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Abstract—Testing IT systems has become a major bottleneck
for many companies. Besides the growing complexity of such
systems, shorter release cycles and increasing quality require-
ments have led to increased verification and validation costs.
However, analysis of existing testing procedures reveals that not
all artifacts are exploited to tame this cost increase. In particular,
customer traces are usually ignored by validation engineers. In
this paper, we use machine learning from execution traces (both
customer traces and test execution traces) to identify test needs
and to generate new tests in the context of web services and API
testing. Log files of customer traces are split into smaller traces
(user sessions) then encoded into Pandas DataFrames for data
analysis and machine learning. Clustering algorithms are used
to analyse the customer traces and compare them with existing
system tests, and machine learning models are used to generate
missing tests in the desired clusters. The tool-set is implemented
in an open-source library called Agilkia.

Index Terms—automated regression testing, machine learning,
customer traces, clustering, test generation

I. INTRODUCTION

The rapid development of agile practices in recent years,
and now DevOps, i.e. continuous integration, testing and
deployment, has increased the need for test automation. In
the latest State of Testing 2019 survey, 87% of participants
indicated that they work in an Agile context, 38% in a DevOps
context [1]. This acceleration of the pace of releases increases
the effort to develop and maintain automated test scripts.
In the same survey, 74% of respondents reported using test
automation, and 21% of respondents relied on test automation
for more than 50% of their test needs. Efforts to automate tests
are increasingly creating a project bottleneck: both in terms of
the effort and time required and in terms of the availability
of the required resources and skills. In 2018, Izzy Azeri,
founder of ‘mabl’, an AI-driven testing start-up, noticed: “As
we met with hundreds of software teams, we latched on to this
idea that developing — the process of writing new code and
integrating it with your code bases — is very fast now, but
there’s a bottleneck in QA. Every time you make a change
to your product, you have to test this change or build test
automation.”

This increasing reliance on automated testing motivates the
research work presented in this paper, which aims to use
execution trace data (from both operational usage and test
execution) to create and maintain automated tests. We focus
on functional testing, at the system level, for black box testing
of APIs or Web service calls. The input execution traces
are in the form of logs, which are very often present in
web applications, especially for debugging and performance
monitoring purposes. Machine learning on these traces allows
us to identify regression testing needs that are not met, and
to generate new automated tests by automatic generation
from a learnt model. This research is part of an active field
in software testing that aims at facilitating test automation
through machine learning. This is reflected both in the research
work we summarize in the related work section and in the
emergence of start-ups in the field such as Functionize, mabl,
test.ai or testsigma, to name but a few.

Paper contributions

Exploiting user traces for software testing has been an
important research focus for at least two decades, especially
for web applications [2]–[4]. These research studies focused
mainly on the construction of models of different kinds –
FSM/eFSM, statistical, event graph [5], to apply various search
techniques and algorithms for test generation, selection and
prioritization. As stated by Arcuri [6], despite strong academia
effort and intensive research work, these techniques are used
rarely in industry, because of the complexity of using symbolic
model-based approaches for software engineers. Our research
work aimed at using machine learning models, learned from
available software development and operational data, to pro-
vide test need identification and test generation services. The
main contributions of this paper are:

1) Identifying regression test needs by comparing test ex-
ecution traces and operational execution traces using
clustering and visualization techniques.
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2) Automating test generation using a predictive machine
learning model of user traces to propose new test cases
covering the identified regression test needs.

3) An open-source toolbox supporting these services [7].
4) Experimental evaluation on two industry web services.

In the rest of this paper, we start in Section II by presenting
the related state of the art, then we describe in detail the tech-
niques we use for trace analysis and clustering in Section III,
for identifying test needs by comparing and visualizing clus-
ters of usage traces and test execution traces in Section IV, and
for generating new tests from a predictive machine learning
model in Section V. This technical presentation is based on
a running example which is introduced in Section III. Then
we present and discuss the results on two case studies in an
industrial context (Bus system and Supply chain) and discuss
the validity and reproducibility of the work, in connection with
the open-source implementation of the Agilkia toolbox [7].

II. RELATED WORK

Over the years, there have been many papers that tackled
trace analysis, mostly for anomaly detection, but also for test
generation purposes. Most are based on symbolic techniques
such as inferring FSM models from logs. In this related work
section, we focus on using machine learning techniques.

A. ML-based Trace Analysis

We can separate this work into two groups: statistical
Machine Learning (ML) approaches [8], [9] and Deep Learn-
ing approaches including Recurrent Neural Networks (RNN)
and advanced Natural Language Processing (NLP) techniques
based on log mining [10]–[14]. Logs record runtime in-
formation to monitor test and system execution traces, for
example to analyze anomalous behaviors and errors. Due to
the unstructured nature of logs, a first step is to parse logs into
structured data, then encode them for machine learning.

For statistical ML approaches, encoding transforms each
trace into a vector of event counts (e.g. bag-of-words). Lou
et al. [9] mine invariants from these event counts, as these
can exhibit workflow patterns in the program. Xu et al. [8]
use Principal Component Analysis (PCA) to project traces
into a reduced space and thus proceed to anomaly detection,
analyzing correlations between traces within a sequence.

Given the sequential nature of traces, and their high numbers
of string-valued parameters, NLP deep learning techniques
are useful as well. Bertero et al. [11] consider the logs as
plain text documents and use a word embeddings approach,
following the framework of word2vec [10] to encode the data.
Brown et al. [12] encode the traces with a bidirectional LSTM
language model, stacking LSTM layers to obtain latent vectors
representing tokens sequences in a more abstract and synthetic
way. Then they develop five attention mechanisms for model-
ing sequences more accurately and providing interpretability
about correlations between features.

B. User Trace Clustering

The clustering of execution traces is a technique widely
used in the field of Process Mining [15], [16]. The goal is to
discover business processes from user traces and to generate
accurate business process models. Clustering algorithms like
K-means, MeanShift, Agglomerative Hierarchical Clustering,
and Self-Organizing Maps are used, with appropriate feature
selection and distance measures, to segment logs to facilitate
process mining and create classes of homogeneous cases.

Clustering of execution traces could also be useful for
predictive website management. For this purpose Lakshmi et
al. [17] propose a method to cluster users based on their
navigation data. After computing the degree of influence of
webpages for each user, they use X-means and Farthest-
First clustering algorithms to classify them. For the same
goal, Anupama et al. [18], use Hierarchical Agglomerative
Clustering (HAC) to cluster web-user sessions, based on a
similarity distance between sessions, measuring if one is a
subset of another. Another use case of clustering execution
traces is to identify log templates. Clustering can help us to
connect logs together. Itkin et al. [19] use HAC approach
with a brute-force comparison between strings. They also
try a NLP-based approach, with k-means applied to words
embeddings. Those embeddings are made with TF-IDF and
then factorized with singular value decomposition technique.

C. ML-driven Test generation using traces

Some recent work has focused on learning about usage
traces to generate tests for mobile applications (usually An-
droid). Li et al. [20] use deep learning to train a model to
generate tests that increases the realism of GUI actions.

Santiago et al. [21] employ LSTM models to generate test
flows based on a test flow specification language to ensure the
validity of generated tests. The approach is limited to abstract
test flow generation (meaning without test data and expected
results). Guo et Lu [22] apply hierarchical clustering algorithm
to select and optimize test cases produced from user sessions.
In this approach, the authors apply reduction and selection
techniques to clusters computed from user sessions.

Our approach differs by working at the web service API
level, and by comparing user traces and test traces to identify
test needs, before generating tests to meet this need.

III. TRACE ANALYSIS AND CLUSTERING

In this section, we first introduce a running example to illus-
trate our techniques, namely a supermarket scanner. Then, we
discuss processing of the raw data, namely the customer traces,
into useful traces, followed by techniques for visualizing and
clustering those traces using the Agilkia toolbox.

A. Running example

A Supermarket Scanner (scanner for short) is a device that is
able to read products barcodes and store them into a shopping
list. It is used by supermarket customers to perform shopping
with self-service checkout. The usage of the scanner is as
follows. First the customer identifies themselves to the scanner
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board system to unlock a scanner for shopping. During the
shopping phase, the customer may scan the barcode of a
product to add it to the purchase list as they put it into their
physical shopping basket. If the customer decides to put a
product back on the shelf they can also delete that product
from the purchase list. If an unknown product is scanned,
the scanner still adds that barcode to the purchase list but
marks it for later processing. When the shopping is over,
the scanner interacts with a checkout machine, which may
occasionally request a ‘control check’. A control check means
that a cashier takes the scanner and re-scans the barcodes of
products in the basket. If the control check does not detect
any products that are missing from the purchase list, or if no
control check is done, the purchase list is transmitted to the
checkout and the customer proceeds towards payment. Just
before payment, if unknown barcodes were scanned during
the shopping, a cashier is requested to manually add these
items on the checkout before continuing to payment. More
generally, at this step, the customer can still ask the cashier to
add or delete items in the purchase list. Finally, the customer
will abandon the scanner (hang it up on the scanner board),
pay for their purchases, and leave the supermarket.

The system is built based on four entities: products gathered
into a product database, manipulated by the scanner and the
checkout. Products are seen through their barcodes, which
uniquely identify a particular kind of product. This system
considers customer scenarios that start with the unlocking of
the scanner and end with payment at the checkout. Customers
interact firstly with a scanner (the unlock, scan, delete,
transmit and abandon actions), and then with a checkout (the
openSession, closeSession, add, remove and pay actions).

The Scanner software exists in two versions: a Java im-
plementation and a Web-based simulator1 in which a set of
customers walk around the supermarket and shop for products
by interacting with scanners and checkouts. These simulated
customer behaviors are generated by traversing a finite-state
machine usage model of possible behaviors using a pseudo-
random algorithm.

B. Loading and Splitting Traces

Figure 1 shows part of the raw CSV (comma-separated
values) file that is captured by logging the operation calls to
the API of the objects. Each line is composed of 5 elements: a
timestamp, a session identifier, an object identifier, an opera-
tion name, the parameters, and the result value of the operation
invocation. We write a small trace reading function in Python
to read this CSV file and convert it into a single Agilkia ‘Trace’
object that contains a sequence of many ‘Event’ objects - one
for each API interaction.

As many customers are using the system in parallel, and
the log file contains many operation calls in chronological
order, this trace actually contains many different intertwined
‘sessions’, for different customers. However, the second col-
umn in the log file specifies the customer session ID (here, a

1The simulator can be run at https://fdadeau.github.io/scanette/?simu, traces
are shown in the browser console.

# timestamp, sessID, object, action, inputs, output
1570573649196, 41, scan3, abandon, [], 0
1570573649191, 42, scan1, transmit, [checkout0], 0
1570573649197, 42, scan1, abandon, [], 0
1570573649355, 43, scan1, unlock, [], 0
1570573649358, 42, checkout0, openSession, [], 0
1570573649996, 43, scan1, scan, [5410188006711], 0
1570573650366, 43, scan1, scan, [5410188006711], 0
1570573650366, 42, checkout0, add, [3570590109324], 0
1570573650389, 44, scan2, scan, [3046920010856], 0
1570573651369, 42, checkout0, closeSession, [], 0
1570573652376, 42, checkout0, pay, [68.27], 0
1570573655132, 40, scan0, scan, [7640164630021], -2
1570573656245, 44, scan2, scan, [3270190022534], 0
1570573656633, 43, scan1, scan, [3474377910724], 0
...

Fig. 1. Raw data of the system log file.

number between 40 and 43), so the first preprocessing step is
to split this one long trace into a separate usage trace for
each customer. We do this by calling the Agilkia method
with_traces_grouped_by("sessID"), and obtain 4818
traces.

For the scanner example, each of the resulting customer
session traces will contain a sequence of scanner events
(scanner objects are designated by scanN ), starting with
an unlock operation, followed by scanning operations then
a successful transmission to the checkout (resulting in code
0) and ending either with a successful payment on the same
checkout (checkouts are designated by checkoutN ), or with
an interrupted control check that detects unscanned products.
One of the resulting customer session traces is shown on the
left hand side of Fig. 2.

C. Visualization of Traces

From our experience with several case studies, we have
found that it is helpful to be able to view traces in a more
concise form than the full sequence of events, so that traces
can be easily understood at a glance and compared with each
other. For this reason, the default display of traces in Agilkia
is one character per event. The test engineer can provide a
custom mapping from event names to characters, or let Agilkia
choose characters automatically from the event names. For the
scanner case study we choose the custom mapping:

{’unlock’:’u’, ’scan’:’.’, ’delete’:’d’,
’add’:’+’, ’transmit’:’t’, ’openSession’:’o’,
’closeSession’:’c’, ’pay’:’p’, ’abandon’:’a’}

With this mapping, the trace on the left hand side of Fig. 2
is displayed as: u..d.tao+cp.

D. Clustering of Traces

The goal of clustering is to identify subsets of traces,
called clusters, that gather together similar customer behaviors.
To achieve that, we employ the MeanShift algorithm [23]
which computes clusters automatically (we use its default
hyperparameters). However, this algorithm requires its input
data to be vectorized, in order to compute distances between
two traces. Our default feature-extraction method is the simple
Bag of Words representation [24]. This abstracts each trace
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scan1, unlock, [], 0
scan1, scan, [3474377910724], 0
scan1, scan, [3046920010856], 0
scan1, delete, [3046920010856], 0
scan1, scan, [7640164630021], -2
scan1, transmit, [checkout2], 0
scan1, abandon, [], 0
checkout2, openSession, [], 0
checkout2, add, [7640164630021], 0
checkout2, closeSession, [], 0
checkout2, pay, [14.95], 0

abandon 1
add 1
closeSession 1
delete 1
openSession 1
pay 1
scan 3
transmit 1
unlock 1

Fig. 2. A customer trace and its Bag of Words vectorization

into a vector of integers, where each entry represents the
number of occurrences of a given operation in the customer
trace. This ignores event ordering, but is sufficiently expressive
for the examples in this paper.

Example 0.1 (From Traces to Vectors): Consider the us-
age (customer) trace in Fig. 2, left column, which repre-
sents shopping for three products, with one deleted and one
whose barcode is not recognized (the -2 output), followed
by transmission to the checkout and the manual adding of
the unrecognized product by the cashier before payment. The
vectorized representation of this usage sequence is given by
the vector provided in the right column.

Once the test traces are converted into vectors these can be
processed by the MeanShift clustering algorithm [25].

Example 0.2 (Results on the Scanner Traces): We generated
a trace of 65000+ steps using our scanner simulator, which
were split into 4818 customer traces as explained before. When
running the MeanShift algorithm on this set of traces, 13
clusters are generated. Table I summarizes the clusters and
provides an informal description of their content.

A manual inspection of the clusters shows that most of them
make sense, as they represent the different behaviors that have
been implemented in the scanner simulator. However, some
clusters, such as 9-11, could be merged with existing ones as
they seem to activate the same pattern of behavior as other
clusters, but just with longer tests. But from a testing point of
view, it might make sense to test longer test sequences rather
than just shorter sequences.

IV. CLUSTER VISUALIZATION AND TEST NEED
IDENTIFICATION

When we have both customer traces and test execution
traces available, it is useful to compare these two sets of traces
to gain insight into the test coverage. In particular, it is useful
to know if there are common customer behaviors that are not
well-covered by the system test suite.

We perform this comparison in two ways:
1) analyze which customer clusters have system tests;
2) visualize all the customer traces and the system tests in

a common 2D space, to enable a visual comparison of
the density of customer traces versus system tests.

Our scanner application has 30 manually designed system
tests, which we capture as traces. Figure 3 shows the number

0 2 4 6 8 10 12

100

101

102

103

Fig. 3. Number of customer traces in each cluster (left/blue) compared with
number of test traces (right/orange) in the same cluster. Y-axis is log scale.

of customer traces in each cluster, using a log scale for the y-
axis so that smaller clusters are visible. The figure also shows
the number of tests in each of those clusters (we classify each
test trace into a cluster by using the same MeanShift model that
was fitted to the customer traces). We can see that clusters 0,
1 and 7 are well-tested, clusters 2 and 6 each have two tests,
and clusters 10 and 11 each have one test. The remaining
clusters (3-5, 8-9 and 12) have no tests. This is because the
system tests have a stereotyped shopping phase, and rarely
combine scanning with deletion, so they have less variation
than customer behavior.

Secondly, it is useful to give a visual comparison of cus-
tomer traces versus system tests. To do this we use PCA
(Principal Component Analysis) to map the raw attributes
of each trace (normalized bag-of-words of the actions in the
trace) into a 2D space. For our scanner example, PCA gives the
following mapping to the X and Y dimensions (for readability,
we elide dimensions with factors less than 0.04 here, even
though they are included in the graph).

X = 0.69 ∗#openSession+ 0.19 ∗#add+ 0.69 ∗#closeSession

Y = 0.73 ∗#scan+ 0.68 ∗#transmission

The X dimension explains 88.76% of the variance in the
trace data, and the Y dimension explains 5.7%, so the whole
2D graph visualizes 94.5% of the variation in the trace data.
Figure 4 shows the customer traces. Note that they fall mostly
into two vertical bands, because in customer traces the open
and close operations typically both appear or both are absent.

In contrast, the system tests, visualized in Figure 5 using the
same X,Y mapping, exhibit a wider range of X values. This
is because the system tests are designed to test exceptional
circumstances such as an open with no close, or multiple close
actions. Overall, the visualization suggests that the system tests
cover the customer traces reasonably well, except for the top
few clusters and the bottom cluster (8). That is, clusters 3-5, 8-
9 and 12 are missing from the system tests, as we saw in Fig. 3.
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Id Size Description
0 2314 classical usage of the scanner (no control check, direct payment)
1 1996 shopping with unknown references that are added afterwards by the cashier before payment
2 218 shopping followed by a control check by the cashier then payment
3 129 similar to 2 with the addition of unknown products afterwards
4 45 similar to 3 but with longer sequences (more products to scan and control)
5 40 similar to 2 but with longer sequences (more products to scan and control)
6 35 same as 1 but with removals of products during the shopping
7 26 shopping, followed by a control which fails (detects a product that had not been scanned)
8 4 the sequences that were interrupted at the end of the log file
9 5 shopping, followed by a control, or not, followed by a manual addition of product by the cashier

10 3 short shopping with removal and direct payment without control
11 2 short shopping with removal and some manual additions of products
12 1 full complete sequence (shopping, control, addition of products)

TABLE I
RESULT OF THE CLUSTERING ON THE CUSTOMER TRACES

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.6

0.4

0.2
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Fig. 4. Visualization of the 4818 customer traces in 13 clusters.
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Fig. 5. Visualization of the 30 system test traces, mapped into the same 2D
PCA space and clusters as the customer traces.

The Y mapping formula tells us that this must be because the
tests in that vertical band do not call scan or transmit very
often. Investigation of those system tests showed that they call
scan at most 8 times (and transmit twice), which is far fewer
times than some customer traces which scan up to 25 items.
This suggests that it might be useful to add some system tests
that scan larger numbers of items. This illustrates how the 2D
visual comparison of customer traces versus system tests may

identify areas that need further testing.

V. TEST GENERATION USING A PREDICTIVE ML MODEL

In this section we show how we can generate tests using
machine learning models of customer behavior, with the goal
of filling in areas of missing tests. For our running example, we
illustrate this process on cluster 3 of the customer traces, which
is the fourth most common customer behavior (129 traces, or
2.7% of the traces) but has no associated system tests. For
example, the first 10 traces in this cluster are:

u.......t......tao+cp
u.......t......tao+cp
u.....t....tao+cp
u.....t....tao+cp
u.......t......tao+cp
u.....t...tao++cp
u....t...tao+cp
u.......t......tao+cp
u.....t....tao+cp
u.....t....tao+cp

We start by learning these sequences of actions, disregarding
the parameter values initially. We generate all prefixes of all
129 traces, and then use the bag-of-words algorithm to encode
each prefix into a numeric vector, and use this dataset as input
for a multi-class supervised learning situation. The predicted
output class is the next action in the sequence, or a special
END token at the end of each sequence. For cluster 3, this
gives 2621 prefixes in our training dataset, which is sufficient
to learn a reasonably accurate model.

Table II shows the F1 score for several learning algorithms,
calculated with 10-fold cross validation, with the variance
shown in parentheses. Random Forests gives the best overall
result, with Decision Trees, Gradient Boosting (GBC) and K-
nearest Neighbors close behind. Dummy (scikit-learn Dum-
myClassifier) is a base case classifier that makes a random
choice of output class, so has low scores around 1/9 in this
scenario where there are nine possible output classes.

A. Generating User-like Behaviors

We can use any of these models with the Agilkia SmartSe-
quenceGenerator class to generate test sequences that show
realistic user-like behavior. Figure 6 shows a simplified version
of the generation algorithm, which generates a trace of
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Classifier Cluster3 Cluster4 Cluster5
Tree 0.957 (0.026) 0.961 (0.051) 0.991 (0.051)
GBC 0.957 (0.026) 0.961 (0.051) 0.991 (0.051)
RandForest 0.957 (0.026) 0.966 (0.035) 0.996 (0.022)
AdaBoost 0.367 (0.000) 0.374 (0.006) 0.558 (0.135)
NeuralNet 0.934 (0.014) 0.947 (0.037) 0.999 (0.007)
KNeighbors 0.955 (0.017) 0.960 (0.042) 0.999 (0.007)
NaiveBayes 0.856 (0.022) 0.852 (0.029) 0.824 (0.015)
LinearSVC 0.899 (0.017) 0.852 (0.029) 0.827 (0.000)
LogReg 0.899 (0.019) 0.852 (0.029) 0.827 (0.000)
Dummy 0.112 (0.045) 0.117 (0.052) 0.156 (0.066)

TABLE II
F1 SCORE (WEIGHTED AVERAGE OF PRECISION AND RECALL) FOR

MODELS LEARNED FROM CUSTOMER CLUSTERS 3-5.

trace = []
for i in range(length):

[pa] = model.predict_proba(trace)
[num] = rand.choices(range(len(pa)), pa)
action = model.classes_[num]
if action == "END":

break
else:

trace.append(action)

Fig. 6. Algorithm to generate a random trace from a model that predicts the
most likely next actions.

up to length events, given a model of customer traces
and a random number generator rand. Note that it uses
the predict_proba method that is supported by most
classifiers to generate a probability distribution of all possible
next actions that might occur (including the END of the trace),
and then makes a random choice of next action according
to those probabilities. This means that we can generate any
desired number of random test traces.

For cluster 3, this generates traces like the following, which
are quite accurate reflections of typical traces in cluster 3.
These generated traces are quite homogeneous, because cluster
3 is homogeneous, but we shall see later that this technique
of generating traces from learned models can generate hetero-
geneous traces when the training data is more varied.

u.....t....tao+cp
u.....t........tao+cp
u.......t.....tao++cp
u.....t........tao+cp
u.......t......tao+cp

B. Generating Systematic Test Suites

We can also use these learned models of customer behavior
to systematically generate all ‘common’ sequences of events.
This can be useful for generating a suite of tests that covers
all the most common user behaviors.

The model has effectively learned a function from trace
prefixes tr to probability distributions of the likely next events.
By unrolling this model we obtain a tree of (tr, p) nodes,
where tr is a trace prefix and p is the probability of that
prefix (the product of the probabilities down that path of the
tree). If tr ends with the END action, it is a leaf of the tree
that corresponds to a complete test trace and its probability,

21.90% u.....tap
16.52% u.......tap
10.61% u.......tao+cp
10.07% u.....tao+cp
5.23% u.............tao+cp
3.72% u.............tap
3.40% u.......tao++cp
2.56% u.............tao++cp
2.11% u.......t...tap
1.61% u.....tao++cp
1.53% u.............t.tap
1.25% u....tap
1.06% u.....t..ap
1.01% u.............ttao+cp
82.57% of total behavior covered

Fig. 7. Systematic test suite generated from the whole Scanner customer
model, including all traces with probability greater than 1.0%

whereas other nodes of the tree correspond to partial traces
and the probability of all extensions of that prefix.

Agilkia implements this algorithm via a depth-first recursive
search that is similar to Fig. 6, but explores all possible next
events with their probabilities. Given a maximum trace length
L and minimum probability P , the search explores all prefixes
up to depth L, skipping over any nodes whose probability is
less than P , and returning all complete and partial traces that
are found. Fig. 7 shows the resulting test suite when L = 35
and P = 0.01. Executing the first four of these generated
tests means we would have tested 59.1% of the most common
customer behaviors for the Scanner application, and executing
the whole 14 tests would cover 82.57% of the behaviors.

VI. EXPERIENCE REPORT

This section describes the results of applying the above
techniques to two industry case studies: ‘Bus System’ and
‘Supply Chain’.

A. Bus System Case Study

Our first industry case study is a web service for tracking
school buses and students. Each bus reports its GPS position
to the server every minute, as well as other events such
as students swiping their ID cards upon entering or exiting
the bus, drivers recording absent students, etc. We analyzed
anonymized traces from 15 buses recorded over one day, with
a total of 3267 events and the following event frequencies:

SaveGPS ’.’ 2808.0
SNSCheckIn ’i’ 133.0
SNSCheckOut ’o’ 122.0
SNSMarkAbsentWithLocation ’A’ 68.0
Login ’L’ 30.0
GetSchoolManifestForRunType ’M’ 30.0
ConfirmPreCheck ’P’ 30.0
SNSBulkCheckOut ’O’ 14.0
SNSBulkCheckIn ’I’ 14.0
GetContacts ’C’ 2.0
LoginOptions ’?’ 1.0

Clustering: MeanShift chose five clusters. Four were single
traces with unique features (e.g. the only trace with a LoginOp-
tions event; the only trace with GetContacts events), and the
remaining main cluster contained the other 11 traces which had
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more similar behavior. Choosing one trace from each cluster
gives a small regression test suite.

Test Generation: The models learned from this small
dataset had low F1 scores (0.379 for TreeClassifier, 0.375
for GBC, 0.365 for KNeighbours, etc.) because the number
of adjacent GPS events was highly variable. But the resulting
models were still able to generate realistic sequences of events
(not shown here due to lack of space).

Systematic generation of the suite of all sequences with
probability P > 1% and length ≤ 300 took 6.7 seconds on
a MacBook Pro (i5-4258U 2.40GHz) and gave the following
suite of 11 tests.2 These cover 33.75% of the observed behav-
iors, which is low because there are many lower-probability
traces that vary only by the number of GPS events. In future
work we plan to investigate abstraction of such repetitive se-
quences so that fewer, but more abstract, traces are generated,
and they cover a higher percentage of behaviors.
6.67% LP?M.ii.i.i.i.i.i.i.i.i.i.O.LPM.AA.I.(o.)10

5.56% LPM.i.i.i.i.i.i.O.LPM.I.o.o.o.o.o.o.
4.44% LPMAAA.i.i.i.i.i.i.i.O.LPMAAA.A.A.I.(o.)5

4.44% LPMAAA.A.i.i.i.i.iO.LPM.AAAA.I.o.o.o.o.o.
2.78% LPMA.C.i.i.i.i.i.i.i.i.i.O.LPMA.I.(o.)6ooC.o.
2.78% LPMA.i.i.i.i.i.i.i.O.LPM.I.o.o.o.o.o.o.
1.67% LPMAA.A.i.i.i.i.i.i.i.O.LPMAAA.A.A.I.(o.)5

1.67% LPMAA.A.A.i.i.i.i.iO.LPM.AAAA.I.o.o.o.o.o.
1.39% LPM.iiiA.i.i.i.i.i.i.i.i.i.O.LPMAI.(o.)8ooo.o.
1.25% LPMAA.i.i.ii.AAA.O.LPMAA.I.oo.ooooo.
1.11% .LPM.i.i.i.i.i.i.O.LPM.I.o.o.o.o.o.o.
33.75% of total behavior covered

We executed these 11 generated test sequences on the Bus
System web service, using Agilkia to send each event to the
web service, and to retry the event up to 10 times until it was
successful. Input values were chosen randomly from a separate
data table for each named input, typically with 10% incorrect
values so that error cases would be exercised.

Out of the total 2421 events in the generated tests, 2113
(87.3%) returned success when executed. The other 308 events
(12.7%) returned an error status initially, but were successfully
executed by retrying them a few times (average 1.3 times,
maximum 6 times) with a new random choice of input values.

Overall, 8/11 of the event types were tested with both error
and success results, while the remaining 3/11 (infrequent)
event types were tested with only success results. This is
a useful result, and these traces are now being adopted as
automated regression tests by our industry partner. The traces
have good coverage of the successful events, but it would be
nice to have more systematic coverage of the error cases.
In our ongoing work we are investigating use of machine
learning to choose input values, and test generation algorithms
for covering error cases more systematically.

B. Supply Chain Case Study

The second industry case we have worked on is a set
of web services for managing maintenance equipment. For
each repair job, a list of required equipment is created by

2The average length of each of these tests is 220.1 steps (std.dev.=20.3),
so to be able to display them we compress all repeated SaveGPS events to a
single ’.’ and write [s]n for a subsequence s that is repeated n times.

Id Size Description Example
0 125 Creation of a custom order and then prepara-

tion and delivery.
NpD

1 85 Preparation and delivery of a regular order and
then Stock Consistency call.

PD-

2 48 Same as cluster 1 but twice in a row. NpDNpD
3 31 Equipment Return or Stock consistency call. R
4 24 Sequences of cluster 2, then cluster 1. PD-NpD
5 29 Same as cluster 2 but twice in a row. NpDNpD

TABLE III
RESULT OF CLUSTERING FOR THE SUPPLY-CHAIN CASE STUDY.

a remote operator. Technicians use a mobile app to record
when they collect the required equipment (PrepareOrder,
DeliveredOrder) and when they return it (EquipmentReturn,
CloseOrder). They are also able to create their own list
of required equipment (CreateCustomOrder, PrepareCus-
tomOrder) if a job requires it but the operator has not had
the time to create it. The application calls a StockConsistency
web service for reliability purposes, after each delivery of a
regular order or when the database is unreachable, to inform
the operator to do the stock transaction manually.

We analyze two days traces from 437 sessions, with a total
of 2898 events and the following event frequencies:

PrepareOrder ’P’ 374.0
DeliveredOrder ’D’ 720.0
EquipmentReturn ’R’ 227.0
CloseOrder ’V’ 5.0
CreateCustomOrder ’N’ 421.0
PrepareCustomOrder ’p’ 468.0
StockConsistency ’-’ 681.0
CancelOrder ’X’ 2.0

Clustering: MeanShift generates 51 clusters. The largest six
clusters are described in Table III. They represent 78% of the
sequences and correspond to the nominal cases. The remaining
45 clusters contain less than 10 sequences and correspond to
anomaly cases, containing events like CancelOrder.

Test Generation: Using Agilkia, we generated a systematic
test suite of all paths with P > 1%, obtaining the following
10 test sequences:

24.26% NpD 15.23% PD- 7.55% NpDNpD
3.89% R 2.19% PD-R 2.01% PD-PD-
1.51% NpDNpDNpD 1.28% PD-NpD 1.07% NpDNpDR
1.07% NpDR
60.05% total behavior covered

This systematic test suite covers well the behavior of our set
of web services with a coverage ratio of 60.05%. Furthermore,
this test suite matches well with our first six nominal clusters.

C. Experimental Validation, Validity and Replicability

We carried out an experimental validation of our approach
at two levels: on a fully controlled application (the Scanner
example) and on two industry case studies. There are two
main research questions to be answered: RQ1: To what extent
are the test needs identified by comparing clusters on test
and execution traces valid? RQ2: To what extent do the tests
generated by the predictive learning model and the percentage
of coverage obtained allow us to meet the identified test need?
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For the scanner example, we have a formal state machine
model of the application. This allowed us to evaluate the effec-
tiveness of the clustering by matching the set of transitions that
were covered by the tests in each different cluster. We found
that the clusters are coherent, because tests in each cluster
cover a restricted set of paths through the state machine model,
all leading to the same final state.

For the Bus and Supply-Chain applications, which are
operational, the evaluation was carried out through discussions
with the project teams, with a system developer and tester. In
both case studies, the team did not have significant numbers of
automated tests at the system level. The evaluation therefore
focused firstly on the representativeness of the clusters, and
secondly on the relevance of the generated tests. For both
applications, the generated tests and associated probabilities
were considered relevant for non-regression tests and good
candidates for automation.

These results are still preliminary, but they are promising
and replicable. All the Agilkia code is accessible as open
source [7], and the data and Python scripts for the Scanner
experiments are included in the examples/scanner folder
of that GitHub repository (in branch aitest2020) so that
these experiments can be reproduced.

VII. CONCLUSIONS

Comparing the execution traces of automated regression
tests with the operational user execution traces enables us
to identify clusters of usage patterns that are sufficiently or
insufficiently tested in the regression testing. Learning models
from some of those clusters of user traces allows us to generate
missing tests based on the probabilities of the sequences,
thus providing regression test coverage by mimicking end-user
usage of the system.

All the developments made are available in open-source
form on the Agilkia repository. Our current work is focused
on improving the clustering configuration to increase the
relevance of clusters. For test generation, we study the learning
of test data equivalence classes on test execution traces to
be able to concretize test scripts with relevant test data. Our
objective is to provide a complete, open source toolbox, that
uses machine learning to analyze user logs in various ways,
and to generate missing automated regression tests.
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