

2
〈xi, xi〉Xi =

1

2

∫ Li

0

xTi Hixi dzi with i = {1, 2}. (10)

with Hi = diag
[

1
ρi
, 1
Iρi
,Ki, EIi

]
, and the PDEs (3) (6) can be written using

the same PH form:

ẋi = ∂
∂zi
P1(Hixi) + P0(Hixi),

Bi(Hixi) = uif , i = {1, 2}
(11)
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where uif ∈ R4 i = {1, 2} represent the control functions, and matrices P0

and P1 are defined as:

P1 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , P0 =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 .

Each system has four state variables, thus eight boundary variables results for

each of them. According to [16], these boundary variables can be defined as a

linear combination of the restriction of the co-energy variables computed at the

boundaries according to a proper choice of the unitary matrix U :

f∂i
e∂i

 = U
1√
2

P1 −P1

I I

 Hix(0)

Hix(Li)

 =



− 1
ρi
pi,t(0)

− 1
Iρ,i

pi,r(0)

1
ρi
pi,t(Li)

1
Iρ,i

pr(Li)

Kiεi,t(0)

EIiεi,r(0)

Kiεi,t(Li)

EIiεi,r(Li)



, i = {1, 2} .

Four of these boundary variables will be imposed to define the boundary condi-

tions of the set of PDEs through the boundary control input. The remaining four

boundary variables form the conjugated outputs (i.e. the input-output product

results in a power). The natural choice is selecting the velocities as inputs at

both sides for both beams. Once the initial positions are known, fixing the ve-

locities at both sides of both beams is the same as fixing their positions. With

abuse of terminology, a beam on which the angular and translational positions

are imposed at both sides by external factors, is called a “clamped-clamped

beam”. Hence, for both beams, we define for i = {1, 2} the input and the
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output variables as:

Bixi = Wi

f∂i
e∂i

 =


− 1
ρi
pt,i(0)

− 1
Iρi
pr,i(0)

1
ρi
pt,i(Li)

1
Iρi
pr,i(Li)

 , yif = W̃1

f∂i
e∂i

 =


Kiεt,i(0)

EIiεr,i(0)

Kiεt,1(Li)

EIiεr,i(Li)

 . (12)

where Wi ∈ R4×8 and W̃i ∈ R4×8 such that

Wi

W̃i

 is non singular with Wi =

[I4 04], W̃i = [04 I4]. I4 and 04 stand respectively for the 4× 4 identity matrix

and for the 4 × 4 null matrices. The homogeneous operators (with inputs set

equal to zero) Ji = ∂
∂zi
P1 + P0 with domain defined as D(Ji) = {Hixi ∈

L2([0, Li],R4)|

f∂i
e∂i

 ∈ ker(Wi)} and i = {1, 2}, generate contraction semi-

groups [16]. Since the homogeneous operators generate contraction semi-groups,

and the range of the boundary operators Bi is the whole respective input space

Ui, the defined systems (11) are Boundary control systems on Xi, i = {1, 2},

with unique classical solutions [17]:

ẋi = Ji(Hixi),

uif = Bi(Hixi) = Wi

f∂,Lixi
e∂,Lixi

 ,
yif = Ci(Hixi) = W̃i

f∂,Lixi
e∂,Lixi

 .
(13)

Remark 2. The two beams’ dynamics boundary control systems (13) are passive

systems with respect to the Hamiltonian storage functions (10). In fact, from

Theorem 7.1.5 of [17], it holds

dHi

dt
(t) = [(Hixi)TP1Hixi]Li0 , (14)

Because of the input output selection (12), the above equation implies

dHi

dt
(t) = uif (t)T yif (t). (15)
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that is equivalent to

Hi(T )−Hi(0) =

∫ T

0

uif (t)T yif (t)dt

2.3. PH formulation of the actuated rotating joints

In this section, the previously defined set of ODEs (1)-(2), (4)-(5), (7)-(8),

is re-formulated through a change of variables. The new selected variables are

called ”energy variables”, and with this choice of states, the energy related to

the set of ODEs is written as a quadratic form. To this end, substitute the

infinite dimension energy variables (9) computed at z1 = L1 in the payload

equations (7)-(8)

d

dt

(
mh,3

[(
L2θ̇2 + ẇ2(L2)

)
+ cos(θ2 − θ1)

(
L1θ̇1 + ẇ1(L1)

)])
=

−K2ε2,t(L2)− γ5ẇ2(L2), (16)

d

dt
Ih,3

(
θ̇2 + φ̇2(L2)

)
= −EIε2,r(L2)− γ6φ̇2(L2) (17)

After several developments, and using equation (16), the ODE describing the

boundary translational dynamic of the first beam (4) writes

d

dt

(
mI

(
L1θ̇1 + ẇ1(L1)

))
=

(θ̇2−θ̇1) sin(θ2−θ1)

∫ L2

0

[
ρ2

(
z2θ̇2 + ẇ2

)
+ ρ2 cos(θ2 − θ1)

(
L1θ̇1 + ẇ1(L1)

)]
dz2

+mh,3(θ̇2− θ̇1) sin(θ2−θ1)
[(
L2θ̇2 + ẇ2(L2)

)
+ cos(θ2 − θ1)

(
L1θ̇1 + ẇ1(L1)

)]
−K1ε1,t(L1) + cos(θ2 − θ1)K2ε2,t(0)− γ2ẇ1(L1) + γ5(ẇ2(L2)) (18)

The (virtual) mass term mI : R2 → R+ depends on the angle configuration of

the manipulator, and it is defined as follows:

mI(q1, q2) = mh,2 + (m2 +mh,3) sin2(θ2 − θ1) > 0.

Similarly, substitute the infinite dimensional energy variables (9) in the bound-

ary rotational dynamic equation (5)

d

dt
Ih,21

(
θ̇1 + φ̇1(L1)

)
= −EI1ε1,r(L1)− φ̇1(L1)− τ2.

13



Using (9), (11) and (18), (17), the dynamic equations of the two motors’ shaft

are derived from (1) and (2):

d

dt

(
Ih,1θ̇1

)
= +EI1ε1,r+τ1+

∫ L2

0

ρ2

(
L1θ̇1 + ẇ1(L1)

)
sin(θ2−θ1)

(
z2θ̇2 + ẇ2

)
dz2

+mh,3

(
L1θ̇1 + ẇ1(L1)

)
sin(θ2−θ1)

(
L2θ̇2 + ẇ2(L2)

)
−γ1θ̇1+γ2ẇ1(L1)+γ3φ̇1(L1)

d

dt

(
Ih,21θ̇2

)
= +EI2ε2,r(0)+τ2−

∫ L2

0

(
L1θ̇1 + ẇ1(L1)

)
sin(θ2−θ1)ρ2

(
z2θ̇2 + ẇ2

)
dz2

−mh,3

(
L1θ̇1 + ẇ1(L1)

)
sin(θ2−θ1)

(
L2θ̇2 + ẇ2(L2)

)
−γ4(θ̇2−θ̇1−φ̇1(L1))+γ6φ̇2(L2)

(19)

To define the PH representation of the above boundary dynamics, the energy

states of the set of boundary dynamic equations (16)-(19) are defined as follows:

p1 = Ih,1θ̇1, p2 = mI

(
L1θ̇1 + ẇ1(L1)

)
,

p3 = Ih,21

(
θ̇1 + φ̇1(L1)

)
, p4 = Ih,22θ̇2,

p5 = mh,3

[(
L2θ̇2 + ẇ2(L2)

)
+ cos(θ2 − θ1)

(
L1θ̇1 + ẇ1(L1)

)] p6 = Ih,3

(
θ̇2 + φ̇2(L2)

)
q1 = θ1, q2 = θ2.

(20)

The state of the ODEs set is defined as xr = [p1 p2 p3 p4 p5 p6 q1 q2]T ∈ Xr, with

state space Xr ⊂ R8. The related Hamiltonian can be written as a quadratic

form Hr = 1
2x

T
r Lrxr with the energy matrix Lr ∈ R8×8 defined as

Lr = diag

[
1

Ih,1
,

1

mI(q1, q2)
,

1

Ih,21
,

1

Ih,22
,

1

mh,3
,

1

Ih,31
, 0, 0

]
To write the PH formulation of the ODEs set, the boundary conditions terms

insides the ODEs are considered as inputs, that are in turn related to the bound-

ary outputs of the PDEs. Thus, the input of the finite dimensional system is

split in three vectors depending on the provenance of these quantities. The first

input vector collect the two torques applied in the first and second joints, the

other two input vectors are used for the interconnection respectively with the

14



first and second set of PDEs:

ur =

ur1
ur2

 =

τ1
τ2

 , u1 =


ur3

ur4

ur5

 =


EI1ε1,r(0)

K1ε1,t(L1)

EI1ε1,r(L1)

 , u2 =


ur6

ur7

ur8

ur9

 =


K2ε2,t(0)

EI2ε2,r(0)

K2ε2,t(L2)

EI2ε2,r(L2)


(21)

The set of nonlinear ODEs (16)-(19) can be written in the PH formulation as:

ẋr = (Jr(xr, xb)−Rr) ∂H∂xr (xr) + grur + g1u1 + g2(xr)u2

yr = gTr
∂H
∂xr

(xr)

y1 = gT1
∂H
∂xr

(xr)

y2 = g2(xr)
T ∂H
∂xr

(xr)

, (22)

where the non-linear interconnection matrix Jr : Xr×Xb → R8×8, Jr(xr, xb) =

−Jr(xr, xb)T , the damping matrix Rr = RTr ≥ 0 ∈ R8×6 and the input matrices

gr ∈ R8×2, g1 ∈ R8×3, g2 : Xr → R8×2 are defined in Appendix A. The three

resulting output conjugated spaces are defined as yr ∈ Yr ⊂ R2, y1 ∈ Y1 ⊂ R3,

y2 ∈ Y2 ⊂ R4.

Remark 3. The nonlinear finite dimensional PH system defined by (22) is a

passive system with respect to the Hamiltonian function Hr [26]. In particular,

it holds:

dHr
dt (t) = −∂Hr∂xr

T
Rr

∂Hr
∂xr

+ ur(t)
T yr(t) + u1(t)T y1(t) + u2(t)T y2(t)

= −γ1
I21
p21 − γ2

(
p2
mI
− L2p1

I1

)2
− γ3

(
p3
I3
− p1

I1

)2
− γ4

(
p4
I4
− p3

I3

)2
−γ5( p5

mh,3
− L2

p4
Ih,22

− cos(q2 − q1) p2mI )2 − γ6
(
p6
Ih,3
− p4

Ih,22

)2
+ur(t)

T yr(t) + u1(t)T y1(t) + u2(t)T y2(t)

(23)

that using γi ≥ 0 i = 1, . . . , 6, implies

Hr(T )−Hr(0) ≤
∫ T

0

ur(t)
T yr(t) + u1(t)T y1(t) + u2(t)T y2(t)dt
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2.4. Interconnection relations definition and the global PH model of the double

flexible-link manipulator

According to the states (9)-(20), and the input output definitions (12)-(21),

the interconnection relations between the boundary control systems and the

nonlinear set of ODEs are defined as

u1f = −G1y1, u2f = −y2,

u1 = G1y1f , u2 = y2f ,
(24)

where G1 = [03×1 I3×3]T . The remaining input corresponds to the torques

applied by the two motors ur = [τ1 τ2]T .

The global interconnected system can be represented with the use of an

extended operator. The global state space is defined as W = X1×X2×Xr, with

inner product 〈wa, wb〉W = 〈xa1, xb1〉X1 + 〈xa2, xb2〉X2 + xTarLrxbr. According

to the interconnection relations (24), the global system results in a collocated

system defined as

ẇ = Jw


H1x1

H2x2
∂Hr
∂xr

+ gwur, Jw =


J1 0 0

0 J2 0

g1G1C1 g2C2 (Jr −Rr)

 ,

yw = gTw


H1x1

H2x2
∂Hr
∂xr

 , gw =


0

0

gr


(25)

with domain D(Jw) = {w ∈ W |H1x1 ∈ D(J1),H2x2 ∈ D(J2),


H1x1

H2x2
∂Hr
∂xr

(xr)

 ∈
ker(Bw)}, and

Bw =

B1 0 G1g
T
1

0 B2 gT2

 . (26)

Thanks to the energy preserving interconnections (24), the total energy of the

manipulator H = Ek + Ep can be rewritten as the sum of the energies of the

three parts in which the system has been divided, and corresponds to the square
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norm defined with the inner product in the global state space,

H =
1

2
||w||2 =

1

2
〈w,w〉W = +

1

2

∫ L1

0

xT1H1x1dz1+
1

2

∫ L2

0

xT2H2x2dz2+
1

2
xTr Lrxr.

Remark 4. Since the global system (25) is obtained through the power preserv-

ing interconnection of three passive systems, it is itself a passive system with

respect to the sum of the the three storage functions, i.e. the total energy H. In

fact, using relations (15) and (23) together with (24), it holds

dH

dt
(t) ≤ ur(t)T yw(t).

That is equivalent to

H(T )−H(0) ≤
∫ T

0

ur(t)
T yw(t)dt

3. Structure preserving discretization of the double flexible-link ma-

nipulator

In the following, we exploit the discretization procedure introduced by Golo

[25] to get the finite dimensional Dirac structure of the Timoshenko beam model.

Then, the explicit system representing the finite dimensional version of both

clamped -clamped beams is presented. Then, the two obtained time invariant

models of the two beams are interconnected to the non-linear set of ODEs

through their boundary conditions, to obtain the global model exploitable for

simulation purposes.

3.1. Structure discretization of the Timoshenko beam

To use the discretization procedure introduced by Golo [25], we explicit the

Dirac structure [15] underlying the previously defined Timoshenko model for

both beams. To do so, the effort and the flow spaces are defined as F = E =

L2(0, L,R4)⊕R4, such to define the variable space B = E⊗F with the associated

bilinear form

〈ba, bb〉 =
∫ Li
0

(
fT1 e2 + fT2 e1

)
dzi + fT∂a(L)e∂b(L)− fT∂a(0)e∂b(0)

+fT∂b(L)e∂a(L)− fT∂b(0)e∂a(0),
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where ba = [fa f∂a ea e∂a]T , bb = [fb f∂b eb e∂b]
T ∈ B. The Dirac structure of

the Timoshenko beam equation is defined as

D =


b =


fb

f∂b

eb

e∂b

 ∈ B
∣∣∣∣∣∣∣∣∣∣∣∣

e is absolutely continuous and ∂e
∂z ∈ L

2(0, L,R4),

f = P1
∂
∂z e+ P0e,

f∂
e∂

 = 1√
2
U

P1 −P1

I I

e(a)

e(b)

 .


(27)

with UTΣU = Σ and Σ =

0 I

I 0

 [16]. The flux f and the effort e are approx-

imated in an interval z ∈ [a, b], a < b, a, b ∈ [0, L] as following:

f(t, z) = fab(t)wab(z) e = ea(t)wa(z) + ebwb(z), (28)

where the base function wab(z) should satisfy
∫ b
a
wab(z) = 1 and the base

functions wa(z), wb(z) should satisfy wa(a) = 1, wa(b) = 0, wb(a) = 0 and

wb(b) = 1. Depending on weather it is considered the first or the second beam,

the points a and b must fulfil a − b = Li
ni

. Hence, the base functions can be

chosen as:

wa(z) = − z
b−a + b

b−a , wb(z) = + z
b−a −

a
b−a , wab(z) = 1

b−a . (29)

By taking the approximation of the flux and effort variables (28) in an interval

z ∈ [a, b] and the differential equations defined in Dirac structure (27), one can

get the finite dimensional approximation of (27) in the interval z ∈ [a, b] as

follow:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 1 b−a
2

−1 b−a
2

0 0 0 1 0 1 0 −1

0 0 0 0 − 1
2

0 − 1
2

0

0 0 0 0 0 − 1
2

0 − 1
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

Fab



fab
pt

fab
pr

fab
εt

fab
εr

f t
Ba

fr
Ba

f t
Bb

fr
Bb


︸ ︷︷ ︸

fab

+



0 0 0 0 1 0 −1 0

0 0 0 0 − b−a
2

1 − b−a
2

−1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 − 1
2

0 − 1
2

0

0 0 0 1 0 − 1
2

0 − 1
2


︸ ︷︷ ︸

Eab



eabpt

eabpr

eabεt

eabεr

etBa

erBa

etBb

erBb


︸ ︷︷ ︸

eab

= 0,

(30)
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where, fab = [fabpt fabpr fabεt fabεr ]T and eab = [eabpt e
ab
pr e

ab
εt e

ab
εr ]

T are flux vector

and the effort vector of the discretized element respectively. [f tBa f
r
Ba f

t
Bb f

r
Bb]

T

and [etBa e
r
Ba e

t
Bb e

r
Bb]

T are the boundary variables of the discretized element

which can be used to select the input output variables of the explicit system

with different boundary considerations. From the definition of Dirac structure

in [26], it is easy to prove that the above equation defines a Dirac structure with

ETabFab + FTabEab = 0 and rank[E,F ] = 8. The discretized Hamiltonian on the

interval z ∈ [a, b] writes:

Hab =
1

2

pabt (t)2

ρab
+

1

2

pabr (t)2

Iρab
+

1

2
Kabε

ab
t (t)2 +

1

2
EIabε

ab
r (t)2. (31)

with the approximated variables pt(t, z) = pabt (t)wab(z), pr(t, z) = pabr (t)wab(z),

εt(t, z) = εabt (t)wab(z), εr(t, z) = εabr (t)wab(z). Assuming that the parameter

values are constant along the whole interval, one can compute the approximated

parameter values in the interval:

ρab = ρ(b− a), Iρab = Iρ(b− a),

Kab = K
b−a , EIab = EI

b−a .
(32)

To achieve the explicit dynamic representations, we define the following relations
−ṗtab

−ṗrab

ε̇t
ab

ε̇r
ab

 =


fabpt

fabpr

fabεt

fabεr




−∂Hab∂pt

−∂Hab∂pr

∂Hab
∂εt

∂Hab
∂εr

 =


eabpt

eabpr

eabεt

eabεr

 .

The total model is derived through the power preserving interconnection

of all elements in which the beam has been divided. To express the power

preserving interconnection between two successive elements, it is convenient to

split the input and the output of the i− th element in two parts:

uabi,2 =

uab,1i,2

uab,2i,2

 =


−pt(a)ρ

−pr(a)Iρ

Kεt(b)

EIεr(b)

 , yabi,2 =

yab,1i,2

yab,2i,2

 =


Kεt(a)

EIεr(a)

+pt(b)
ρ

+pr(b)
Iρ

 . (33)
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Then the explicit dynamic system with the above choice of input and output

variables is given as:
−ṗabt,2
−ṗabr,2
ε̇abt,2

ε̇abr,2

 =


0 0 2 0

0 0 −(b− a) 2

−2 (b− a) 0 0

0 −2 0 0




−∂Hab∂pt,2

−∂Hab∂pr,2

∂Hab
∂εt,2

∂Hab
∂εr,2

+


0 0 −2 0

0 0 0 −2

2 0 0 0

0 2 0 0

u
ab

yab =


0 0 2 0

0 0 0 2

−2 0 0 0

0 −2 0 0




−∂Hab∂pt,2

−∂Hab∂pr,2

∂Hab
∂εt,2

∂Hab
∂εr,2




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

u
ab

(34)

Interconnecting all the elements in which the beam has been divided, we obtain

a discretized beam model that takes as input in the boundaries the same input

taken by a single element (33): rotational and traslational velocity at the zi = 0

side, torque and force at the z1 = Li, i = 1, 2 side. The interconnection laws

write u
ab,1
i+1,1 = −yab,2i,2 ,

uab,2i,2 = yab,1i+1,2.

(35)

The model for the clamped-clamped beam should have as input translational

and rotational velocity at both side of the beam. As a consequence, it is neces-

sary to define a new element that takes velocities as input only speeds and forces

as outputs, starting from the Dirac structure defined in (30). This element, that

is referred to as elastic element, will be then connected at the free side to change

the causality and convert it into a clamped side. The elastic element is derived
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setting in (30) fabpt = fabpr = 0 and eabpt = eabpr = 0:

ε̇abt
ε̇abr

 =

1 b−a
2 1 − b−a2

0 1 0 1



−pt(a)ρ

−pr(a)Iρ
pt(b)
ρ

pr(b)
Iρ


Kεt(a)

EIεr(a)

Kεt(b)

EIεr(b)

 =


1 0

b−a
2 1

1 0

− b−a2 1


∂Hab∂εt

∂Hab
∂εr


(36)

with the Hamiltonian in the following form:

Hab,e =
1

2
Kab(ε

ab
t )2 +

1

2
EIab(ε

ab
r )2

Connect the elastic element using the interconnection law (35) at the end

of a chain composed of only normal elements (34), such to obtain a clamped-

clamped beam. From now on all the quantities will be expressed with the

subscript (·)i, implying that i = {1, 2}. After the interconnection, the resulting

pair of input-output results into

uB,i =


−pt(0)ρ

−pr(0)Iρ
pt(L)
ρ

pr(L)
Iρ

 , yB,i =


Kεt(0)

EIεr(0)

Kεt(L)

EIεr(L)

 .

The obtained system maintains the PH form. The system has 2ni momentum

states and 2(ni + 1) displacements states. Consequently, the kinetic energy is

divided between 2ni elements, while the potential elastic between 2(ni + 1) ele-

ments Hi =
∑n
k=1Hab,k+Hab,e. The clamped-clamped discretized Timoshenko

beam can be written in the following compact notation

ẋi = Ji
∂Hi
∂xi

(xi) +BiuB,i

yB,i = BTi
∂Hi
∂xi

with the state variable xi = [xεt,i xpt,i xεr,i xpr,i]
T = [εt,i − pt,i εr,i − pr,i]T . In

this case, it can also be noticed that the complete Hamiltonian can be expressed
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as a quadratic form of the discretized variables, with respect to the energy matrix

Hi =
1

2
xTi Lixi, where Li = diag [Ki,Mρ,i, EIi,MIρ,i] ∈ R(2ni+1)×(2ni+1)

with Ki = diag
[
Kab
i , . . .K

ab
i

]
∈ R(ni+1)×(ni+1), Mρ,i = diag

[
1
ρabi
, . . . 1

ρabi

]
∈

Rni×ni , EIi = diag
[
EIabi , . . . EI

ab
i

]
∈ R(ni+1)×(ni+1), MIρ,i = diag

[
1

Iρabi
, . . . 1

Iρabi

]
∈

Rni×ni . Since the derivative of the Hamiltonian with respect to the the state

xi writes ∂Hi
∂xi

(xi) = Lixi, the approximate system can be rewritten as a linear

time invariant system:

ẋi = JiL1xi +BiuB,i

yB,i = BTi Lixi,
(37)

Where Ji and Bi are defined in Appendix B.

3.2. Finite PHS of the double flexible-links manipulator

Take the two beams’ equations (37) and the nonlinear equations of the

boundary conditions (22), and using of the power preserving interconnections

(24), define the total system:
ẋr

ẋ1

ẋ2

 =




Jr(x2) g1G
T
1 B

T
1 g2(xr)G

T
2 B

T
2

−B1G1g
T
1 J1 0

−BT2 G2g2(xr) 0 J2

−

Rr 0 0

0 0 0

0 0 0




∂Hr
∂xr

(xr)

L1x1

L2x2

+


gr

0

0

ur
where we define the extended state xtot = [xr x1 x2]

T ∈ Xtot, with state space

Xtot = R4n1+4n2+8. The resulting system can be written in the PH formẋtot = (Jtot(x)−Rtot) ∂Htot∂xtot
(xtot) + gtotu

ytot = gTtot
∂Htot
∂xtot

(xtot)

. (38)

with the Hamiltonian of the total system

Htot =
1

2
xTr Lr(xr)xr +

1

2
xT1 L1x1 +

1

2
xT2 L2x2.

The total dissipative matrix is defined as Rtot = diag [c1, 0, 0, c2, 0, 0, 0, 0] ∈

R(4n1+4n2+8)×(4n1+4n2+8). The inputs of the system (38) are the torques of the
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first and the second joint motors respectively. The input matrix of gtot can be

expressed as:

gtot =

1 0 0 0 0 . . . 0

0 0 −1 1 0 . . . 0

T ∈ R4n1+4n2+8×2.

A self-contained algorithm (Algorithm 3.2) is proposed to list the needed

passages to obtain the model.

Algorithm 1 Finite dimensional model’s derivation Algorithm

Input: PH PDEs-ODEs model (25)

Output: PH finite dimensional discretized model (38)

1: Define the base functions (29) and discretize the original Timoshenko beam’s

Dirac structure (27) into the finite dimensional one (30).

2: Define the discretized Hamiltonian on a single element interval (31), and

the discretized parameters (32).

3: Use the power preserving interconnection law (35) to connect all the ele-

ments in which the beam has been divided.

4: Define the pure elastic element (36) and connect it at the end of the elements’

chain to change the tip causality and obtain a discretized clamped-clamped

beam (37).

5: Interconnect two discretized beam equations (37) to the finite dimensional

part of the original model (22) through the energy preserving laws (24),

such to obtain the PH PDEs-ODEs finite dimensional model (38).

System (38) has been obtained through a structure preserving mixed finite

element discretization procedure, instead of the CMST used in the modelling

procedure of the existing works [1, 24, 27]. The CMST allows to derive light

models in terms of number of states, but the modes choice highly depends on

the operating scenario of the manipulator, i.e. the selected modes can change

drastically in case of impact/contact scenario. The proposed discretization pro-

cedure avoids this inconvenience, and if the manipulator’s dynamics meet the

conditions of Assumption 1, to obtain a finest simulation it is only necessary

23



to augment the number of discretizing elements n1, n2. Further, the proposed

model can be used for Control Design purposes using techniques developed for

PH systems such as Control by Interconnection or IDA-PBC (Interconnection

and Damping Assignment - Passivity Based Control) [18, 19].

4. Numerical simulations

In this section, the simulation results are used to illustrate the free response

of the obtained finite dimensional model with a sinusoidal and a square inputs,

to verify the qualitative behaviour of the proposed model. The manipulator

Table 1: Model parameters.

Parameters Values

Lengths L1 L2 0.5 (m)

Widths Lw,1 Lw,2 0.1 (m)

Thickness Lt,1 Lt,2 0.1 (m)

Densities ρ1 ρ2 0.2 (kg/m)

Young’s Modulus E1 E2 1.2× 105 (N/m2)

Rotor’ First motor Inertia Ih,1 0.1 (kg ·m2)

Stator’ second motor Inertia Ih,21 0.0001 (kg ·m2)

Rotor’ second motor Inertia Ih,22 0.1 (kg ·m2)

Second motor’s Mass mh,2 1 (kg)

Payload mass mh,3 1 (kg)

Payload’s inertia Ih,31 0.0001 (kg ·m2)

Friction γi i = {1, . . . , 6} 0 (N ·m · s)

Number of discretization elements n1 n2 2

parameters are selected as in [1] such to be able to compare the obtained simu-

lations in case of Bang-Bang input. The used parameters are listed in Table 1.

We refer to the parameters definitions at the beginning of Section 2 and the

ones of Section 3, for the computation of the remaining parameters. The ap-
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plied Bang-Bang input is defined as

τk =


0.2 0 ≤ t < 1

−0.2 1 ≤ t < 2

0 t ≥ 4

k = {1, 2} ,

and in Figure 3 are shown his related simulation results. The sinusoidal inputs
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Figure 3: Bang-Bang input dynamic response: (a) First beam’s tip deflection, (b) Second

beam’s tip deflection, (c) Motors rotor’s anglular displacements, (d) Payload motion in carte-

sian coordinates.

are defined as

τk =

 0.2 sin(πt) 0 ≤ t ≤ 2

0 t > 2
k = {1, 2} ,
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Figure 4: Sine input dynamic response: (a) First beam’s tip deflection, (b) Second beam’s

tip deflection, (c) Motors rotor’s anglular displacements, (d) Payload motion in cartesian

coordinates.

and the dynamic simulation results are shown in Figure 4. It can be observed

that the obtained results with Bang-Bang inputs, and in case of no friction,

are in good agreement with those in [1]. A different deflection behaviour results

from the different type of inputs application. It can be noticed that the maximal

tip deflection in case of Bang-Bang input is approximately 0.08 (m) for the first

beam and 0.06 (m) for the second beam , while in case of sinusoidal input are

0.03 (m) and 0.015 (m) for respectively the first and the second beam. The

resulting vibration amplitudes after the input application (t > 2) have for both

beams a value of 0.06(m) in case of Bang-Bang inputs, while they are of 0.01(m)
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in case of sinusoidal inputs.

5. Conclusions

A boundary control problem describing the double flexible links manipula-

tor in the port Hamiltonian (PH) form has been fully characterized and derived

from general principles. The derived dynamic model consists of an hybrid set of

PDEs-ODEs with actuation on the ODEs. It has been shown that the PDEs de-

scribing the motion of the flexible part can be put in the classical Timoshenko’s

Beam equations form interconnected with a nonlinear set of ODEs, if the state

variables are chosen properly. The proposed system representation highlights

its passivity properties, that can be exploited for control design. The system

has been constructed in a modular way, making possible to add or remove parts

dependently on the needed application or to change boundary conditions such to

cope with contact or impact scenario. The obtained infinite dimensional model

has been approximated to a finite dimensional one using a PH structure pre-

serving discretization. The obtained finite dimensional nonlinear model could

be used for simulation or control design purposes. Further, since the resulting

finite dimensional system maintains the PH form, the well known Control by in-

terconnection or IDA-PBC can be used to design the control law. The proposed

model uses the Timoshenko’s assumptions for the description of the flexible dy-

namics, instead of the commonly used Euler-Bernoulli assumptions. This leads

to a finite dimensional system with a number of states bigger than the already

existing models. Nevertheless the computational time remains acceptable: with

the ”ode23tb” integration scheme it took 3.473 sec to simulate 5 sec of trajec-

tories’ dynamics, in case of number of discretizing elements n1 = n2 = 2.
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Appendix A. Matrices definition: non-linear finite dimensional sys-

tem

The interconnection and the dissipative matrices of the finite dimensional

non-linear system describing the boundary dynamics are defined as:

Jr =



0 α 0 0 −1 0 0 0

−α 0 0 α 0 0 0 0

0 0 0 0 0 0 0 0

0 −α 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0



,

Rr =



γ1 + L2
1γ2 + γ3 −Lγ2 −γ3 0 0 0 0 0

−Lγ2 γ21 + c221γ5 0 +L2c21γ5 −c21γ5 0 0 0

−γ3 0 γ3 + γ4 −γ4 0 0 0 0

0 +L2c21γ5 −γ4 γ4 + L2
2γ5 + γ6 −L2γ4 −γ6 0 0

0 −c21γ5 0 −L2γ5 γ5 0 0 0

0 0 0 −γ6 0 γ6 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


.

where c21 = cos(q2 − q1) and α : R2 × L2(0, L2)→ R is given as:

α(θ1, θ2, p2,t) = sin(θ2 − θ1)

(∫ L2

0

p2,tdz2 + p5

)
. (A.1)
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The input matrices are defined as

gr =



1 0

0 0

0 −1

0 1

0 0

0 0

0 0

0 0



, g1 =



1 0 0

0 −1 0

0 0 −1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



, g2 =



0 0 0 0

+ cos(q2 − q1) 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1



.

Appendix B. Matrices definition: discretized beams

The matrices in the discretized model are defined, for i = 1, 2, as:

Ji =


0 Jvi 0 −STi
−JTv,i 0 0 0

0 0 0 Jv,i

Si 0 −JTv,i 0

Bi =


B1
i B2

i B3
i B2

i

0 0 0 0

0 B1
i 0 0

0 −B4
i 0 B4

i

 (B.1)

with B1
i =

[
2,−2, . . . , (−1)ni−12,−1

]T ∈ Rni+1, B2
i =

[
0, . . . , 0,− b−a2

]T ∈
Rni+1, B3

i = [0, . . . , 0, 1]
T ∈ Rni and B4

1 = [1, 0, . . . , 0]
T ∈ Rni . Since two

displacement states have been added to the system, the J1 sub-matrices become

Ji,1 ∈ R(n1+1)×n1 , Sc ∈ Rn1×(n1+1) defined as

Jv,i =



−2 0 0 0 · · · 0 0

+4 −2 0 0 · · · 0 0

−4 +4 −2 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

(−1)ni−14 (−1)ni−24 · · · +4 −2 0 0

(−1)ni4 (−1)ni−14 · · · −4 +4 −2 0

(−1)ni+12 (−1)ni2 · · · −2 +2 −2 −2


,
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Si =



−(b− a) 0 · · · 0 0

0 −(b− a) · · · 0 0
...

...
. . .

...
...

0 0 · · · −(b− a) 0

(−1)ni(b− a) (−1)ni−1(b− a) · · · , −(b− a) +(b− a)


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