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We investigate symmetry-protected topological water waves within a strategically engineered square lattice system.
Thus far, symmetry-protected topological modes in hexagonal systems have primarily been studied in electromag-
netism and acoustics, i.e. dispersionless media. Herein, we show experimentally how crucial geometrical properties of
square structures allow for topological transport that is ordinarily forbidden within conventional hexagonal structures.
We perform numerical simulations that take into account the inherent dispersion within water waves and devise a topo-
logical insulator that supports symmetry-protected transport along the domain walls. Our measurements, viewed with
a high-speed camera under stroboscopic illumination, unambiguously demonstrate the valley-locked transport of water
waves within a non-hexagonal structure. Due to the tunability of the energy’s directionality by geometry our results
could be used for developing highly-efficient energy harvesters, filters and beam-splitters within dispersive media.

Considerable recent activity in wave phenomena is moti-
vated through topological effects and focused on identifying
situations where topological protection occurs that can en-
hance, or create, robust wave guidance along edges or inter-
faces. Remarkably, the core concepts that gave rise to topolog-
ical insulators, originating within quantum mechanics2 carry
across, in part, to classical wave systems3,4. Topological insu-
lators can be divided into two broad categories: those that pre-
serve time-reversal symmetry (TRS), and those which break
it. We concentrate upon the former due to the simplicity of
their construction that solely requires passive elements. By
leveraging the discrete valley degrees of freedom, arising from
degenerate extrema in Fourier space, we are able to create ro-
bust symmetry-protected waveguides. These valley states are
connected to the quantum valley-Hall effect and hence this re-
search area has been named valleytronics5,6.

Hexagonal structures are the prime candidates for val-
leytronic devices as they exhibit symmetry induced Dirac
cones at the high-symmetry points of the Brillouin zone (BZ);
when perturbed these Dirac points can be gapped, leading to
well-defined KK′ valleys distinguished, from each other, by
their opposite chirality or pseudospin.

This pseudospin has been used in a wide variety of dis-
persionless wave settings to design valleytronic devices7,8.
Here we extend the earlier research by examining a highly-
dispersive physical system, i.e. water waves and move away
from hexagonal structures. The topological protection af-
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forded by these valley states is attributed to, both, the orthog-
onality of the pseudospins as well as the Fourier separation
between the two valleys9. The vast majority of the valleytron-
ics literature, inspired by graphene, opts to use hexagonal
structures10–19. However a negative that emerges with these,
especially when dealing with complex topological domains9,
is that certain propagation directions are restricted due to mis-
matches in chirality between incoming and outgoing modes.
Notably, this has led to hexagonal structures being prohibited
from partitioning energy in more than two-directions13,14,16.

In this Letter, we demonstrate experimentally how a strate-
gically designed square structure also allows for the emer-
gence of valley-Hall edge states as well as allowing for the ex-
citation of modes that are not ordinarily ignited within hexag-
onal valley-Hall structures. Additionally, the system chosen
differs from the vast majority of the earlier literature10–19 that
has focussed on an idealised situation in which the disper-
sion of the host material has been avoided. This assump-
tion restricts the applicability of the earlier studies to a small
subset of, potentially useful, physical platforms that could
host topological effects. Most notably, this assumption does
not hold for water wave systems, which generally support
highly dispersive surface waves20. The combination of topo-
logical physics applied to water waves is a relatively unex-
plored area21,22; those that have conducted experiments have
either focused on 1D systems21 or the hexagonal valley-Hall
structure22. Potential applications of this budding area include
controlling ocean wave energy23, in a non-intrusive manner,
for energy-harvesting or erosion mitigation24.

Formulation —The fluid within our domain has a constant
depth of h = 4 cm and contains a periodic array of rigid, ver-
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FIG. 1: Experimental setup: A crystal is assembled using
square shaped aluminum tubes 7 cm in height arranged in a

square array with different orientations using a plastic
positioning frame at the bottom of the tank (80×80 cm2 with
60-degree oblique edges made of soft polystyrene to mimic

PMLs). A mechanical straight paddle holding a small plastic
cylinder is used to generate water waves. The tank is

continuously illuminated and images of water waves are
recorded with a high speed camera placed on the top. A

black and white random pattern is placed under the tank to
provide water elevation measurement using an image

cross-correlation algorithm. The experimental setup was
inspired by the work of Moisy et al;1.

tical and bottom mounted, square objects (2 cm of side length
in a 4 cm square array) that perforate the free surface of the
liquid (see the experimental set-up in Fig. 1). The planar co-
ordinates are denoted by x1,x2 whilst the vertical upward di-
rection has the coordinate x3 ; the origin is prescribed to be at
the mean free surface. Under the usual assumptions of linear
water wave theory, where the fluid is assumed to be inviscid,
incompressible with irrotational flow, there exists a velocity
potential Φ such that

Φ(x, t) = ℜe
[

φ(x1,x2)
cosh(k(x3 +h))

cosh(kh)
exp(−iωt)

]
, (1)

where ω denotes the angular frequency. The wavenumber, k
the real positive solution of the dispersion relation(

gk+
σ

ρ
k3
)

tanh(kh) = ω
2, (2)

is used as a proxy for the frequency; in Eq. (2) g = 9.81 m s−2

is gravitational acceleration, σ = 0.07 N m−1 is the surface
tension between air and water and ρ = 103 kg m3 the water
density. Then φ , the reduced potential, satisfies the Helmholtz
equation, (

∇
2
x + k2)

φ(x1,x2) = 0, (3)

where this equation holds at the mean free surface and the
subscript x indicates differentiation with respect to x. and
no-flow boundary conditions on the vertical rigid cylinders:
taking n = (n1,n2) as the unit outward normal to the square
tubes’ surface, ∂φ/∂n = 0 on each of them.

When the problem is posed in terms of the reduced po-
tential, φ , as the Helmholtz equation, with periodically ar-
ranged inclusions (the tubes), this directly maps across to
the phononic crystal literature. Recognising the periodicity
guides us to setting φ(x1,x2) = φκ(x1,x2)exp(iκ · x) with κ
as the Bloch wavenumber and φκ as the periodic piece of
the Bloch solution. A key ingredient, that guides the ex-
periments, is an understanding of the dispersion relation, re-
lating k to the Bloch-wavenumber, κ spanning the BZ κ ∈
[0;π/L]× [0;π/L] (see Fig 2(a)) for an infinite perfectly pe-
riodic square lattice system; we determine this relationship
numerically. The geometry and band structures are shown in
Fig. 2; for a square array, lattice constant L, the irreducible
Brillouin zone (IBZ) is an eighth of the BZ. Despite this, we
opt to plot around a quadrant of the BZ as this will incorporate
the two distinct Dirac cones that are essential for our valley-
Hall states. The desired quadrant has the following vertices:
X = (π/L,π/L), N = (π/L,0), Γ = (0,0), M = (0,π/L).

Results —The unrotated cellular structure chosen, Fig.
2(a), contains, both, horizontal and vertical mirror symmetries
along with four-fold rotational symmetry. Hence, in its en-
tirety the structure has C4v point group symmetries. Notably,
it is the presence of these mirror symmetries that yield Dirac
cones along the outer edges of the BZ, Fig. 2(b,c)25–29. Note,
that rectangular structures (wallpaper group P2mm) which
possess these mirror symmetries will also yield these non-
symmetry repelled Dirac cones26,27. In contrast to hexag-
onal structures the position of these degeneracies can be
tuned by varying the geometrical or material parameters of
the system28. By rotating the internal square inclusion, both
mirror symmetries are broken thereby yielding the band-gap
shown for the dispersion curves in Fig. 2(d). The residual val-
leys, that demarcate the band-gap, are locally imbued with a
nonzero valley-Chern number30,

Cv =
i

2π

∫
S

∇κ×φ
∗
κ(r)·∇rφκ(r)dκ=

i
2π

∮
γ

φ
∗
κ(r)∇rφκ(r)·dl

(4)
where the path integrated around (γ) encircles a particular val-
ley and the superscript ∗ denotes the complex conjugate. De-
spite the calculation (and name) of the Cv resembling that of
its TRS breaking counterpart, namely the Chern number, there
is an important difference: the former is not a quantized quan-
tity whilst the latter is. The surface associated with γ is not on
a closed manifold hence the Gauss–Bonnet theorem31 does
not hold. Despite this, the opposite pseudospin modes have a
bijective relationship with sgn(Cv) = ±1 which itself can be
classed as a topological integer32. From this we can apply the
bulk-boundary correspondence for certain edge terminations
thereby guaranteeing the existence of valley-Hall edge states.

Motivated by this, we place a perturbed cellular struc-
ture, that contains a positively or negatively rotated inclusion,
above its reflectional twin. This results in a pair of gapless
edge modes that almost span the entirety of the band-gap,
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FIG. 2: Geometry, band structure and topological features:
(a) Periodic cell (physical space) of the square lattice with
sidelength L showing a square inclusion of sidelength ls

inside it. Mirror-symmetry breaking rotation (arrows) and
lines (dashed) also shown. (b) In reciprocal space, the points

ΓNX denote the extrema of the irreducible Brillouin zone
that we extend to ΓNXM to show the two topologically
inequivalent regions; the two distinct sgn(Cv) values are
indicated by ± signs around the perimeter of the BZ and

these are associated with the + perturbation in panel (a) (the
− perturbation would result in opposite sgn(Cv)’s, see28).

The sgn(Cv) positions resemble those in26,27. (c) Band
diagram for the configuration in (a), with two circles marking

the position of the strategically engineered Dirac cones(d)
Band diagram when the inclusion is rotated through an angle

of 20◦. A band-gap highlighted in green emerges from the
symmetry breaking perturbation at Dirac points.

see Fig. 3. Here we use “gapless" to refer to the cross-
ing of the concave and convex (opposite parity) modes. This
distinguishes valley-Hall systems, that are topological, with
those that are not and have coupled edge states; for example,
the armchair termination within hexagonal structures produce
gapped edge states that are, in turn, less robust33.

The gapless nature of the states, and in turn the applicabil-
ity of the Gauss–Bonnet theorem, is contingent upon the ter-
mination chosen containing projections of valleys with iden-
tical sgn(Cv). Unique to this specific square structure, the dif-
ferent parity eigenmodes belong to the same interface (see
Fig. 3), rather than different interfaces. This result arises
due to the mirror-symmetry relationship between the media

either side of the interface in Fig. 3. This also implies
that a right-propagating mode along one of the interfaces is
a left-propagating mode on the other however, importantly,
both states have opposite parity and hence remain orthogo-
nal. This phenomena does not occur for hexagonal structures
where the different parity eigenmodes belong to different in-
terfaces. This relationship between the two interfaces allows
for propagation, within our square structure, that is ordinarily
forbidden within graphene-like structures. Coupling between
modes, that are hosted along different interfaces, is crucial for
energy navigation around sharp corners17 and within complex
topological domains9,13,14,16. Further explanation for this phe-
nomenon can be found in26,27.

FIG. 3: Valley-Hall edge states: Band diagram for a ribbon
with the upper/lower inclusions rotated

clockwise/anti-clockwise. The real parts of the even and odd
eigenmodes within the band-gap are shown (in red) as are

several close-by ribbon modes (also in red). The blue curves
are from Fig. 2(d), i.e. bulk modes along ΓN. Numerically,
using finite elements, we take a long ribbon of N inclusions,

apply Dirichlet boundary conditions top and bottom and
extract the modes decaying away from the interface. The
colormap for eigenmodes represents the normalized water

elevation.

Experiments —The propagation of water waves is imaged
at the surface of the water tank of Fig. 1. A mechanical pad-
dle holding a circular cylinder is shaken at a controlable fre-
quency. Cylindrical waves originating from the monopolar
source are observed numerically and experimentally in Fig.
4(a, e). The experimental setups for a topologically nontrivial
interface, with two different lengths, are shown in Figs. 4(b,
f); the upper/lower half has square inclusions rotated clock-
wise/ anti-clockwise in order to break the mirror symmetries
and generate the valley-edge states required. Images were ac-
quired by a high speed camera and post processed using a
cross-correlation algorithm1; each image was discretized into
360 areas each composed of 16 pixels.

Full-wave numerical simulations, performed using COM-
SOL Multiphysics (a commercial finite element scheme), for
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FIG. 4: Valley-Hall edge states: Experiments, and simulations. (a,d) Experimental set-up showing the top view of the water
surface perforated by 4×8 and 8×8 square rigid inclusions respectively. (b,e) Corresponding numerical calculations; (c,f)

Experimentally observed wavepatterns. These valley-Hall states are generated by a monopolar source operating at a frequency
of 7.3 Hz and placed 6 cm from the domain wall edge and propagate from left to right between inclusions rotated by 20◦

clockwise and counter-clockwise.

tightly confined valley-Hall edge states, Figs. 4(c, d), show
excellent agreement with the experiments, Figs. 4(g, h), de-
spite our model not taking into account contact-line effects
that occur between the water and the solid pillars, viscos-
ity or nonlinearity. These square structure valley-Hall edge
states have longer-wavelengths than their hexagonal coun-
terparts and hence the distance between the pillars is sub-
wavelength. A frequency modulated monopolar source is
generated that ignites the even-parity valley-Hall edge state.
The observed patterns are associated to the surface curvature
where the coloured regions are indicative of the vertical ele-
vation of the water level. The localisation of the topological
edge state is clearly evident when comparing two interfaces
of differing lengths, i.e. four or eight squares in Figs. 4(c,
f). Notably, the valley-Hall state that propagates across four
columns, Fig. 4(c), radiates almost isotropically upon exit. In
the absence of any rods the energy would radiate isotropically
away from the source34. The broadbandedness of this effect
is demonstrated via the experimental results shown in34. The
tight-confinement of these dispersive water waves, within a
strategically designed square structure, is a highly nontrivial
and unique observation.

We now strategically extend our earlier design, Figs. 4(b,
f), to engineer four structured quadrants that results in a three-
way topological energy-splitter, Fig. 5. We rotate the bottom-

right and top-right inclusion sets anti-clockwise and clock-
wise, respectively, thereby creating four distinct domain walls
upon which the valley-Hall states reside. The monopolar
source triggers a wave, from the leftmost interface, into up-
ward and downward modes along with continued rightward
propagation. Incidentally, the most pronounced displacement
pattern is along the two geometrically distinct horizontal inter-
faces. This continued rightward propagation is forbidden for
hexagonal systems9,13,14,16. For coupling between the incident
mode and the right-sided mode the chirality’s must match and
this does not happen for hexagonal structures. Contrastingly,
this mismatch in chirality is overcome for the square struc-
ture as the right-sided interface is the reflectional partner of
the left-sided interface. Hence, the incident mode need only
to couple to itself in order to continue it’s rightward propa-
gation. This subtle relationship between the mirror-symmetry
generated Dirac cones, and the subsequent, mirror-symmetry
related interfaces allows for propagative behaviour not read-
ily found within the valleytronics literature, Fig. 5. Note that
Fig. 5 is a simulation as, unfortunately, the experiments suf-
fered from a capillarity effect leading to enhanced dissipation
that resulted in inconclusive experimental results.

Conclusion —We have experimentally shown the existence
of topological valley-Hall transport for gravity-capillary wa-
ter waves within a non-hexagonal structure. We have also
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FIG. 5: Numerical illustration for a three-way splitter at 7.3
Hz: Four quadrants of alternately squares rotated clockwise

and counter-clockwise. (a) has no losses whilst (b)
incorporates attenuation introduced by considering a complex
wave velocity with 2% imaginary part relative to the real part.

simulated a three-way topological multiplexer for the same
highly-dispersive system. These demonstrations open up a
new way for design in energy transport: the conventional sym-
metry constraints associated with hexagonal structures can be
relaxed leading to richer designs of waveguides and multiplex-
ers within highly-dispersive systems.
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