
Filter optimization for real time digital processing
of radiofrequency signals: application to oscillator

metrology
A. Hugeat∗†, J. Bernard†, G. Goavec-Mérou∗, P.-Y. Bourgeois∗, J.-M. Friedt∗

∗FEMTO-ST, Time & Frequency department, Besançon, France
†FEMTO-ST, Computer Science department DISC, Besançon, France

Email: {pyb2,jmfriedt}@femto-st.fr

Abstract—Software Defined Radio (SDR) provides stability,
flexibility and reconfigurability to radiofrequency signal pro-
cessing. Applied to oscillator characterization in the context of
ultrastable clocks, stringent filtering requirements are defined by
spurious signal or noise rejection needs. Since real time radiofre-
quency processing must be performed in a Field Programmable
Array to meet timing constraints, we investigate optimization
strategies to design filters meeting rejection characteristics while
limiting the hardware resources required and keeping timing
constraints within the targeted measurement bandwidths. The
presented technique is applicable to scheduling any sequence of
processing blocks characterized by a throughput, resource occu-
pation and performance tabulated as a function of configuration
characateristics, as is the case for filters with their coefficients
and resolution yielding rejection and number of multipliers.

Index Terms—Software Defined Radio, Mixed-Integer Linear
Programming, Finite Impulse Response filter

I. DIGITAL SIGNAL PROCESSING OF ULTRASTABLE CLOCK
SIGNALS

Analog oscillator phase noise characteristics are classically
performed by downconverting the radiofrequency signal us-
ing a saturated mixer to bring the radiofrequency signal to
baseband, followed by a Fourier analysis of the beat signal
to analyze phase fluctuations close to carrier. In a fully
digital approach, the radiofrequency signal is digitized and
numerically downconverted by multiplying the samples with
a local numerically controlled oscillator (Fig. 1) [1].

Fourier
analysis

ADC

NCO

LPF

DUT

Fig. 1: Fully digital oscillator phase noise characterization:
the Device Under Test (DUT) signal is sampled by the
radiofrequency grade Analog to Digital Converter (ADC) and
downconverted by mixing with a Numerically Controlled Os-
cillator (NCO). Unwanted signals and noise aliases are rejected
by a Low Pass Filter (LPF) implemented as a cascade of Finite
Impulse Response (FIR) filters. The signal is then decimated
before a Fourier analysis displays the spectral characteristics
of the phase fluctuations.

As with the analog mixer, the non-linear behavior of the
downconverter introduces noise or spurious signal aliasing
as well as the generation of the frequency sum signal in
addition to the frequency difference. These unwanted spectral

characteristics must be rejected before decimating the data
stream for the phase noise spectral characterization [2]. The
characteristics introduced between the downconverter and the
decimation processing blocks are core characteristics of an
oscillator characterization system, and must reject out-of-
band signals below the targeted phase noise – typically in
the sub -170 dBc/Hz for ultrastable oscillator we aim at
characterizing. The filter blocks will use most resources of
the Field Programmable Gate Array (FPGA) used to process
the radiofrequency datastream: optimizing the performance of
the filter while reducing the needed resources is hence tackled
in a systematic approach using optimization techniques. Most
significantly, we tackle the issue by attempting to cascade
multiple Finite Impulse Response (FIR) filters with tunable
number of coefficients and tunable number of bits representing
the coefficients and the data being processed.

II. FINITE IMPULSE RESPONSE FILTER

We select FIR filters for their unconditional stability and
ease of design. A FIR filter is defined by a set of weights bk
applied to the inputs xk through a convolution to generate the
outputs yk

yn =

N∑
k=0

bkxn−k (1)

As opposed to an implementation on a general purpose
processor in which word size is defined by the processor
architecture, implementing such a filter on an FPGA offers
more degrees of freedom since not only the coefficient values
and number of taps must be defined, but also the number
of bits defining the coefficients and the sample size. For this
reason, and because we consider pipeline processing (as op-
posed to First-In, First-Out FIFO memory batch processing) of
radiofrequency signals, High Level Synthesis (HLS) languages
[3] are not considered but the problem is tackled at the Very-
high-speed-integrated-circuit Hardware Description Language
(VHDL) level. Since latency is not an issue in a openloop
phase noise characterization instrument, the large numbre of
taps in the FIR, as opposed to the shorter Infinite Impulse
Response (IIR) filter, is not considered as an issue as would
be in a closed loop system.

The coefficients are classically expressed as floating point
values. However, this binary number representation is not
efficient for fast arithmetic computation by an FPGA. Instead,
we select to quantify these floating point values into integer
values. This quantization will result in some precision loss.



0 20 40 60 80 100 120 140
-1

-0.5

0

0.5

1

cofficient num

no
rm

al
iz

ed
 c

oe
f. 

va
lu

e

30 coefs at 0 30 coefs at 0

filter coefficients
6 bit quantization

Fig. 2: Impact of the quantization resolution of the coefficients:
the quantization is set to 6 bits – with the horizontal black
lines indicating ±1 least significant bit – setting the 30 first
and 30 last coefficients out of the initial 128 band-pass filter
coefficients to 0 (red dots).

The tradeoff between quantization resolution and number
of coefficients when considering integer operations is not
trivial. As an illustration of the issue related to the relation
between number of fiter taps and quantization, Fig. 2 exhibits
a 128-coefficient FIR bandpass filter designed using floating
point numbers (blue). Upon quantization on 6 bit integers,
60 of the 128 coefficients in the beginning and end of the
taps become null, making the large number of coefficients
irrelevant: processing resources are hence saved by shrinking
the filter length. This tradeoff aimed at minimizing resources
to reach a given rejection level, or maximizing out of band
rejection for a given computational resource, will drive the
investigation on cascading filters designed with varying tap
resolution and tap length, as will be shown in the next section.
Indeed, our development strategy closely follows the skeleton
approach [4], [5], [6] in which basic blocks are defined
and characterized before being assembled [7] in a complete
processing chain. In our case, assembling the filter blocks is a
simpler block combination process since we assume a single
value to be processed and a single value to be generated at each
clock cycle. The FIR filters will not be considered to decimate
in the current implementation: the decimation is assumed to
be located after the FIR cascade at the moment.

III. METHODOLOGY DESCRIPTION

Our objective is to develop a new methodology applicable to
any Digital Signal Processing (DSP) chain obtained by assem-
bling basic processing blocks, with hardware and manufacturer
independence. Achieving such a target requires defining an
abstract model to represent some basic properties of DSP
blocks such as performance (i.e. rejection or ripples in the
bandpass for filters) and resource occupation. These abstract
properties, not necessarily related to the detailed hardware
implementation of a given platform, will feed a scheduler
solver aimed at assembling the optimum target, whether in
terms of maximizing performance for a given arbitrary re-
source occupation, or minimizing resource occupation for a
given performance. In our approach, the solution of the solver
is then synthesized using the dedicated tool provided by each
platform manufacturer to assess the validity of our abstract
resource occupation indicator, and the result of running the
DSP chain on the FPGA allows for assessing the performance

Ci, π
C
i πS

i

π−
i π+

i

Fig. 3: A single filter is composed of a FIR (on the left) and
a Shifter (on the right)

of the scheduler. We emphasize that all solutions found by the
solver are synthesized and executed on hardware at the end of
the analysis.

In this demonstration, we focus on only two operations:
filtering and shifting the number of bits needed to represent
the data along the processing chain. We have chosen these
basic operations because shifting and the filtering have already
been studied in the literature [8], [9], [10], [11] providing a
framework for assessing our results. Furthermore, filtering is
a core step in any radiofrequency frontend requiring pipelined
processing at full bandwidth for the earliest steps, including
for time and frequency transfer or characterization [12], [13],
[1].

Addressing only two operations allows for demonstrating
the methodology but should not be considered as a limita-
tion of the framework which can be extended to assembling
any number of skeleton blocks as long as performance and
resource occupation can be determined. Hence, in this pa-
per we will apply our methodology on simple DSP chains:
a white noise input signal is generated using a Pseudo-
Random Number (PRN) generator or by sampling a wideband
(125 MS/s) 14-bit Analog to Digital Converter (ADC) loaded
by a 50 Ω resistor. Once samples have been digitized at a rate
of 125 MS/s, filtering is applied to qualify the processing block
performance – practically meeting the radiofrequency frontend
requirement of noise and bandwidth reduction by filtering
and decimating. Finally, bursts of filtered samples are stored
for post-processing, allowing to assess either filter rejection
for a given resource usage, or validating the rejection when
implementing a solution minimizing resource occupation.

The first step of our approach is to model the DSP chain.
Since we aim at only optimizing the filtering part of the signal
processing chain, we have not included the PRN generator
or the ADC in the model: the input data size and rate are
considered fixed and defined by the hardware. The filtering can
be done in two ways, either by considering a single monolithic
FIR filter requiring many coefficients to reach the targeted
noise rejection ratio, or by cascading multiple FIR filters, each
with fewer coefficients than found in the monolithic filter.

After each filter we leave the possibility of shifting the
filtered data to consume less resources. Hence in the case of
cascaded filter, we define a stage as a filter and a shifter (the
shift could be omitted if we do not need to divide the filtered
data).

A. Model of a FIR filter

A cascade of filters is composed of n FIR stages. In stage i
(1 ≤ i ≤ n) the FIR has Ci coefficients and each coefficient is
an integer value with πC

i bits while the filtered data are shifted
by πS

i bits. We define also π−
i as the size of input data and

π+
i as the size of output data. The figure 3 shows a filtering

stage.



P

f

passband

40%

transition
20%

stopband

40%

rejection

Fig. 4: Shape of the filter transmitted power P as a function of
frequency f : the passband is considered to occupy the initial
40% of the Nyquist frequency range, the stopband the last
40%, allowing 20% transition width.

FIR i has been characterized through numerical simulation
as able to reject F (Ci, π

C
i ) dB. This rejection has been

computed using GNU Octave software FIR coefficient de-
sign functions (firls and fir1). For each configuration
(Ci, π

C
i ), we first create a FIR with floating point coefficients

and a given Ci number of coefficients. Then, the floating point
coefficients are discretized into integers. In order to ensure
that the coefficients are coded on πC

i bits effectively, the
coefficients are normalized by their absolute maximum before
being scaled to integer coefficients. At least one coefficient
is coded on πC

i bits, and in practice only bCi/2 is coded on
πC
i bits while the others are coded on much fewer bits.
With these coefficients, the freqz function is used to esti-

mate the magnitude of the filter transfer function. Comparing
the performance between FIRs requires however defining a
unique criterion. As shown in figure 4, the FIR magnitude
exhibits two parts: we focus here on the transitions width
and the rejection rather than on the bandpass ripples as
emphasized in [9], [8]. Throughout this demonstration, we
arbitrarily set a bandpass of 40% of the Nyquist frequency
and a bandstop from 60% of the Nyquist frequency to the end
of the band, as would be typically selected to prevent aliasing
before decimating the dataflow by 2. The method is however
generalized to any filter shape as long as it is defined from
the initial modeling steps: Fig. 6 as described below is indeed
unique for each filter shape.

In the transition band, the behavior of the filter is left
free, we only define the passband and the stopband char-
acteristics. Initial considered criteria include the mean value
of the stopband rejection which yields unacceptable results
since notches overestimate the rejection capability of the filter.
An intermediate criterion considered the maximal rejection
within the stopband, to which the sum of the absolute values
within the passband is subtracted to avoid filters with excessive
ripples, normalized to the bin width to remain consistent with
the passband criterion (dBc/Hz units in all cases). In this
case, cascading too many filters with individual excessive
(> 1 dB) passband ripples led to unacceptable (> 10 dB)
final ripple levels, especially close to the transition band.
Hence, the final criterion considers the minimal rejection in the
stopband to which the the maximal amplitude in the passband
(maximum value minus the minimum value) is substracted,
with a 1 dB threshold on the latter quantity over which the
filter is discarded. With this criterion, we meet the expected

0 0.2 0.4 0.6 0.8 1
-100

-80

-60

-40

-20

0

20

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

Awful FIR
Criterion value
Valuable FIR
Criterion value

Fig. 5: Selected filter qualification criterion computed as the
maximum rejection in the stopband minus the maximal ripple
amplitude in the passband with a > 1 dB threshold above
which the filter is discarded: comparison between monolithic
filter (blue, rejected in this case) and cascaded filters (red).

20

30

60

40

50

R
ej

ec
tio

n 
(d

B
)

60

70

20
50

40

Number of coefficients

80

1530

Number of bits20 10
10 5

Fig. 6: Filter rejection as a function of number of coefficients
and number of bits : this lookup table will be used to identify
which filter parameters – number of bits representing coeffi-
cients and number of coefficients – best match the targeted
transfer function. Filters with fewer than 10 taps or with
coefficients coded on fewer than 5 bits are discarded due to
excessive ripples in the passband.

rejection capability of low pass filters as shown in figure 5. The
best filter has a correct rejection estimation and the worst filter
is discarded based on the excessive passband ripple criterion.

Thanks to the latter criterion which will be used in the
remainder of this paper, we are able to automatically generate
multiple FIR taps and estimate their rejection. Figure 6 exhibits
the rejection as a function of the number of coefficients and
the number of bits representing these coefficients. The curve
shaped as a pyramid exhibits optimum configurations sets at
the vertex where both edges meet. Indeed for a given number
of coefficients, increasing the number of bits over the edge
will not improve the rejection. Conversely when setting the
a given number of bits, increasing the number of coefficients
will not improve the rejection. Hence the best coefficient set
are on the vertex of the pyramid. Notice that the word length
and number of coefficients do not start at 1: filters with too
few coefficients or too little tap word size are rejected by the
excessive ripple constraint of the criterion. Hence, the size of
the pyramid is significantly reduced by discarding these filters
and so is the solution search space.

Although we have an efficient criterion to estimate the
rejection of one set of coefficients (taps), we have a problem



0 0.2 0.4 0.6 0.8 1

-120

-100

-80

-60

-40

-20

0

20

Normalized Frequencies

R
ej

ec
tio

n 
(d

B
)

Response of 1st filter
Rejection of 1st filter
Response of 2nd filter
Rejection of 2nd filter
Response of cascaded filters
Actual rejection
Expected rejection

Fig. 7: Transfer function of individual filters and after cascad-
ing the two filters, demonstrating that the selected criterion
of maximum rejection in the bandstop (horizontal lines) is
met. Notice that the cascaded filter has better rejection than
summing the bandstop maximum of each individual filter.

when we cascade filters and estimate the criterion as a sum
two or more individual criteria. If the FIR filter coefficients
are the same between the stages, we have:

Ftotal = F1 + F2

But selecting two different sets of coefficient will yield a more
complex situation in which the previous relation is no longer
valid as illustrated on figure 7. The red and blue curves are
two different filters with maximums and notches not located at
the same frequency offsets. Hence when summing the transfer
functions, the resulting rejection shown as the dashed yellow
line is improved with respect to a basic sum of the rejection
criteria shown as a the dotted yellow line. Thus, estimating the
rejection of filter cascades is more complex than taking the
sum of all the rejection criteria of each filter. However since
the individual filter rejection sum underestimates the rejection
capability of the cascade, this upper bound is considered as
a conservative and acceptable criterion for deciding on the
suitability of the filter cascade to meet design criteria.

Finally in our case, we consider that the input signal are
fully known. The resolution of the input data stream are fixed
and still the same for all experiments in this paper.

Based on this analysis, we address the estimate of resource
consumption (called silicon area – in the case of FPGAs this
means processing cells) as a function of filter characteristics.
As a reminder, we do not aim at matching actual hardware
configuration but consider an arbitrary silicon area occupied
by each processing function, and will assess after synthesis the
adequation of this arbitrary unit with actual hardware resources
provided by FPGA manufacturers. The sum of individual
processing unit areas is constrained by a total silicon area
representative of FPGA global resources. Formally, variable
ai is the area taken by filter i (in arbitrary unit). Variable ri is
the rejection of filter i (in dB). Constant A is the total available
area. We model our problem as follows:

Maximize
n∑

i=1

ri

n∑
i=1

ai ≤ A (2)

ai = Ci × (πC
i + π−

i ), ∀i ∈ [1, n] (3)

ri = F (Ci, π
C
i ), ∀i ∈ [1, n] (4)

π+
i = π−

i + πC
i − πS

i , ∀i ∈ [1, n] (5)

π+
i−1 = π−

i , ∀i ∈ [2, n] (6)

π+
i ≥ 1 +

i∑
k=1

(
1 +

rj
6

)
, ∀i ∈ [1, n] (7)

π−
1 = ΠI (8)

Equation 2 states that the total area taken by the filters must
be less than the available area. Equation 3 gives the definition
of the area used by a filter, considered as the area of the
FIR since the Shifter is assumed not to require significant
resources. We consider that the FIR needs Ci registers of
size πC

i + π−
i bits to store the results of the multiplications

of the input data with the coefficients. Equation 4 gives the
definition of the rejection of the filter thanks to the tabulated
function F that we defined previously. The Shifter does not
introduce negative rejection as we will explain later, so the
rejection only comes from the FIR. Equation 5 states the
relation between π+

i and π−
i . The multiplications in the FIR

add πC
i bits as most coefficients are close to zero, and the

Shifter removes πS
i bits. Equation 6 states that the output

number of bits of a filter is the same as the input number
of bits of the next filter. Equation 7 ensures that the Shifter
does not introduce negative rejection. Indeed, the results of
the FIR can be right shifted without compromising the quality
of the rejection until a threshold. Each bit of the output data
increases the maximum rejection level by 6 dB. We add one
to take the sign bit into account. If equation 7 was not present,
the Shifter could shift too much and introduce some noise in
the output data. Each supplementary shift bit would cause an
additional 6 dB rejection rise. A totally equivalent equation
is: πS

i ≤ π
−
i + πC

i − 1−
∑i

k=1

(
1 +

rj
6

)
. Finally, equation 8

gives the number of bits of the global input.

This model is non-linear since we multiply some variable
with another variable and it is even non-quadratic, as the
cost function F does not have a known linear or quadratic
expression. To linearize this problem, we introduce p FIR
configurations. This variable p is defined by the user, and
represents the number of different set of coefficients generated
(remember, we use firls and fir1 functions from GNU
Octave) based on the targeted filter characteristics and im-
plementation assumptions (estimated number of bits defining
the coefficients). Hence, Cij and πC

ij become constants and
we define 1 ≤ j ≤ p so that the function F can be estimated
(Look Up Table) for each configurations thanks to the rejection
criterion. We also define the binary variable δij that has value
1 if stage i is in configuration j and 0 otherwise. The new
equations are as follows:



ai =

p∑
j=1

δij × Cij × (πC
ij + π−

i ), ∀i ∈ [1, n] (9)

ri =

p∑
j=1

δij × F (Cij , π
C
ij), ∀i ∈ [1, n] (10)

π+
i = π−

i +

 p∑
j=1

δijπ
C
ij

− πS
i , ∀i ∈ [1, n] (11)

p∑
j=1

δij ≤ 1, ∀i ∈ [1, n] (12)

Equations 9, 10 and 11 replace respectively equations 3,
4 and 5. Equation 12 states that for each stage, a single
configuration is chosen at most.

The problem remains quadratic at this stage since in the
constraint 9 we multiply δij and π−

i . However, since δij is
a binary variable we can linearize this multiplication. The
following formula shows how to linearize this situation in
general case with y a binary variable and x a real variable
(0 ≤ x ≤ Xmax):

m = x× y =⇒


m ≥ 0

m ≤ y ×Xmax

m ≤ x
m ≥ x− (1− y)×Xmax

So if we bound up π−
i by 128 bits which is the maximum data

size whose estimation is assumed on hardware characteristics,
the Gurobi (www.gurobi.com) optimization software will be
able to linearize for us the quadratic problem so the model
is left as is. This model has O(np) variables and O(n)
constraints.

Two problems will be addressed using the workflow de-
scribed in the next section: on the one hand maximizing the
rejection capability of a set of cascaded filters occupying a
fixed arbitrary silicon area (section V) and on the second
hand the dual problem of minimizing the silicon area for a
fixed rejection criterion (section V-A). In the latter case, the
objective function is replaced with:

Minimize
n∑

i=1

ai

We adapt our constraints of quadratic program to replace
equation 2 with equation 13 where R is the minimal rejection
required.

n∑
i=1

ri ≥ R (13)

IV. DESIGN WORKFLOW

In this section, we describe the workflow to compute all
the results presented in sections V and V-A. Figure 8 shows
the global workflow and the different steps involved in the
computation of the results.

The filter solver is a C++ program that takes as input the
maximum area A, the number of stages n, the size of the input
signal ΠI , the FIR configurations (Cij , π

C
ij) and the function

F . It creates the quadratic programs and uses the Gurobi solver

Filter Solver TCL Script

Deploy Script Bitstream

BoardPost-Processing

A, n,ΠI

(Cij , π
C
ij), F

ADC or PRN

(1a)

(1b) (2)

(3)

(4)
(5)

Fig. 8: Design workflow from the input parameters to the
results allowing for a fully automated optimal solution search.

to estimate the optimal results. Then it produces two scripts:
a TCL script ((1a) on figure 8) and a deploy script ((1b) on
figure 8).

The TCL script describes the whole digital processing
chain from the beginning (the raw signal data) to the end
(the filtered data) in a language compatible with proprietary
synthesis software, namely Vivado for Xilinx and Quartus
for Intel/Altera. The raw input data generated from a 20-bit
Pseudo Random Number (PRN) generator inside the FPGA
and ΠI is fixed at 16 bits. Then the script builds each stage
of the chain with a generic FIR task that comes from a
skeleton library. The generic FIR is highly configurable with
the number of coefficients and the size of the coefficients.
The coefficients themselves are not stored in the script. As
the signal is processed in real-time, the output signal is
stored as consecutive bursts of data for post-processing, mainly
assessing the consistency of the implemented FIR cascade
transfer function with the design criteria and the expected
transfer function.

The TCL script is used by Vivado to produce the FPGA
bitstream ((2) on figure 8). We use the 2018.2 version of
Xilinx Vivado and we execute the synthesized bitstream on a
Redpitaya board fitted with a Xilinx Zynq-7010 series FPGA
(xc7z010clg400-1) and two LTC2145 14-bit 125 MS/s ADC,
loaded with 50 Ω resistors to provide a broadband noise
source. The board runs the Linux kernel and surrounding envi-
ronment produced from the Buildroot framework available at
https://github.com/trabucayre/redpitaya/: configuring the Zynq
FPGA, feeding the FIR with the set of coefficients, executing
the simulation and fetching the results is automated.

The deploy script uploads the bitstream to the board ((3)
on figure 8), flashes the FPGA, loads the different drivers,
configures the coefficients of the FIR filters. It then waits for
the results and retrieves the data to the main computer ((4) on
figure 8).

Finally, an Octave post-processing script computes the final
results thanks to the output data ((5) on figure 8). The results
are normalized so that the Power Spectrum Density (PSD)
starts at zero and the different configurations can be compared.

V. MAXIMIZING THE REJECTION AT FIXED SILICON AREA

This section presents the output of the filter solver i.e.
the computed configurations for each stage, the computed
rejection and the computed silicon area. Such results allow

www.gurobi.com
https://github.com/trabucayre/redpitaya/


TABLE I: Configurations (Ci, π
C
i , π

S
i ), rejections and areas

(in arbitrary units) for MAX/500

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (21, 7, 0) - - - - 32 dB 483

2 (3, 5, 18) (33, 10, 0) - - - 48 dB 492

3 (3, 5, 18) (19, 7, 1) (15, 7, 0) - - 56 dB 493

4 (3, 5, 18) (19, 7, 1) (15, 7, 0) - - 56 dB 493

5 (3, 5, 18) (19, 7, 1) (15, 7, 0) - - 56 dB 493

TABLE II: Configurations (Ci, π
C
i , π

S
i ), rejections and areas

(in arbitrary units) for MAX/1000

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (37, 11, 0) - - - - 56 dB 999

2 (15, 8, 17) (35, 11, 0) - - - 80 dB 990

3 (3, 13, 26) (31, 9, 1) (27, 9, 0) - - 92 dB 999

4 (3, 5, 18) (19, 7, 1) (19, 7, 0) (19, 7, 0) - 98 dB 994

5 (3, 5, 18) (19, 7, 1) (19, 7, 0) (19, 7, 0) - 98 dB 994

for understanding the choices made by the solver to compute
its solutions.

The experimental setup is composed of three cases. The raw
input is generated by a Pseudo Random Number (PRN) gener-
ator, which fixes the input data size ΠI . Then the total silicon
area A has been fixed to either 500, 1000 or 1500 arbitrary
units. Hence, the three cases have been named: MAX/500,
MAX/1000, MAX/1500. The number of configurations p is
1133, with Ci ranging from 3 to 60 and πC ranging from 2
to 22. In each case, the quadratic program has been able to
give a result up to five stages (n = 5) in the cascaded filter.

Table I shows the results obtained by the filter solver for
MAX/500. Table II shows the results obtained by the filter
solver for MAX/1000. Table III shows the results obtained by
the filter solver for MAX/1500.

By analyzing these tables, we can first state that we reach
an optimal solution for each case : n = 3 for MAX/500, and
n = 4 for MAX/1000 and MAX/1500. Moreover the cascaded
filters always exhibit better performance than the monolithic
solution. It was an expected result as it has been previously
observed that many small filters are better than a single large
filter [9], [8], [10], despite such conclusions being hardly used
in practice due to the lack of tools for identifying individual
filter coefficients in the cascaded approach.

Second, the larger the silicon area, the better the rejection.
This was also an expected result as more area means a filter
of better quality with more coefficients or more bits per
coefficient.

Then, we also observe that the first stage can have a larger
shift than the other stages. This is explained by the fact that the
solver tries to use just enough bits for the computed rejection
after each stage. In the first stage, a balance between a strong
rejection with a low number of bits is targeted. Equation 7
gives the relation between both values.

Finally, we note that the solver consumes all the given

TABLE III: Configurations (Ci, π
C
i , π

S
i ), rejections and areas

(in arbitrary units) for MAX/1500

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (47, 15, 0) - - - - 71 dB 1457

2 (19, 6, 15) (51, 14, 0) - - - 102 dB 1489

3 (15, 9, 18) (31, 8, 0) (27, 9, 0) - - 116 dB 1488

4 (3, 9, 22) (31, 9, 1) (27, 9, 0) (19, 7, 0) - 125 dB 1500

5 (3, 9, 22) (31, 9, 1) (27, 9, 0) (19, 7, 0) - 125 dB 1500

silicon area.
The following graphs present the rejection for real data

on the FPGA. In all the following figures, the solid line
represents the actual rejection of the filtered data on the FPGA
as measured experimentally and the dashed line are the noise
levels given by the quadratic solver. The configurations are
those computed in the previous section.

Figure 9a shows the rejection of the different configurations
in the case of MAX/500. Figure 9b shows the rejection of the
different configurations in the case of MAX/1000. Figure 9c
shows the rejection of the different configurations in the case
of MAX/1500.

In all cases, we observe that the actual rejection is close to
the rejection computed by the solver.

We compare the actual silicon resources given by Vivado
to the resources in arbitrary units. The goal is to check that
our arbitrary units of silicon area models well enough the real
resources on the FPGA. Especially we want to verify that, for
a given number of arbitrary units, the actual silicon resources
do not depend on the number of stages n. Most significantly,
our approach aims at remaining far enough from the practical
logic gate implementation used by various vendors to remain
platform independent and be portable from one architecture to
another.

Table IV shows the resources usage in the case of
MAX/500, MAX/1000 and MAX/1500 i.e. when the maxi-
mum allowed silicon area is fixed to 500, 1000 and 1500
arbitrary units. We have taken care to extract solely the
resources used by the FIR filters and remove additional
processing blocks including FIFO and Programmable Logic
(PL – FPGA) to Processing System (PS – general purpose
processor) communication.

TABLE IV: Resource occupation following synthesis of the
solutions found for the problem of maximizing rejection for a
given resource allocation. The last column refers to available
resources on a Zynq-7010 as found on the Redpitaya.

n MAX/500 MAX/1000 MAX/1500 Zynq 7010
LUT 249 453 627 17600

1 BRAM 1 1 1 120
DSP 21 37 47 80
LUT 2253 474 691 17600

2 BRAM 2 2 2 120
DSP 0 50 70 80
LUT 1329 2006 3158 17600

3 BRAM 3 3 3 120
DSP 15 30 42 80
LUT 1329 1600 2260 17600

4 BRAM 3 4 4 120
DPS 15 38 49 80
LUT 1329 1600 2260 17600

5 BRAM 3 4 4 120
DPS 15 38 49 80

In case n = 2 for MAX/500, Vivado replaces the DSPs
by Look Up Tables (LUTs). We assume that, when the filter
coefficients are small enough, or when the input size is small
enough, Vivado optimizes resource consumption by selecting
multiplexers to implement the multiplications instead of a DSP.
In this case, it is quite difficult to compare the whole silicon
budget.

However, a rough estimation can be made with a simple
equivalence: looking at the first column (MAX/500), where
the number of LUTs is quite stable for n ≥ 2, we can deduce
that a DSP is roughly equivalent to 100 LUTs in terms of



0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

1 filter
2 filters
3 filters

(a) Filter transfer functions for varying number of cascaded filters
solving the MAX/500 problem of maximizing rejection for a given
resource allocation (500 arbitrary units).

0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

1 filter
2 filters
3 filters
4 filters

(b) Filter transfer functions for varying number of cascaded filters
solving the MAX/1000 problem of maximizing rejection for a given
resource allocation (1000 arbitrary units).

0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

1 filter
2 filters
3 filters
4 filters

(c) Filter transfer functions for varying number of cascaded filters
solving the MAX/1500 problem of maximizing rejection for a given
resource allocation (1500 arbitrary units).

Fig. 9: Solutions for the MAX/500, MAX/1000 and
MAX/1500 problems of maximizing rejection for a given
resource allocation. The filter shape constraint (bandpass and
bandstop) is shown as thick horizontal lines on each chart.

silicon area use. With this equivalence, our 500 arbitrary units
correspond to 2500 LUTs, 1000 arbitrary units correspond
to 5000 LUTs and 1500 arbitrary units correspond to 7300
LUTs. The conclusion is that the orders of magnitude of our
arbitrary unit map well to actual hardware resources. The
relatively small differences can probably be explained by the
optimizations done by Vivado based on the detailed map of
available processing resources.

We now present the computation time needed to solve the
quadratic problem. For each case, the filter solver software
is executed on a Intel(R) Xeon(R) CPU E5606 clocked at
2.13 GHz. The CPU has 8 cores that are used by Gurobi to
solve the quadratic problem. Table V shows the time needed
to solve the quadratic problem when the maximal area is fixed
to 500, 1000 and 1500 arbitrary units.

TABLE V: Time needed to solve the quadratic program with
Gurobi

n Time (MAX/500) Time (MAX/1000) Time (MAX/1500)
1 0.01 s 0.02 s 0.03 s
2 0.1 s 1 s 2 s
3 5 s 27 s 351 s (≈ 6 min)
4 4 s 141 s (≈ 3 min) 1134 s (≈ 18 min)
5 6 s 630 s (≈ 10 min) 49400 s (≈ 13 h)

As expected, the computation time seems to rise exponen-
tially with the number of stages. When the area is limited,
the design exploration space is more limited and the solver is
able to find an optimal solution faster. We also notice that the
solution with n greater than the optimal value takes more time
to be found than the optimal one. This can be explained since
the search space is larger and we need more time to ensure
that the previous solution (from the smaller value of n) still
remains the optimal solution.

A. Minimizing resource occupation at fixed rejection

This section presents the results of the complementary
quadratic program aimed at minimizing the area occupation
for a targeted rejection level.

The experimental setup is composed of four cases. The raw
input is the same as in the previous section, from a PRN
generator, which fixes the input data size ΠI . Then the targeted
rejection R has been fixed to either 40, 60, 80 or 100 dB.
Hence, the three cases have been named: MIN/40, MIN/60,
MIN/80 and MIN/100. The number of configurations p is the
same as previous section.

Table VI shows the results obtained by the filter solver for
MIN/40. Table VII shows the results obtained by the filter
solver for MIN/60. Table VIII shows the results obtained
by the filter solver for MIN/80. Table IX shows the results
obtained by the filter solver for MIN/100.

TABLE VI: Configurations (Ci, π
C
i , π

S
i ), rejections and areas

(in arbitrary units) for MIN/40

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (27, 8, 0) - - - - 41 dB 648

2 (3, 5, 18) (27, 8, 0) - - - 42 dB 360

3 (3, 5, 18) (27, 8, 0) - - - 42 dB 360

4 (3, 5, 18) (27, 8, 0) - - - 42 dB 360

5 (3, 5, 18) (27, 8, 0) - - - 42 dB 360

From these tables, we can first state that almost all configu-
rations reach the targeted rejection level or even better thanks



TABLE VII: Configurations (Ci, π
C
i , π

S
i ), rejections and areas

(in arbitrary units) for MIN/60

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (39, 13, 0) - - - - 60 dB 1131

2 (15, 6, 16) (23, 9, 0) - - - 60 dB 675

3 (3, 5, 18) (15, 6, 2) (23, 8, 0) - - 60 dB 543

4 (3, 5, 18) (15, 6, 2) (23, 8, 0) - - 60 dB 543

5 (3, 5, 18) (15, 6, 2) (23, 8, 0) - - 60 dB 543

TABLE VIII: Configurations (Ci, π
C
i , π

S
i ), rejections and ar-

eas (in arbitrary units) for MIN/80

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 (55, 16, 0) - - - - 81 dB 1760

2 (15, 8, 17) (35, 11, 0) - - - 80 dB 990

3 (3, 7, 20) (31, 9, 1) (19, 7, 0) - - 80 dB 783

4 (3, 7, 20) (31, 9, 1) (19, 7, 0) - - 80 dB 783

5 (3, 7, 20) (31, 9, 1) (19, 7, 0) - - 80 dB 783

TABLE IX: Configurations (Ci, π
C
i , π

S
i ), rejections and areas

(in arbitrary units) for MIN/100

n i = 1 i = 2 i = 3 i = 4 i = 5 Rejection Area

1 - - - - - - -

2 (27, 9, 15) (35, 11, 0) - - - 100 dB 1410

3 (3, 5, 18) (35, 11, 1) (27, 9, 0) - - 100 dB 1147

4 (3, 5, 18) (15, 6, 2) (27, 9, 0) (19, 7, 0) - 100 dB 1067

5 (3, 5, 18) (15, 6, 2) (27, 9, 0) (19, 7, 0) - 100 dB 1067

to our underestimate of the cascade rejection as the sum of
the individual filter rejection. The only exception is for the
monolithic case (n = 1) in MIN/100: no solution is found for a
single monolithic filter reach a 100 dB rejection. Furthermore,
the area of the monolithic filter is twice as big as the two
cascaded filters (675 and 1131 arbitrary units v.s 990 and 1760
arbitrary units for 60 and 80 dB rejection respectively). More
generally, the more filters are cascaded, the lower the occupied
area.

Like in previous section, the solver chooses always a little
filter as first filter stage and the second one is often the biggest
filter. This choice can be explained as in the previous section,
with the solver using just enough bits not to degrade the
input signal and in the second filter selecting a better filter to
improve rejection without having too many bits in the output
data.

For each case, we found an optimal solution with n < 5:
for MIN/40 n = 2, for MIN/60 and MIN/80 n = 3 and for
MIN/100 n = 4. In all cases, the solutions when n is greater
than this optimal n remain identical to the optimal one.

The following graphs present the rejection for real data
on the FPGA. In all the following figures, the solid line
represents the actual rejection of the filtered data on the FPGA
as measured experimentally and the dashed line is the noise
level given by the quadratic solver.

Figure 10a shows the rejection of the different configura-
tions in the case of MIN/40. Figure 10b shows the rejection of
the different configurations in the case of MIN/60. Figure 10c
shows the rejection of the different configurations in the case
of MIN/80. Figure 10d shows the rejection of the different
configurations in the case of MIN/100.

We observe that all rejections given by the quadratic solver
are close to the experimentally measured rejection. All curves
prove that the constraint to reach the target rejection is
respected with both monolithic (except in MIN/100 which has
no monolithic solution) or cascaded filters.

0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

1 filter
2 filters

(a) Filter transfer functions for varying number of cascaded filters
solving the MIN/40 problem of minimizing resource allocation for
reaching a 40 dB rejection.

0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

1 filter
2 filters
3 filters

(b) Filter transfer functions for varying number of cascaded filters
solving the MIN/60 problem of minimizing resource allocation for
reaching a 60 dB rejection.

0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

1 filter
2 filters
3 filters

(c) Filter transfer functions for varying number of cascaded filters
solving the MIN/80 problem of minimizing resource allocation for
reaching a 80 dB rejection.

0 0.2 0.4 0.6 0.8 1

-150

-100

-50

0

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

2 filter
3 filters
4 filters

(d) Filter transfer functions for varying number of cascaded filters
solving the MIN/100 problem of minimizing resource allocation for
reaching a 100 dB rejection.

Fig. 10: Solutions for the MIN/40, MIN/60, MIN/80 and
MIN/100 problems of reaching a given rejection while mini-
mizing resource allocation. The filter shape constraint (band-
pass and bandstop) is shown as thick horizontal lines on each
chart.



TABLE X: Resource occupation. The last column refers to
available resources on a Zynq-7010 as found on the Redpitaya.

n MIN/40 MIN/60 MIN/80 MIN/100 Zynq 7010

LUT 343 334 772 - 17600
1 BRAM 1 1 1 - 120

DSP 27 39 55 - 80
LUT 1664 2329 474 620 17600

2 BRAM 2 2 2 2 120
DSP 0 15 50 62 80
LUT 1664 3114 1884 2873 17600

3 BRAM 2 3 3 3 120
DSP 0 0 22 27 80
LUT 1664 3114 2570 4318 17600

4 BRAM 2 3 4 4 120
DPS 0 15 19 19 80
LUT 1664 3114 2570 4318 17600

5 BRAM 2 3 4 4 120
DPS 0 0 19 19 80

Table IV shows the resource usage in the case of MIN/40,
MIN/60; MIN/80 and MIN/100 i.e. when the target rejection
is fixed to 40, 60, 80 and 100 dB. We have taken care to
extract solely the resources used by the FIR filters and remove
additional processing blocks including FIFO and PL to PS
communication.

If we keep the previous estimation of cost of one DSP
in terms of LUT (1 DSP ≈ 100 LUT) the real resource
consumption decreases as a function of the number of stages
in the cascaded filter according to the solution given by
the quadratic solver. Indeed, we have always a decreasing
consumption even if the difference between the monolithic
and the two cascaded filters is less than expected.

Finally, table XI shows the computation time to solve the
quadratic program.

TABLE XI: Time to solve the quadratic program with Gurobi

n Time (MIN/40) Time (MIN/60) Time (MIN/80) Time (MIN/100)

1 0.04 s 0.01 s 0.01 s -
2 2.7 s 2.4 s 2.4 s 0.8 s
3 4.6 s 7 s 7 s 18 s
4 3 s 22 s 70 s 220 s (≈ 3 min)
5 5 s 122 s 200 s 384 s (≈ 5 min)

The time needed to solve this configuration is significantly
shorter than the time needed in the previous section. Indeed
the worst time in this case is only 5 minutes, compared to
13 hours in the previous section: this problem is more easily
solved than the previous one.

To conclude, we compare our monolithic filters with the
FIR Compiler provided by Xilinx in the Vivado software suite
(v.2018.2). For each experiment we use the same coefficient
set and we compare the resource consumption, having checked
that the transfer functions are indeed the same with both
implementations. Table XII exhibits the results. The FIR
Compiler never uses BRAM while our filter implementation
uses one block. This difference is explained be our wish to
have a dynamically reconfigurable FIR filter whose coeffi-
cients can be updated from the processing system without
having to update the FPGA design. With the FIR compiler,
the coefficients are defined during the FPGA design so that
changing coefficients required generating a new design. The
difference with the LUT consumption is also attributed to
the reconfigurability logic. However the DSP consumption,
the scarcest resource, is the same between the Xilinx FIR

TABLE XII: Resource consumption compared between the
FIR Compiler from Xilinx and our FIR block

Xilinx Our FIR block
LUT BRAM DSP LUT BRAM DSP

MAX/500 177 0 21 249 1 21
MAX/1000 306 0 37 453 1 37
MAX/1500 418 0 47 627 1 47

MIN/40 225 0 27 347 1 27
MIN/60 322 0 39 334 1 39
MIN/80 482 0 55 772 1 55

Compiler end our FIR block: we hence conclude that our
solutions are as good as the Xilinx implementation.

VI. CONCLUSION

We have proposed a new approach to optimize a set of
signal processing blocks whose performances and resource
consumption has been tabulated, and applied this methodology
to the practical case of implementing cascaded FIR filters
inside a FPGA. This method aims to be hardware independent
and focuses an a high-level of abstraction. We have modeled
the FIR filter operation and the impact of data shift. Thanks to
this model, we have created a quadratic program to select the
optimal FIR taps to reach a targeted rejection. Individual filter
taps have been identified using commonly available tools and
the emphasis is on FIR assembly rather than individual FIR
coefficient identification.

Our experimental results are very promising in providing
a rational approach to selecting the coefficients of each FIR
filter in the context of a performance target for a chain of such
filters. The FPGA design that is produced automatically by the
proposed workflow is able to filter an input signal as expected,
validating experimentally our model and our approach. The
quadratic program can be adapted it to an other problem based
on assembling skeleton blocks.

Considering that all area and rejection considerations could
be explored within a reasonable computation duration, and
that no improvement is observed when cascading more than
four filters, we consider that this particular problem has been
exhaustively investigated and optimal solutions found in all
cases.

A perspective is to model and add the decimators to the
processing chain to have a classical FIR filter and decimator.
The impact of the decimator is not trivial, especially in
terms of silicon area usage for subsequent stages since some
hardware optimization can be applied in this case.

The software used to demonstrate the concepts developed
in this paper is based on the CPU-FPGA co-design framework
available at https://github.com/oscimp/oscimpDigital.

ACKNOWLEDGEMENT

This work is supported by the ANR Programme
d’Investissement d’Avenir in progress at the Time and Fre-
quency Departments of the FEMTO-ST Institute (Oscillator
IMP, First-TF and Refimeve+), and by Région de Franche-
Comté. The authors would like to thank E. Rubiola, F. Ver-
notte, and G. Cabodevila for support and fruitful discussions.

https://github.com/oscimp/oscimpDigital


REFERENCES

[1] J. A. Sherman and R. Jördens, “Oscillator metrology with software
defined radio,” Review of Scientific Instruments, vol. 87, no. 5, p. 054711,
2016.

[2] C. Andrich, A. Ihlow, J. Bauer, N. Beuster, and G. Del Galdo,
“High-precision measurement of sine and pulse reference signals using
software-defined radio,” IEEE Transactions on Instrumentation and
Measurement, vol. 67, no. 5, pp. 1132–1141, May 2018.

[3] S. J. Kasbah, I. W. Damaj, and R. A. Haraty, “Multigrid solvers
in reconfigurable hardware,” Journal of Computational and Applied
Mathematics, vol. 213, no. 1, pp. 79–94, 2008.

[4] D. Crookes, K. Alotaibi, A. Bouridane, P. Donachy, and A. Benkrid,
“An environment for generating FPGA architectures for image algebra-
based algorithms,” in Image Processing, 1998. ICIP 98. Proceedings.
1998 International Conference on. IEEE, 1998, pp. 990–994.

[5] D. Crookes, K. Benkrid, A. Bouridane, K. Alotaibi, and A. Benkrid,
“Design and implementation of a high level programming environment
for FPGA-based image processing,” IEE Proceedings-Vision, Image and
Signal Processing, vol. 147, no. 4, pp. 377–384, 2000.

[6] K. Benkrid, D. Crookes, and A. Benkrid, “Towards a general framework
for FPGA based image processing using hardware skeletons,” Parallel
Computing, vol. 28, no. 7, pp. 1141–1154, 2002.

[7] K. Benkrid, S. Belkacemi, and A. Benkrid, “Hide: A hardware intelligent

description environment,” Microprocessors and Microsystems, vol. 30,
no. 6, pp. 283–300, 2006.

[8] Y.-C. Lim, R. Yang, and B. Liu, “The design of cascaded fir filters,” in
1996 IEEE International Symposium on Circuits and Systems. Circuits
and Systems Connecting the World. ISCAS 96, vol. 2, May 1996, pp.
181–184 vol.2.

[9] Y. C. Lim and B. Liu, “Design of cascade form fir filters with discrete
valued coefficients,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 11, pp. 1735–1739, Nov 1988.

[10] C. Young and D. L. Jones, “Improvement in finite wordlength fir digital
filter design by cascading,” in [Proceedings] ICASSP-92: 1992 IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 5, March 1992, pp. 109–112 vol.5.

[11] L. M. Smith, “Decomposition of fir digital filters for realization via
the cascade connection of subfilters,” IEEE Transactions on Signal
Processing, vol. 46, no. 6, pp. 1681–1684, June 1998.

[12] A. C. Olaya, S. Micalizio, M. Ortolano, C. Calosso, E. Rubiola, and
J. Friedt, “Digital electronics based on red pitaya platform for coherent
fiber links,” in 2016 European Frequency and Time Forum (EFTF).
IEEE, 2016, pp. 1–4.

[13] A. C. C. Olaya, C. E. Calosso, J.-M. Friedt, S. Micalizio, and E. Rubiola,
“Phase noise and frequency stability of the red-pitaya internal pll,”
IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
vol. 66, no. 2, pp. 412–416, 2019.


	Digital signal processing of ultrastable clock signals
	Finite impulse response filter
	Methodology description
	Model of a FIR filter

	Design workflow
	Maximizing the rejection at fixed silicon area
	Minimizing resource occupation at fixed rejection

	Conclusion
	References

