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ABSTRACT
In the literature we can find many kinds of modular robot that
can build a wide variety of structures. In general, finding an as-
sembly order to reach the final configuration, while respecting the
insertion constraints of each kind of modular robot is a difficult
process that requires system-specific tuning. In this article, we in-
troduce a generic assembly planner by constrained disassembly
(GAPCoD) which works with all kinds of modular robots. It outputs
a directed acyclic graph where vertices are modules needing to
be placed before his child nodes. This graph is obtained through
the disassembly of the desired structure submitted to user chosen
constraints. We detail the compiler as well as the way to choose
constraints and their influence on performance. The robots embed
simple path planning algorithm to reach the destination and act as
decentralized agents. Examples are provided to show the possibili-
ties that the compiler offers with two very different robot systems
and constraints.
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1 INTRODUCTION
Analyzing assemblies and encoding assembly sequences has been
explored since the 1980s, and an algorithm for generating the com-
plete set of partial assemblies and assembly sequences, represented
as and-or graphs, exists. However, the scaling of the algorithm
depends on several problem-specific factors, but is exponential in
most cases [8]. In robotic construction and modular robot reconfig-
uration, instead of assembling larger sub-assemblies, components
are typically added one by one and many difficulties arise from
the motion of active robots, which is not represented in and-or
graphs. As such, robotic reconfiguration systems mostly develop
their own planning algorithms and plan representations. In robotic
assembly, plans for reconfiguration are often co-developed with a
particular set of hardware, and it is difficult to compare between
systems [4, 7, 13, 16]. There are a few abstract models for robotic
reconfiguration, but while they are typically based on an original
robotic system [1, 9], it is often not easy to build robots that fit
them. However, they allow for the development of generic recon-
figuration algorithms, e.g. [6] and the references therein describe
recent developments. Instead of solving a motion problem, these
strategies build an intermediate (porous lattice) structure to fa-
cilitate motion [14]. In robotic construction [4, 7, 17], i.e. active
robots manipulating passive components, navigating intermediate
structures is paramount, and this is often achieved by structuring
the travel paths/directions of robots so that they do not collide.
Here, we adapt ideas from planners for the TERMES [17] systems
to lattice-based robotic systems, such as quasi-spherical 3D Catoms
[12] in the context of the polymer molding application [10] and
cubic Blinky Blocks [5] with balance constraints. The goal of the
TERMES compiler is to make the runtime execution distributed and
requires essentially no information exchange between robots at
runtime (beyond locally avoiding collision). Assembly checks can
be fully determined by the local state of the structure. The planning



process is termed “compilation” since it prepares a high-level target
for execution by the runtime system (i.e. the robots and raw mate-
rials) which do not change. Recent work has significantly increased
the speed and scalability of the TERMES compiler [2]. The key idea
in this compiler is to use a partial order reduction, a technique
in formal verification to combat state-space explosion [3]. Some
states are not explicitly enumerated, since they can be reached by
a combination of independent actions, instead of checking the 2𝑁
possible combinations of 𝑁 actions, only 𝑁 independent actions
need to be checked. This idea is exploited implicitly in many as-
sembly planning algorithms in the literature, e.g. [15], by asserting
that some actions can happen parallel, i.e. their order does not
matter. Instead of focusing on a particular hardware platform or
type of motion, connection, or stability constraint, we focus on the
way the states are enumerated and order dependencies captured,
and show that these ideas can be applied to a variety of systems.
The resulting assembly orders are directed acyclic graphs (DAGs),
which can be interpreted as a partial order on the assembly steps.
This representation can only capture a subset of the full states and
the compiler commits to specific order choices when it encounters
them. Within these restrictions it attempts greedily find orders that
allow for as many parallel steps as possible.

2 THE GAPCOD PLANNER
We are now going to present GAPCoD, a Generic Assembly Planner
by Constrained Disassembly. This planner produces an assembly
order schedule according to user-defined constraints by disassem-
bling the desired target shape. First, we show the general workflow
of GAPCoD, then we explain how GAPCoD Python compiler part
works, detail how to implement different constraints for different
physical modules or rules of assembly, and finally we discuss the
complexity and scalability of GAPCoD and its dependency on the
physical constraints.

2.1 GAPCoD workflow
GAPCoD is composed of two main parts: a physical part, whose
goal is to check the constraints for each modules, and a logical part
in charge of producing the output DAG. The key idea is that the
logic for exploring and ordering states can be largely separated
from the details of why constraints exist and how they are checked
for a particular robot system. In our implementation, the physi-
cal part is handled by the VisibleSim [11] simulator allowing us
to simulate constraints for different kinds of modules with ease,
and the logical part is handled by a Python compiler which is an
adaptation of the TERMES compiler [2, 17]. The general workflow
of the compiler as well as the interactions between VisibleSim and
the Python compiler can be seen in Figure 1. The detailed physical
state is only maintained in the simulator, while the state-traversal
logic keeps track of candidate locations in the assembly to check
next.

In order to plan an assembly order with GAPCoD, we must first
determine and implement the constraints that will be applied in
our scenario. More details about how to implement constraints can
be found in Section 2.3. That part is the specific tuning one must
perform in order to use GAPCoD with different kinds of systems.
Once the constraints are implemented, we can start the planning

for our structures by giving GAPCoD a shape description and seed
modules, i.e. the last and first (free) modules to be disassembled.
In our current implementation, we limited ourselves to a single
initially free module.

2.2 Python compiler explanation
The compiler computes a DAG in which the roots are the seed
modules and every vertex represent a module that can only be
assembled if all of its parents modules have already been assembled.
This graph is created and updated by disassembling the complete
structure that we are trying to find an assembly order for. All sets
and variables used by the compiler are described in Table 1.

Symbol Description
𝐶 Set of connected modules

𝐺 (𝑉 , 𝐸) Assembly graph where 𝑉 is the set of vertices
and 𝐸 is the set of edges

𝑆 Set of seed modules
𝑅, 𝑅′ Sets of removable modules

𝐵𝐿
Set of modules blocking the removal of another

module when removes

𝐵𝐿𝑖
Set of modules blocked by the removal

of module 𝑖 ∈ 𝐵𝐿
𝐷 Set of disassembled modules

𝐷𝑒𝑝𝑖

Boolean: True if there is an edge pointing towards
the node representing module 𝑖 ∈ 𝐷

in the graph False otherwise
𝑛, 𝑛′,𝑚, 𝑘 Lower case single characters represents a module
Table 1: Table of sets and variables used by the compiler

Algorithm 1 shows the global process of the graph creation
until the structure has been fully disassembled. In this section,
whenever we refer to a removable or free module, we are talking
about a module that can be disassembled without breaking any of
the constraints the compiler has been given. Let isRemovable(𝑘 ,𝐶)
be the function that returns true if the module 𝑘 can be removed
from 𝐶 without breaking any constraints (and false otherwise).

The compiler is based on two main functions called all along the
disassembly of the structure: Disassemble(𝑛,𝐶 ,𝑅) that disassemble
a module 𝑛, updating both the list of removable modules 𝑅 and
the structure 𝐶 (detailed in Algorithm 2 ), and Reassemble(𝑛,𝐶 ,𝑅)
that reassemble a disassembled module 𝑛, updating both the list of
removable modules 𝑅 and the structure 𝐶 (detailed in Algorithm 3).

VisibleSim Python
compiler

Description

- Goal shape
- Seed
- Initial free
  modules

Initial graph

Queries:
Remove the module?

Answers
GAPCoD planner

DAG

Constraints
functions

Figure 1: Overview of GAPCoD workflow



Algorithm 1: Creation of assembly order DAG
while 𝐶 ≠ ∅ do
{𝑅, 𝐵𝐿} ←− CheckBlockages(𝐶 ,𝑅);
{𝐶, 𝑅, 𝐷, 𝐸, 𝐷𝑒𝑝} ←− UpdateDependencies(𝑅,𝐶 ,𝐸,𝑆);
{𝐶, 𝑅, 𝐸} ←− CreateEdges(𝐶 ,𝑅,𝐷 ,𝐸,𝐵𝐿,𝐷𝑒𝑝);
𝑅 ←− 𝑅 ∪ 𝐵𝐿;

return 𝐺 (𝑉 , 𝐸)

Algorithm 2: Disassembly process of a module
Function Disassemble(𝑛,𝐶 ,𝑅):

𝐶 ←− (𝐶 − 𝑛) ;
𝑅 ←− (𝑅 − 𝑛) ;
forall 𝑘 ∈ 𝐶 ; 𝑘 is an influence neighbor of 𝑛 do

if 𝑘 ∈ 𝑅 then
if not isRemovable(𝑘 ,𝐶) then

𝑅 ←− (𝑅 − 𝑘) ;
if isRemovable(𝑘 ,𝐶) then

𝑅 ←− (𝑅 ∪ 𝑘) ;
return {𝐶, 𝑅} ;

Algorithm 3: Reassembly process of a module
Function Reassemble(𝑛,𝐶 ,𝑅):

𝐶 ←− (𝐶 ∪ 𝑛) ;
𝑅 ←− (𝑅 ∪ 𝑛) ;
forall 𝑘 ∈ 𝐶 ; 𝑘 is an influence neighbor of 𝑛 do

if 𝑘 ∈ 𝑅 then
if not isRemovable(𝑘 ,𝐶) then

𝑅 ←− (𝑅 − 𝑘) ;
if isRemovable(𝑘 ,𝐶) then

𝑅 ←− (𝑅 ∪ 𝑘) ;
return {𝐶, 𝑅} ;

The disassembly of the currently free modules can be divided
into three main steps: Checking blockages (Algorithm 4), finding
and updating the dependencies (Algorithm 5) and creating required
additional edges (Algorithm 6). One execution of each of those three
steps will be called a "level" in the rest of the paper. The algorithms
are detailed in the following paragraphs.

2.2.1 Step 1: Checking blockages. Before actually removing a
module from the structure, we must ensure that the removal of
this module will not prevent the removal of another module trying
to disassemble itself this level. The reasons for those blockages
depend on the particular constraints. Some examples would be the
removal of a module used as a pivot for the movement of another
one (as it can be seen in Figure 2), or making another module the
only module responsible for maintaining the connectivity in the
structure. Detecting and preventing those blockages according to
the constraints given to the compiler is the goal of Algorithm 4.

When such a blockage is detected the blocker module is added to
a list called BL. The modules in BL will be considered as not free for

the rest of the current level. Although considering the blocker mod-
ules as not free until the next level solve most problems, we must
still be careful about the case of two modules blocking each other,
causing a deadlock. When a deadlock happens, the first module
tested for blockage is considered free again, thus giving it prior-
ity for disassembly. An example showing how this interblocking
situation is handled is given in Figure 6.

Algorithm 4: CheckBlockages(C,R): check blockages and
remove interlocks
Function CheckBlockages(𝐶 ,𝑅):

𝐵𝐿 ←− ∅ ;
∀𝑖 ∈ 𝐶;𝐵𝐿𝑖 ←− ∅ ;
forall 𝑛 ∈ 𝑅 do
{𝐶, 𝑅′} ←− Disassemble(𝑛,𝐶 ,𝑅);
if (∃𝑚 ≠ 𝑛;𝑚 ∈ 𝑅 ∧𝑚 ∉ 𝑅′) then

𝐵𝐿 ←− 𝐵𝐿 ∪ 𝑛;
𝐵𝐿𝑛 ←− 𝐵𝐿𝑛 ∪𝑚;
if (𝐵𝐿𝑚 = {𝑛}) then

𝐵𝐿 ←− 𝐵𝐿 −𝑚 ;
{𝐶, 𝑅} ←− Reassemble(𝑛,𝐶 ,𝑅′);

𝑅 ←− 𝑅 − 𝐵𝐿 ;
return {𝑅, 𝐵𝐿} ;

2.2.2 Step 2: Finding and updating the dependencies. Consider-
ing that the list of removable modules has been updated to prevent
blockages, we can now start actually disassembling this level of the
structure and updating the output graph (cf. Algorithm 5). During
this step, we disassemble all the free modules of this level and when-
ever a new module is freed we create the corresponding edge in
the output graph. Some modules might need the removal of several
other modules in order to be freed i.e. when we find a newly freed
module, we check if the previously removed modules during this
level impact the removability of this freed module and create the
corresponding dependencies. Figure 4 shows an example of how
this combo check is performed on a simple configuration.

This algorithm flags every free module either as "with dependen-
cies" or "without dependencies" with the exception of seed modules
that will not free any other module. An example of a module with
no dependencies is given in Figure 5.

2.2.3 Step 3: Creating required additional edges. Algorithm 6 is
the last step of the disassembly process during which it constructs
the graph 𝐺 .

Figure 2: 3D Catom in rotation around a pivot.



Algorithm 5: Find dependencies between next free mod-
ules and current ones
Function UpdateDependencies(𝑅,𝐶 ,𝐸,𝑆):

𝐷 ←− ∅;
∀𝑖 ∈ 𝐶;𝐷𝑒𝑝𝑖 ←− ∅;
𝑅′ ←− 𝑅 ;
forall (𝑛 ∈ 𝑅) do
{𝐶, 𝑅′} ←− Disassemble(𝑛,𝐶 ,𝑅′);
if (∃𝑚;𝑚 ∈ 𝑅′ ∧𝑚 ∉ 𝑅) then

𝐸 ←− 𝐸 ∪ (𝑚 → 𝑛);
𝐷𝑒𝑝𝑛 ←− 𝑇𝑟𝑢𝑒 ;
forall (𝑛′ ∈ 𝐷) do
{𝐶, 𝑅′} ←− Reassemble(𝑛′,𝐶 ,𝑅′) ;
if (𝑚 ∉ 𝑅′) then

𝐸 ←− 𝐸 ∪ (𝑚 → 𝑛′);
𝐷𝑒𝑝𝑛′ ←− 𝑇𝑟𝑢𝑒 ;

{𝐶, 𝑅′} ←− Disassemble(𝑛′,𝐶 ,𝑅′);
else if (𝑛 ∉ 𝑆) then

𝐷𝑒𝑝𝑛 ←− 𝐹𝑎𝑙𝑠𝑒 ;
𝐷 ←− 𝐷 ∪ 𝑛;
𝑅 ←− 𝑅′;

return {𝐶, 𝑅′, 𝐷, 𝐸, 𝐷𝑒𝑝} ;

During this step, we create additional edges in 𝐺 between the
modules that will still be present at the next level and the ones that
were just removed (flagged as "with dependencies"). Those additional
edges ensure that when we will try to assemble the structure, all
the modules that must be present for this assembly actually will be.

Algorithm 6: Pushes blocker and no dependencies mod-
ules to next level + creates required edges in graph
Function CreateEdges(𝐶 ,𝑅,𝐷 ,𝐸,𝐵𝐿,𝐷𝑒𝑝):

forall (𝑛 ∈ 𝐵𝐿) do
forall (𝑚 ∈ 𝐷 ;𝐷𝑒𝑝𝑚 = 𝑇𝑟𝑢𝑒) do

𝐸 ←− 𝐸 ∪ (𝑛 →𝑚);
forall (𝑛 ∈ 𝐷 ;𝐷𝑒𝑝𝑛 = 𝐹𝑎𝑙𝑠𝑒) do
{𝐶, 𝑅} ←− Reassemble(𝑛,𝐶 ,𝑅);
forall (𝑚;𝐷𝑒𝑝𝑚 = 𝑇𝑟𝑢𝑒) do

𝐸 ←− 𝐸 ∪ (𝑛 →𝑚);
return {𝐶, 𝑅, 𝐸} ;

Let us show that those edges are necessary to obtain a correct
order. For this example we suppose that we have square modules
which can only be disassembled/assembled if there is a module or a
wall directly connected on their left side and no module above them.
We consider the configuration shown in Figure 3 and perform the
compiler process on this configuration with (case 𝐴 in grey) and
without (case 𝐵) the call to the CreateEdges function described in
Algorithm 6.

Considering that all seed modules are placed, if we try to assem-
ble the structure following the graphs, we get 6 order possibilities
for case 𝐵, but only one is correct. Case 𝐴 is more efficient as it
gives the only correct solution.

Config. Comment Graph

case A

1 2
3
0

C = {0,1,2,3,4,5}
S = {0,1,2}

R = {3,4,5}
E = {}

4 5

1 2
3
0

4 5

1 2
3
0

4 5

Stage 1: {R,BL} ← CheckBlockages(C,R)
 C={0,1,2,3,4,5}, R={5}, 
 BL={3,4} BL_3={4} BL_4={5}
{C,R,E,Dep} ← UpdateDependencies(R,C,E,S)
 C={0,1,2,3,4}, R={2} E=E U {2->5} 
 Dep_5=True

{C,R,E} ← CreateEdges(C,R,E,BL,Dep)
 C={0,1,2,3,4}, R={2}
 E ← E U {3->5,4->5}

R ← R U BL  R={2,3,4}
Level 2: {R,BL} ← CheckBlockages(C,R)

 C={0,1,2,3,4}, R={2,3,4}, BL={3} BL_3={4}
{C,R,E,Dep} ← UpdateDependencies(R,C,E,S)
 C={0,1,3}, R={1} 
 E ← E U {1→4}
 Dep_4=True (2 frees nothing but is seed)

{C,R,E} ← CreateEdges(C,R,E,BL,Dep)
 C={0,1,3}, R={1} 
 E ← E U {3→4}

R ← R U BL  R={1,3}

{R,BL} ← CheckBlockages(C,R)
 C={0,1,3}, R={1,3}, BL={}
{C,R,E,Dep} ← UpdateDependencies(R,C,E,S) 
  C={0}, R={0} 
 E ← E U {0->3} 
 Dep_3 ← True (1 frees nothing but is seed)

{C,R,E} ← CreateEdges(C,R,E,BL,Dep)
 C={0}, R={0} 
 E ← E U {}

Level 3:

1 2
3
0

4 5

{R,BL} ← CheckBlockages(C,R)
 C={0}, R={0}, BL={}
{C,R,E,Dep} ← UpdateDependencies(R,C,E,S)
 C={}, R={} 
 E ← E U {} (0 frees nothing but is seed)

{C,R,E} ← CreateEdges(C,R,E,BL,Dep)
 C={}, R={} 
 E ← E U {}

R ← R U BL  R={}
C={}  END

Level 4:

1 2
3
0

4 5

3 54

3 54

2

3 54

2

3 54

21

3 54

21

3 54

21

3 54

21

0

0

3 54

21

3 54

21

0

0

m   S
m   R

m   BL
m   C

Depm=False
Depm=True

Wallm
m

m
m

m
m

Figure 3: Creating graphs with (Case A in grey) and with-
out Algorithm 6. The middle column shows the operations
performed by the algorithm and their influence of the dif-
ferent sets. Left column is a visual representation of those
sets showing the configuration at each step of the compiler
and right column shows the graph created at each of those
steps.

2.3 Implementing new constraints
This section details which kind of constraints may be used with
our compiler.



Configuration Comment Graph

1 2 3
0 1 3

C = {0,1,2,3}
S = {0}

R = {1,3}
E = {}

1 2 3
0

1 2 3
0

Stage 1: CheckBlockages(C,R)
{C,R'} ← Disassemble(1,C,R)
 C={0,2,3}, R'={3}, R={1,3}
   No blockages
{C,R} ← Reassemble(1,C,R')
 C={0,1,2,3}, R={1,3}
{C,R'} ← Disassemble(3,C,R)
 C={0,1,2}, R'={1}, R={1,3}
   No blockages
{C,R} ← Reassemble(3,C,R')
 C={0,1,2,3}, R={1,3}
{R,BL} ← {R,BL}  R={1,3}, BL={}

1 3

1 2 3
0

1 2 3
0

Stage 2: UpdateDependencies(R,C,E,S)
BL={}
{C,R'} ← Disassemble(1,C,R')
 C={0,2,3}, R'={3}, R={1,3}
No more free modules and 1    S
 Dep1 = False;
D←D U {1}; D={1}
{C,R'} ← Disassemble(3,C,R')
 C={0,2}, R'={2}, R={1,3}
m=2 becomes free (2    (R' - R) )
 E← E U (2→3)
 Dep3 = True;
 D={1} we test it for combo
  {C,R'} ← Reassemble(1,C,R')
  C={0,1,2}, R'={1}
  m = 2     R'
   E←E U {2→1}
  Dep1 = True;
 {C,R'} ← Disassemble(1,C,R')
  C={0,2}, R'={2}
(C,R,E,Dep) ← (C,R',E,Dep)
  C={0,2}, R={2}, E={2→3;2→1}

1 3

1 3

22 3
0

1

1 3

2

BL={} // no edges to add
   n | Depn = False
 no edges to add 
(C,R,E) ← (C,R,E)
 C={0,2}, R={2}, E={2→3;2→1}

1 2 3
0

Stage 3: CreateEdges(C,E,BL,Dep)

1 3

2

1 2 3
0

Figure 4: Example 1 illustrating the algorithm. In this ex-
ample a module can be removed if and only if the structure
connectivity is maintained. (Same color scheme as Figure 3.)

A constraint is compatible with GAPCoD if it is associated to a
function that returns true if the module can be removed according
to the constraint and false otherwise.

All constraints have a few pieces of information that will have
an influence on the compiler efficiency:

• The number of influence neighbors. Influence neighbors of a
module are the modules that can be affected (meaning mod-
ules that can change their removability state) when assem-
bling/disassembling this module according to the considered
constraint.
• The complexity of the boolean function checking if the con-
straint (mobility constraint, balance constraint. . . ) is satisfied.

We are now going to detail some examples of constraints: the
connectivity constraint as most modular robotic systems needs
their modules to be connected to one another at all times, the 3D

Configuration Comment Graph

1 2 3
0 1 4

C = {0,1,2,3,4}
S = {0}

R = {1,4}
E = {}

4

1 2
Stage 1: CheckBlockages(C,R)

{C,R'} ← Disassemble(1,C,R)
 C={0,2,3,4},R'={2,4},R={1,4}
   No blockages
{C,R} ← Reassemble(1,C,R')
 C={0,1,2,3,4}, R={1,4}
{C,R'} ← Disassemble(4,C,R)
 C={0,1,2,3}, R'={1}, R={1,4}
   No blockages
{C,R} ← Reassemble(4,C,R')
 C={0,1,2,3,4}, R={1,4}
{R,BL} ← {R,BL}  R={1,4}, BL={}

1 4

3
0

4

1 2 3
0

4

Stage 2: UpdateDependencies(R,C,E,S)
BL←{}
{C,R'} ← Disassemble(1,C,R')
 C={0,2,3,4}, R'={2,4}, R={1,4}
m=2 becomes free (2   (R' - R))
 E←E U (2→1)
 Dep1←True;
D←D U {1}; D={1}
R←R’; R={2,4} 
{C,R'} ← Disassemble(4,C,R')
 C={0,2,3}, R'={2}, R={2,4}
No more free modules and 4   S
 Dep4 = False;
 (C,R,E,Dep) ← (C,R',E,Dep)
  C={0,2,3}, R={2}, E={2→1}
 Dep={Dep4=False, Dep1=True}

1 4

2

1 2 3
0

4

1 4

2

1 2 3
0

4

4

BL={} // no edges to add
Dep4 = False and Dep1 = True
 {C,R}←Reassemble(4,C,R)
  C={0,2,3,4}, R={2,4} 
 E←E U (4→1)
(C,R,E) ← (C,R,E)
 C={0,2,3,4}, R={2,4}, E={2→1;4→1}

Stage 3: CreateEdges(C,E,BL,Dep)

1

2

1 2 3
0

4

Figure 5: Example 2 illustrating the algorithm. In this ex-
ample a module can be removed if and only if the structure
connectivity is maintained. (Same color scheme as Figure 3.)

Catoms mobility constraints and the balance constraint of a set of
Blinky Blocks.

2.3.1 Connectivity. When removing or adding a module accord-
ing to the connectivity constraint only the physical neighbors are
affected. This leads to 6 influence neighbors for modules in a cubic
lattice such as the Blinky Blocks or 12 influence neighbors for the
3D Catom that are organized in Face-Centered Cubic (FCC) lattice.
Despite having only a few influence neighbors the connectivity
constraint is still a global constraint. In order to check if a module𝑚
can be removed we need to verify that all modules can be reached
from any module 𝑠 ∈ 𝑆 even after the removal of𝑚. This lead to a
complexity of 𝑂 (𝑛) where 𝑛 is the number of modules in 𝐶 .

2.3.2 3D Catom mobility constraints. The movement of the 3D
Catoms are subject to a lot of constraints. Indeed to perform a single
move we must make sure that the required pivot is present and
that a bunch of other positions are free. Theoretical motions of 3D
Catoms [12] give 120 different moves for a 3D Catom. However in
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Stage 1: CheckBlockages(C,R)
BL ← {}
{C,R'} ← Disassemble(1,C,R)
 C={0,2,3,4,5},R'={},R={1,4}
 4   (R - R’)  blockages
  BL ← BL U 1  BL={1}; BL1={}
  BL1 ← BL1 U 4  BL={1}; BL1={4} 
{C,R} ← Reassemble(1,C,R')
 C={0,1,2,3,4,5}, R={1,4}
{C,R'} ← Disassemble(4,C,R)
  C={0,1,2,3,4,5}, R'={}, R={1,4}
 1   (R - R’)  blockages
  BL ← BL U 4  BL={1,4}; BL1={4}, BL4={1}
  BL4 ← BL4 U 1  BL={1,4}; BL1={4}; BL4={1} 
  BL1={4}  BL ← BL - {1}
{C,R} ← Reassemble(4,C,R')
 C={0,1,2,3,4,5}, R={1,4}
 R ← R-BL;  R={1}
{R,BL} ← {R,BL} R={1},BL={4},BL4={1}

1 4

Stage 2: UpdateDependencies(R,C,E,S)
D←{}; R’←R 
{C,R'} ← Disassemble(1,C,R')
 C={0,2,3,4,5}, R'={0,2}, R={1}
m=0 becomes free (0   (R’ - R))
 E←E U (0→1);
 Dep1←True;
m=2 becomes free (2   (R’ - R))
 E←E U (2→1);
 Dep1←True;
D←D U {1};  D={1}
R←R’;  R={0,2} 
 (C,R,E,Dep) ← (C,R',E,Dep)
  C={0,2,3,4,5}, R={0,2}, E={0→1,2→1}
 Dep={Dep1=True}

1

4

2

1 2
3
0

4 5

0

4

BL={4} and Dep1 = True  E←E U (4→1)
   n | Depn = False  no edges to add 
(C,R,E) ← (C,R,E)
 C={0,2,3,4,5}, R={0,2}, E={0→1;2→1;4→1}

Stage 3: CreateEdges(C,E,BL,Dep)
1

0
1 2

3
0

4 5

2

Figure 6: Example 3 illustrating the algorithm. In this ex-
ample a module can be removed if and only if the structure
connectivity is maintained. (Same color scheme as Figure 3.)

the context of the polymer molding application presented in [10]
we can reduce this number to 84.

Those moves can all be checked by knowing if 48 specific neigh-
boring cells of the lattice are filled or empty. We can notice that the
12 actual physical neighbors of the 3D Catom are included in those
48 influence neighbors.

The occupancy requirements (limited to the 12 physical neigh-
bors minus the one above) for all possibles move can be summarized
in a 84 × 11 matrix which when multiplied by an occupancy state
of those 11 cells where the value is 0 if the cell is empty and 1 if the
cell is filled gives us a vector𝑉1 of all possible moves.𝑉1 is a vector
of presence of the neighbors (component equal to 1 if the pivot is
present and 0 otherwise).

In the same way we can verify the empty cells requirements by
multiplying a 84 × 48 matrix with the opposite of the occupancy
state of all 48 influence neighbors (vector 𝑉2).

Figure 7: Example for a stable and an unstable configuration
for the T-shape stability test

If both occupancy an empty cells requirement are met for a move
𝑚 (𝑉1 (𝑚) = 𝑉2 (𝑚) = 1) then the move is possible.

In that way we designed a way to check with a constant com-
plexity if a 3D Catom is able to move.

2.3.3 Blinky Blocks balance of a T-shapes. The last constraint is
the stability of T-shapes like structures limited in the (𝑥, 𝑧) plane
for the Blinky Blocks. In this case, the influence neighbors for this
global constraint are all the 𝑛 modules of 𝐶 .

In order to check if the structure is stable we first compute the
gravity center 𝐺 of the shape. We consider that the structure is
stable if the vertical line passing by𝐺 cross the basis of the structure
as shown in Figure 7.

The complexity of this check is then the complexity to compute
the gravity center of the shape and as such can be done in 𝑂 (𝑛).

2.4 Complexity
We detailed how the compiler works in Section 2.2 and how con-
straints for the compiler can be implemented in Section 2.3, allowing
us to express the complexity of the compiler depending on the num-
ber of modules in the final assembly, 𝑛. Let 𝑘 be the number of
influence neighbor and define the highest complexity to check a
constraint as 𝑂 (𝑀).

In the worst case scenario all the 𝑛 modules are free at a given
level but only one is definitely removed during this level, leading
to 𝑛 levels. However, such a system is both difficult to imagine, and
would not be a good candidate for this planner, which exploits the
fact that parallel actions reduce the number of states that need to
enumerated, and that any any given time only a limited number of
actions are potentially parallel.

By definition we have 𝑖𝑠𝑅𝑒𝑚𝑜𝑣𝑎𝑏𝑙𝑒 (𝑘,𝐶) with a complexity of
𝑂 (𝑀). Knowing that we can now compute that Algorithm 2 and
3 are in 𝑂 (𝑘𝑀). This allows us to find the complexity for Al-
gorithms 4,5 and 6: Algorithm 4 is in 𝑂 (𝑛𝑘𝑀), Algorithm 5 in
𝑂 (𝑛2𝑘𝑀) and Algorithm 6 in 𝑂 (𝑛2) or 𝑂 (𝑛𝑘𝑀) whichever is the
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Algo2

Algo3

n/2 times
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Figure 8: Complexity computation for the algorithms



Figure 9: Assembly of a wall of 3D Catoms.

highest. Finally this leads to a worst case complexity of 𝑂 (𝑛3𝑘𝑀)
for the complete compiler described in Algorithm 1.

This complexity seems important but let us not forget than in
most cases not all modules will be free during a level and that the
compiler will usually not perform as many levels as modules in the
structure. Plus the main bottleneck in our compiler is the combo
check performed in Algorithm 5, however it is this combo check
that yields one of the most important feature of our compiler: the
ability to find possible parallel operations that will result in a time
gain when assembling the structure. In other words we choose to
increase compile time in order to reduce assembly time.

3 EXPERIMENTATION
Finally we are going to use this compiler to find an assembly order
in different scenarios with different kind of modules associated
to different set of constraints. We study the scalability of those
different scenarios and we talk about the complexity of the compiler
(using the notations of Section 2.4).

3.1 3D Catom assembly
The first scenario we will study is an assembly order with the 3D
Catoms module associated to a mobility constraint (can the 3D
Catom be inserted at a given position of the grid) and a connectivity
constraint (the structure must always be connected).

Figure 9 shows some steps of the assembly of a wall shape made
of 220 3D Catoms. The linked video1 presents the full construction
of the wall.

Let us now compute the complexity of the compiler in this par-
ticular scenario. The number of influence neighbors is 𝑘 = 48: We
have 12 physical neighbors for the connectivity constraint and 48
mobility influence neighbors, including the 12 physical ones. Then
the constraint that is checked with the highest complexity is the
connectivity which is done in 𝑂 (𝑛) against the mobility constraint
which is done in 𝑂 (1), giving us 𝑀 = 𝑂 (𝑛). Given that the com-
plexity of the compiler in any scenario is 𝑂 (𝑛3𝑘𝑀), in this case we
have a worst case complexity of 𝑂 (𝑛4).

Let us now compute an approximate experimental complexity to
compare with this worst case theoretical one. In order to do so we
are going to run the compiler on different size of cubes and check
both the time it takes the compiler to produce an order as well as
the dept of the produced graph to see the efficiency of our method.
The results can be found in Table 2.

If we take the disassembly time for the six smaller cubes and
compute the polynomial tendencies as a function of the number of

1YouTube video of the assembly of the wall: https://youtu.be/s_-LyYyVnCU

Nb of modules Graph Depth Disassembly time (s)
1 1 0.002279
12 6 0.366118
36 11 5.386122
96 19 67.193171
175 24 263.753336
288 29 990.736958
490 37 3724.907382
704 41 9992.689347
1053 48 23334.396296
1400 55 47485.460037

Table 2: Graph depth and disassembly time for different size
cubes made of 3D Catoms.

module and compare it to the actual disassembly times we get the
graph in Figure 10.

Let us now analyze those results. We can see that the experimen-
tal disassembly time is best fitted by 𝑛2.37 which is much better
than the theoretical 𝑂 (𝑛4). This means that the compiler performs
better than the worst case scenario in this case. This difference is
explained by the fact that in the worst case we supposed that all
modules were free every level and that we had as many levels (the
graph depth) as modules in the structure when in practice that is
not the case as shown by the graph depth column in Table 2. The
other interesting to notice is that the depth of the output graph
does not increase drastically as the number of modules increase,
meaning that for bigger structure the compiler finds more possible
parallel operations which implies possible time gains when we will
try to assemble the structure. In other words we are performing a
time expensive computation to produce the assembly graph for a
given shape in order to gain time when assembling the structure
by maximizing the number of parallel operations.

Figure 10: Experimental disassembly times starting from a
varying number of modules, see Table 2. The best fit scaling
exponent is 𝑂 (𝑛2.37), which is significantly better than the
worst case analysis 𝑂 (𝑛4).

https://youtu.be/s_-LyYyVnCU
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(a) Graph output for the assembly of the T-shape with Blinky Blocks.
Basis of the T has coordinate (0, 0) in the (𝑥, 𝑧) plan. This graph does
not represent all possibilities, only the ones found by the compiler
according to the constraints and initial free modules are drawn.

(b) Different possible orders according to the graph.

Figure 11: Compiler output and hardware assembly with
Blinky Blocks for a T-shape.

3.2 Blinky Blocks T-shape example
We will now look into a T-shape assembly order for the Blinky
Blocks submitted to the mechanical stability constraint described
in Section 2.3.3 as well as the connectivity constraint.

We can see the graph generated by the compiler as well as all
the possible assembly orders we can find by following this graph
for a small example in Figure 11. Although it should be possible to
assemble the last module in any branch first, the way the compiler
is currently implemented, the structure is disassembled starting by
an initial free module chosen by the user. In this example we chose
the last module of the right branch as the only initially free module
which is the reason why we end up assembling the last module of
the left branch before the last module of the right branch.

Let us now compute the complexity of the compiler in this sce-
nario. The number of influence neighbors is 𝑘 = 𝑛: We have the 6
physical neighbors for the connectivity constraint, and 𝑛 for the
stability constraint which affects the whole structure. Then both
constraints are checked with a complexity of 𝑂 (𝑛) leading us to
𝑀 = 𝑂 (𝑛). Given that the complexity of the compiler in any sce-
nario is 𝑂 (𝑛3𝑘𝑀), in this case we have a complexity of 𝑂 (𝑛5).

3.3 Discussion
The experiments show that the compiler can produce assembly
orders for different kinds of constraints. However, even though the
compiler is adaptable there is a cost in scalability, especially for
constraints that affect the whole structure and/or need a global
check at each step. We decided to prioritize the correctness of the
order and the number of possible parallel operation of the assem-
bly plan over the runtime of the planner. As a result the scaling
of the planner depends on the hardest constraint check times the
number of influence neighbors. In situations where the influence
of a module is limited, the worst-case complexity analysis is very
conservative and GAPCoD is ≈ 1.5 orders lower than the worst
case polynomial power. Examples for the 3D Catoms and the Blinky

Blocks illustrate that global constraints incur an additional 𝑛 scal-
ing factor suggesting some loss of efficient scalability. However
global constraints can take into account constraints that can not be
checked locally, such as the mechanical constraint of stability for
T-shapes. This means that when giving constraints to the compiler
a tradeoff between adaptability and scalability must be done.
The current implementation does not optimize the removability
check in the simulator. However, the way GAPCoD traverses assem-
bly states consecutive checks are usually for similar states, which
means they are easy targets for optimization by caching some of the
repetitive computation, similar to using a spanning tree to speed
up connectivity checking in [2].

Another thing to notice in the experiments is that we only used
the graph to find a correct assembly order and then sequentially
assemble modules. Even though it shows the compiler gives a cor-
rect assembly order, the actual assembly does not make use of all
the interesting properties of the output graph. Since the graph indi-
cates which modules should be placed before assembling a specific
module this allows for some operations to be parallelized once the
requirements are met. If we take the graph from Figure 11a as an ex-
ample, after assembling (0, 5) we can assemble either (−1, 5), (1, 5)
or both at the same time in parallel. By maximizing the number of
parallel operations we can reduce the time it takes for the assembly
to be performed. If we call a time step the maximum time it takes a
single module to be placed for a given structure, by maximizing the
number of parallel operations we reduce the number of time steps
to the graph depth thus reducing the assembly time. In the example
from Figure 11 by maximizing the number of parallel operations
we can go from 12 to 10 time steps. This speedup is even more
impressive in the example of cubes made of 3D Catoms as can be
seen in Table 2 where for a cube made of 1400 modules we go from
1400 time steps to 55 if we perform all possible parallel operations
at the same time. This theoretical speedup by maximizing the num-
ber of parallel operation performed at the same time seems very
promising and will be the object of future works.

4 CONCLUSION
In this paper we introduced GAPCoD a Generic Assembly Plan-
ner by Constrained Disassembly. We explained how this planner
produces a DAG representing possible orders of assembly with as
much parallel operations as possible. We then tested this method in
two different scenarios showing the adaptability of our method to
different constraints and physical modules. Future works will focus
on choosing between different possible DAG orders to optimize
assembly time as well as testing GAPCoD on many other scenarios
than the one presented here.
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