
A Comparative Study of Deep Learning Architectures
for Detection of Anomalous ADS-B Messages*

Ralph Karam1, Michel Salomon1, and Raphaël Couturier1

Abstract— Since the 1920’s, air traffic is becoming more
prevalent by the year which results in a steady increase of the
number of aircrafts roaming the airspace. This requires the
expansion of the air surveillance systems in order to be able
to manage each one of these aircrafts. Such an accommodation
is planned to be implemented using different technologies and
notably the Automatic Dependent Surveillance Broadcast (ADS-
B) system. The ADS-B protocol is based on the idea that
aircrafts as well as air traffic controllers communicate with each
other using messages. However, for practicality reasons, those
messages are not encrypted thus malicious messages can be
injected. Hence, these attacks need to be detected to ensure the
safety of the protocol. In this paper, we evaluate deep learning
architectures for the purpose of detecting anomalous/malicious
ADS-B messages, especially LSTM architectures which appear
to be the most promising ones.

I. INTRODUCTION

Air transport has witnessed a continuous growth over the
years and that is still ongoing. According to the International
Air Transport Association, trends suggest that the number
of passengers could reach more than 8 billion in 2037.
Obviously, the Air Traffic Control (ATC) will have to be able
to accommodate the corresponding growth in the number of
flights. Therefore, a boost in the capacity of the surveillance
systems is needed while simultaneously maintaining high
safety levels. To address this challenging target the Inter-
national Civil Aviation Organization (ICAO) adopted in the
early 2000s the Global Air Navigation Plan (GANP). Since
its introduction, the GANP has evolved continuously to serve
as a worldwide reference to transform the air navigation
system in an evolutionary manner. The final objective for
the ICAO is to achieve a global interoperable air navigation
system, for all users during all phases of flight, that meets
agreed levels of safety, provides for optimum economic
operations, and is environmentally sustainable.

Among the surveillance technologies present in the ICAO
GANP, the Automatic Dependent Surveillance Broadcast
(ADS-B) system is supposed to become a cornerstone tech-
nology in air transportation systems [1] like the American
one called NextGen. In fact, the purpose of ADS-B is to
provide an Air Traffic Management / Control (ATM/ATC)

*This work was supported by the DGA (French defence procurement
agency) in the context of the GeLeaD project (project number ANR-
18-ASTR-0011) related to the ANR ASTRID research program (specific
support scheme for research works and innovation defence). It was also
partially supported by the EIPHI Graduate School (contract ANR-17-EURE-
0002). Computations have been performed on the supercomputer facilities
of the ”Mésocentre de Franche-Comté”.

1R. Karam, M. Salomon, and R. Couturier are with FEMTO-ST In-
stitute, Univ. Bourgogne Franche-Comté (UBFC), CNRS, France. e-mail:
ralph.karam,michel.salomon,raphael.couturier@univ-fcomte.fr.

surveillance system with a more accurate and precise repre-
sentation of the 3D position of an aircraft during its on-
departure, en-route, and on-arrival operations. Practically,
an aircraft broadcasts messages (thanks to an ADS-B Out
transmitter) over time (at a data rate of at most 1 Mbit/sec),
with each message which can contain different kinds of
information like its altitude, velocity, and so on. To compute
the position a Global Navigation Satellite System (GNSS) is
used, typically Global Positioning System (GPS) satellites.

ADS-B messages are received by other aircrafts in the
immediate vicinity and reachable ATM facilities on the
ground, allowing a visualization on a controller’s screen
like the one that would produce a secondary radar. A main
objective of ADS-B is to improve the surveillance coverage
in areas which have low or no radar coverage. Some air
navigation service providers also wish to deactivate radar
facilities in some areas, first to save costs due to maintenance
and second to reduce the dependence of ATM/ATC on
conventional radar. Concerning information flow, there are
two main parts in ADS-B: ADS-B Out and ADS-B In. While
the first one refers to an aircraft broadcasting its altitude and
other information, allowing to track live flights, the latter
refers to an aircraft receiving messages from other aircraft in
its neighbourhood and from the ATM/ATC ground network.
ADS-B In is more precisely devoted to the reception of traffic
and weather datalinks. Thus, in the context of a surveillance
system, ADS-B Out is of interest to air traffic controllers,
while ADS-B In is rather of interest to aircraft pilots. Fig. 1,
issued from Global Aerospace Design Corporation website,
illustrates the overall information flow scheme.

The design of the ADS-B system was mainly driven

Fig. 1. Information flow in ADS-B system (illustration from Global
Aerospace Design Corporation website)



by cost, surveillance coverage, and accuracy, with limited
security considerations. As a result, ADS-B, which is now
widely deployed, is a system prone to vulnerabilities and
threats. Typical minimal security services to protect com-
munication protocols are missing since there is no message
authentication or encryption and no device authentication.
These lacks open major flaws since they allow an attacker to
access classical spoofing and replay attacks, to eavesdrop on
message, and the ability to inject or alter messages by using
an unauthorized ADS-B device [2].

This paper focuses on attacks that alter the semantics of
the ADS-B data while preserving their syntactical correctness
and logical consistency. This kind of cyberattacks, known
as False Data Injection Attacks (FDIAs), can potentially
have high impacts on national security and many economic
sectors. Indeed, several civil and defense control systems,
such as SCADA, the IoT or those of autonomous vehicles
[3], etc., might be misled by FDIAs. For example, smart grid
hacking [4] in electricity networks attempts to send back to
the controller (SCADA system) fake sensor measurements
to alter its operation. Hence, the purpose of our study is to
mitigate such threats by designing a tool able to detect FDIA
attacks that target the ADS-B system.

Over the past years machine learning and particularly its
hip branch known as deep learning [5], [6] has received
an increasing interest in the cybersecurity field. Malware
detection and network intrusion detection are two areas
where deep learning-based approaches have produced major
improvements over rule-based and classic machine learning-
based solutions. In fact, these security threats can be consid-
ered as an anomaly detection which is a common problem
addressed by machine learning. Obviously, a key point for the
success of deep learning is the access to relevant data since
it needs extensive datasets. In this work, we will consider
a very basic attack scenario on ADS-B messages, namely a
rough change of the altitude value in some messages.

The remainder of this paper is organized as follows.
Section 2 gives a brief summary of the techniques present in
the literature used for anomaly detection. The next section
presents the studied machine learning architectures for the
case of alteration scenario targeting the altitude value in
ADS-B message. Section 4 presents the experimental work
done with these models. Finally, we draw some conclusions
for the design of a new architecture for FDIAs detection.

II. RELATED WORK

There exists a considerable literature on anomaly detection
using machine learning techniques (mainly unsupervised).
These techniques belong to two main classes: classical
artificial intelligence methods and neural networks based
methods. In the context of anomaly detection in the aviation
domain, Basora et al. [7] have proposed a taxonomy of
classical methods that includes neural networks methods.
But as they noticed, the recent advances are mainly issued
from the field of neural networks and more particularly deep
learning. Therefore we think it is more relevant to consider
neural networks aside from other classical methods.

A. Classical Artificial Intelligence Methods

These techniques rely on different approaches: local out-
lier factor computation, clustering, isolation forest, statisti-
cal methods, boundary based methods, principal component
analysis (PCA) and its variants.

First, the local outlier factor (LOF) is a score used to
detect anomalous points. Intuitively, the LOF score compares
the local density (point density) of a specific data point
relatively to its k nearest neighbours (k is a hyperparameter
to be fixed) and if it detects that it has a lower density
then it is considered as an outlier [8]. Second, a clustering
denotes the act of partitioning a dataset in an unsupervised
manner. This partitioning results in multiple clusters which
group data points together according to a similarity measure
such as a pairwise distance. Many clustering algorithms were
used for anomaly detection like: DBSCAN [9], HDBSCAN
[10], OPTICS [11] (these three algorithms give a cluster for
anomalies and one for normal data), or IMS [12] (which uses
the distance of points from the centroid of their associated
clusters as an anomaly measure: distant points are anoma-
lous). Third, an isolation forest [13] rely on the idea that
outliers are faster to isolate than inliers. Isolation forests use
a set of decision trees for classifying each point. The shorter
the path used for deciding if the studied point is anomalous,
the more likely it is an outlier. Fourth, in statistical methods
of anomaly detection (found in Pimentel et al.’s review [14])
the data is assumed to follow a normal distribution. These
methods rely on the fact that points which are far from the
mean of the distribution should be considered as outliers.
Fifth, in boundary methods a boundary between normal
and anomalous data is learned from training data for the
subsequent identification of outliers. In this kind of methods,
one notable technique used is the one class support vector
machine [15]. This method uses a linear boundary to separate
data. To ensure the presence of such a boundary, the data is
projected in a linearly separable space (kernel trick). Finally,
in PCA methods data points are considered anomalous if
their last principal components are relatively large [14].

B. Neural Networks based Methods

Many techniques of anomaly detection in time series
belong to neural network methods such as: autoencoders
(AE), recurrent neural networks (RNN), convolutional neu-
ral networks (CNN), and generative adversarial networks
(GAN). Some proposed architectures also combine some of
them, typically a combination of RNN and CNN.

Autoencoders [16] are neural networks used to encode
input data into a compressed representation in a latent space
and then to reconstruct the data such as the output data is
the closest possible to the input one. These autoencoders
are made of two blocks. First, the encoder maps the input
data in a latent space by using several stacked downsampling
layers up to the bottleneck layer where the data lies in
the latent space. The second block, the decoder, maps back
the low-dimensional representation of the data starting from
bottleneck layer thanks to upsampling layers. In the case of
anomaly detection, autoencoders are usually trained solely



on normal data such that they can identify outliers using
the reconstruction error values. More precisely, once trained
such an autoencoder cannot properly reconstruct anomalous
data and thus it allows to detect them when the similarity
between the input and output data is large. In the literature
autoencoders are usually combined with other architectures.
For example, Malhotra et al. [17] combined long short-
term memory (LSTM) networks (recurrent neural networks
suitable for sequential data) with autoencoders in order to be
able to detect outliers in time series. Zhang et al. [18] merged
convolutional architectures with LSTM and autoencoders for
outlier identification. They used a convolutional encoder to
extract spatial information, an attention based ConvLSTM
to extract temporal patterns, and a convolutional decoder for
the reconstruction of the input. A ConvLSTM is a variant
of LSTM in which convolution operations replace internal
matrix multiplications within LSTM unit. In [19], to detect
outliers a multi-modal deep autoencoder approach was used.
In this architecture, multiple time series data are input into
the network: a sliding window is used on the time series
simultaneously. Time series portions undergo a concatenation
into one vector which is then entered into the autoencoder.
Finally the reconstruction error is used to detect outliers.

Recurrent neural networks (more specifically stacked
LSTM networks) can be used to detect anomalies in time
series using a regression [20]. These networks learn to obtain
the following values of the time series using a training set of
normal data. After the learning step, the network can detect
outliers by computing the residuals (errors). When a residual
is above a certain threshold then an anomaly is detected.
In [21], CNN networks and hybrid networks (CNN-RNN,
CNN-LSTM, CNN-GRU) were used for network intrusion
detection using a supervised learning approach. In their
paper, TCP/IP packets are modeled as a time series and 1D
convolutional filters are used. Each packet is transformed
into a vector which is input into the network for training and
then testing. In [22] a GAN is used for time series anomaly
detection. A GAN is a network which tries to generate fake
data which cannot be distinguished from real data. This is
done by training a generator to generate fake data and a
discriminator to detect the fake data. When the discriminator
cannot do the distinction anymore the training stops. In
[22], after training the GAN with normal time series data,
the network can detect outliers by using an anomaly score.
This anomaly score is equal to residual plus discriminator
error. Note that the residual is the error computed when the
generator tries to generate the test data.

More specifically, in the context of anomalous ADS-B
message detection, Habler and Shabtai have proposed a
LSTM autoencoder [23]. This latter models a flight route
through the analysis of sequences of normal messages and,
as explained above, evaluates the deviation of a received
message from the legitimate flight route. Experiments were
completed while considering six flight routes and various
message alterations showed the relevance of their proposal.
Another interesting work is the one due to Cretin et al. [24]
who studied the utility of DSL-based testing against FDIAs.

III. STUDIED ARCHITECTURES

As noticed previously, in ADS-B protocol, aircrafts broad-
cast messages over time during their operations. Conse-
quently, the data to process to detect a FDIA targeting an
aircraft consist in a set of time series obtained after decoding
the received ADS-B messages. The fact that the data have
a temporal evolution indicates that machine learning models
able to keep information from the past should be the most
suited, namely neural networks with a recurrent architecture.
Natural candidate deep learning architectures for examina-
tion are therefore the LSTM architecture and its variants.
Supervised learning will be applied using these architectures
since it is rarely investigated in the literature for the case
of anomaly detection. Apart from neural networks we will
also investigate a Gradient Boosting method, a technique
attracting attention for its prediction speed and accuracy.

A. Gradient Boosting (XGBoost)

XGBoost, which stands for eXtreme Gradient Boosting
[25], is a recent gradient boosting algorithm designed for
speed and performance. Gradient boosting algorithm is a
kind of machine learning technique suited for solving re-
gression and classification problems. This kind of algorithm
produces a prediction model in the form of an ensemble of
weak prediction models, typically decision trees.

B. Long Short-Term Memory (LSTM)

A LSTM [26] is a recurrent network of cells / units with
short-term and long-term memory. The idea associated with
the LSTM is that each computational unit is linked not only
to a hidden state h but also to a state c of the cell that
acts as a memory. The transition from ct−1 to ct is done
by constant gain transfer equal to 1. In this way, errors are
propagated at previous steps (up to 1,000 steps in the past)
without gradient vanishing phenomenon. The status of the
cell can be modified through a door that allows or blocks
the update (input gate). Similarly, a door controls whether
the cell state is communicated at the output gate of the unit.

C. Convolutional Neural Network (CNN)

A convolutional neural network [27] is a rather different
type of neural network compared to a LSTM. Indeed, a CNN
is a well-known feed-forward neural network in the deep
learning field, in which the pattern of connection between the
neurons is inspired by the visual cortex of the animals. The
neurons in this region of the brain are arranged so that they
correspond to overlapping regions when the visual field is
paved. Even if CNNs are mainly used for image processing,
they can also be used for other kinds of input data like audio.
In our case study, we have used a CNN before using a LSTM
in order to extract features from input data.

IV. EXPERIMENTAL WORK

In order to perform a first evaluation of the ability of
different deep learning models to detect FDIAs in the ADS-
B case study, we have performed some experiments using
data in which the altitude values have been roughly altered.



Therefore we took some individual ADS-B messages of
several aircrafts and we changed the altitude by adding to
the original value a random number equal to + or −(800 +
random(200)) feets. Some altitude values are thus increased
by adding a value between 800 and 1,000 ft, while others
are decreased with a value in the same range. Overall, for a
given aircraft approximately one out of 30 messages has an
altered altitude value. The data used for training and testing
respectively consist of messages from 10 and 4 aircrafts
(66, 172 messages for training and 19, 827 for testing). Since
preexisting deep learning architectures are used for anomaly
detection in our study, and there is no need for low level
manipulation of neural networks, the Keras python library
is used to build deep learning anomaly detection tools. For
more general machine learning techniques such as gradient
boosting the Sklearn python library is used.

A. Data Acquisition

The data used to evaluate the different models are issued
from The OpenSky Network [28], a community-based re-
ceiver network which continuously collects air traffic surveil-
lance data. In order to obtain the data needed for the
anomaly detection, a data pipe based on several python
scripts was developed in order to enable the querying of
the OpenSky database. More precisely we downloaded raw
ADS-B messages and decoded them using the traffic and
pyModeS python libraries. Currently, to build our dataset
we have used air traffic surveillance data collected on the
13th of January 2019 between 1PM and 2PM GMT near the
swiss border.

B. Data Format

The ADS-B protocol comes in 4 different message types:
Aircraft Identification, Airborne Position, Airborne Velocity,
and Surface Position. Each type of message contains its own
information and is sent by the aircraft transponder in a fixed
period of time (5 seconds for Identification messages and 0.5
seconds for the others). For example, an ADS-B message
of type Surface Position contains the following information:
altitude, ground speed, track, latitude, longitude.

C. Confusion Matrix

To assess the relevance of the different machine learning
models we used confusion matrices to evaluate their accuracy
results. A confusion matrix sums up the prediction results of
a classifier. Such a matrix is constructed as follows: each line
corresponds to a real class and each column corresponds to
a predicted class. For example, in our case where there are
two classes (there is an attack / Positive — the altitude value
has been altered — or not / Negative) and the matrix looks
like: [

TN FP
FN TP

]
,

where, in the case of anomalous messages detection,
• TN represents the number of True Negative predictions,

in other words the number of correctly detected mes-
sages without attack;

lookback=4

lookback=4

lookback=4

m
es

sa
g
e 

2

m
es

sa
g
e 

4

m
es

sa
g
e 

3

m
es

sa
g
e 

5

m
es

sa
g
e 

6

m
es

sa
g
e 

7

Classification:
normal or anomalous message

normal or anomalous message

Classification:

m
es

sa
g
e 

1

Classification:
normal or anomalous message

Sample

m
es

sa
g
e 

8

m
es

sa
g
e 

9

m
es

sa
g
e 

1

m
es

sa
g
e 

2

m
es

sa
g
e 

3

m
es

sa
g
e 

4

m
es

sa
g
e 

5

m
es

sa
g
e 

6

m
es

sa
g
e 

7

m
es

sa
g
e 

8

m
es

sa
g
e 

9

m
es

sa
g
e 

1

m
es

sa
g
e 

2

m
es

sa
g
e 

3

m
es

sa
g
e 

4

m
es

sa
g
e 

5

m
es

sa
g
e 

6

m
es

sa
g
e 

7

m
es

sa
g
e 

8

m
es

sa
g
e 

9

Fig. 2. Classification of the last message of three successive samples

• FN, which stands for False Negative, counts the number
of altered messages which are classified as not attacked;

• TP means True Positive and thus represents the number
of attacked messages which were correctly detected;

• Finally, FP (for False Positive) corresponds to the
number of messages without alterations classified as
attacked messages.

The objective is then to find a classifier whose predictions
produce a diagonal matrix.

In the context of the classification of messages, we define
an input sample as a sequence of messages and call its
size lookback. Each sample is then used to classify its last
message as normal or anomalous as shown in Fig. 2.

As an illustration of application of the confusion matrix
to evaluate the accuracy of a classifier, we present the
evaluation of the XGBoost algorithm for anomaly detection.
The evaluation of this algorithm is straightforward since
XGBoost is directly available in python as a module. Using
a lookback value of 50, the obtained confusion matrix is:[

14, 400 4, 557
17 657

]
.

To obtain the number of samples used for testing, the
following formula can be used: S = T − N × (L − 1),
where S is the number of test samples effectively used to
evaluate a classifier, T is the total number of message in
testing set, N is the number of aircrafts whose messages



are used for testing, and L is the lookback value. Using the
previous formula, given the experiment setup (T = 19, 827,
L = 50, N = 4), the number of samples used to evaluate the
XGBoost algorithm is equal to 19, 631. Note that the sum
of the elements of the confusion matrix is also equal to the
number of samples used for testing i.e. 19, 631.

According to the confusion matrix, we can observe that the
number of FP is very large implying a low precision (12.6%),
which means that XGBoost predictions are quite mitigate.
We plan to investigate in future works the optimization of
the hyperparameters of the XGBoost algorithm in order to
obtain an improved performance. In addition to the XGBoost
algorithm, we investigated different deep learning architec-
tures

D. LSTM Architecture Evaluation

A stacked LSTM architecture with two layers has been
considered. As we need to start with a fixed number of units
in each layer, we have chosen 256 units in the first layer
and 128 units in the second layer. Later we will see the
influence of the LSTM architecture by considering different
settings for the sizes of the two layers.

First, different optimizers have been compared: ADAM,
ADAMAX, NADAM, RMSPROP, and the classical SGD.
The parameters controlling the training are set as follows:
the maximum number of epochs is set to 3, 000, an early
stopping condition on the training loss error is set to 5e−4,
and a lookback value of 15 is chosen. Table I, which presents
the obtained respective Precision and Recall, as well as the
F-score and the number of epochs needed to converge, shows
that NADAM is the optimizer providing the better detection
performance. Indeed it has the highest percentages, which
means the best detection ability, and it is the fastest optimizer
to converge because it requires only 312 epochs. Note that
in this case the number of messages (or samples) used for
testing is equal to 19, 771 while it was 19, 631 for XGBoost.
This increase in the number of samples is explained by the
lower lookback value (15 versus 50).

Focusing on NADAM, we can observe that the size of the
lookback influences greatly the number of epochs to reach
the convergence and the quality of the prediction. According
to our experiments, as shown in Table II, a lookback value
of 35 allows to obtain the best results but it requires a larger
number of epochs to converge. The sizes of the different
layers appear to have also a great impact on the detection
ability of the two layer LSTM architecture. Table III, which

TABLE I
EVALUATION OF DIFFERENT OPTIMIZERS ON A STACKED LSTM

(LAYERS OF 256 AND 128 UNITS - LOOKBACK VALUE OF 15)

Optimizer %Precision %Recall %F-score Number of epochs
for convergence

ADAM 71.6 96.62 82.25 788
RMSPROP 55.1 84.88 66.82 2,223
SGD did not converge
NADAM 82.6 97.65 89.50 312
ADAMAX 71.58 97.65 82.61 536

TABLE II
EVALUATION OF DIFFERENT LOOKBACK VALUES ON A STACKED LSTM

(LAYERS OF 256 AND 128 UNITS - NADAM OPTIMIZER - *: EARLY

STOPPING LOSS SET TO 5e−3)

Lookback %Precision %Recall %F-score Number of epochs
for convergence

5∗ 91.91 96.63 94.21 685
10 76.48 98.38 86.06 1,635
15 80.05 98.38 88.27 314
20 81.67 97.79 89.01 338
25 76.90 97.05 85.81 598
30 83.83 98.53 90.59 288
35 93.04 98.82 95.84 1,871
40 86.57 98.37 92.09 1,477

TABLE III
EVALUATION OF DIFFERENT STACKED LSTM ARCHITECTURES (TWO

LAYERS - NADAM OPTIMIZER - LOOKBACK VALUE OF 20

Layer (units) %Precision %Recall %F-score Number of epochs
1 2 for convergence
16 8 did not converge
32 16 did not converge
64 32 91.59 99.41 95.34 1,134
128 64 74.36 98.23 84.64 1,339
256 128 81.67 97.79 89.01 20,598

presents the percentages gained for different layer sizes
configurations, highlights a best setting of 64 units for the
first layer and 32 for the second one.

E. Bidirectional LSTM Evaluation

Previously we have considered a unidirectional LSTM
architecture, but it is possible to use a bidirectional ar-
chitecture [29]. In that case, the network consists of two
different hidden layers: one that processes the input sequence
forward, like in the unidirectional architecture, whereas the
other one processes it backward. Using a bidirectional LSTM
made of two unidirectional LSTM layers (256 units in
first layer and 128 units in second one) we obtained the
following result with NADAM optimizer and lookback set
to 20: 77.32 %Precision, 84.54 %Recall, and 79.94 %F-score
after 1, 531 epochs. Clearly this kind of architecture is not
interesting.

F. CNN Architecture

Convolutional neural networks have been used for many
years to make very efficient image classifications. In our case
study, considering a lookback value of 20 and the temporal
data of an aircraft consisting of 5 different multivariate data
series (altitude, latitude, etc.), we can see them as a 2D image
of size 20×5. In practice, a convolutional layer followed by
dense layers can be used. However, such a network converges
very slowly and cannot reach the required precision in
3, 000 epochs. Nevertheless, it provides the following result:
84.46 %Precision, 89.69 %Recall, and 87 %F-score, which
is not surprising because CNNs are not designed for this kind
of classification



TABLE IV
EVALUATION OF A 1D CNN CONNECTED TO A STACKED LSTM FOR

DIFFERENT LOOKBACK VALUES (THREE LAYERS - NADAM OPTIMIZER)

Lookback %Precision %Recall %F-score Number of epochs
for convergence

10 77.32 96.62 85.90 565
15 84.38 98.38 90.85 601
20 83.19 97.64 89.84 737

G. Using CNN and LSTM Simultaneously

It is possible to make one step of 1D CNN and then
to feed its output in a LSTM. This kind of architecture
is sometimes used with time series. As a case study, we
evaluated an architecture made of 16 convolution kernels of
size 3 which are entered into a 3 layers LSTM (256, 128, and
64 units respectively in layer 1, 2, and 3). The results of the
evaluation are summarized in Table IV. Choosing a first layer
of convolutional neurons provides good results. Currently the
optimal size has not been investigated. Nevertheless, this kind
of architecture will be more deeply studied in the future.

V. CONCLUSION AND FUTURE WORKS

We have presented a first evaluation of the ability of some
machine learning models, and more particularly deep learn-
ing ones, to detect a rough FDIA consisting in the alteration
of the altitude value. The eXtreme Gradient Boosting algo-
rithm, the well-known LSTM architecture, its bidirectional
variant and a combination with a layer of convolutional
neurons in order to change the representation of the input
data, and finally, a CNN by viewing the input data as
an image, were evaluated. The experiments show that, as
expected due to the temporal evolution of the data, the LSTM
architecture appears to be the most suited for the considered
problem. Different optimizers, lookback values, and settings
of the LSTM architecture have been compared. The best
detection results have been obtained with a stacked LSTM of
two layers composed of 64 units in the first one and 32 in the
second, a lookback of 20 time steps, trained with NADAM
optimizer. It should be noticed that these results are quite
good considering that only 10 aircrafts have been used for
the training. In the future, a larger number of aircrafts will
be considered and a careful tuning of the hyperparameters
studied. To sum up, this experimental study has yielded
promising results which will be deepened in future works.

REFERENCES

[1] M. Avila, ”Global Air Navigation Surveillance Consideration”,
NAM/CAR/SAM ADS-B Implementation Meeting/Workshop, Lima,
Peru, 13-16 November 2017.

[2] A. Costin and A. Francillon, “Ghost in the air (traffic): On insecurity
of ads-b protocol and practical attacks on ads-b devices,” Black Hat
USA, pp. 1–12, 2012.

[3] M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal, H. M.
Zhang, J. Rowe, and K. Levitt, “Security vulnerabilities of connected
vehicle streams and their impact on cooperative driving,” IEEE Com-
munications Magazine, vol. 53, pp. 126–132, 6 2015.

[4] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review
of false data injection attacks against modern power systems,” IEEE
Transactions on Smart Grid, vol. 8, pp. 1630–1638, 7 2017.

[5] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[7] L. Basora, X. Olive, and T. Dubot, “Recent advances in anomaly
detection methods applied to aviation,” Aerospace, vol. 6, p. 117, Oct
2019.

[8] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: iden-
tifying density-based local outliers,” in ACM sigmod record, vol. 29,
pp. 93–104, ACM, 2000.

[9] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.,” in Kdd, vol. 96, pp. 226–231, 1996.

[10] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Pacific-Asia conference on
knowledge discovery and data mining, pp. 160–172, Springer, 2013.

[11] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
ordering points to identify the clustering structure,” in ACM Sigmod
record, vol. 28, pp. 49–60, ACM, 1999.

[12] D. L. Iverson, R. Martin, M. Schwabacher, L. Spirkovska, W. Taylor,
R. Mackey, J. P. Castle, and V. Baskaran, “General purpose data-driven
monitoring for space operations,” Journal of Aerospace Computing,
Information, and Communication, vol. 9, no. 2, pp. 26–44, 2012.

[13] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008
Eighth IEEE International Conference on Data Mining, pp. 413–422,
IEEE, 2008.

[14] M. A. Pimentel, D. Clifton, L. Clifton, and L. Tarassenko, “A review
of novelty detection,” Signal Processing, vol. 99, pp. 215–249, 2014.

[15] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection,” in Advances
in neural information processing systems, pp. 582–588, 2000.

[16] P. Baldi, “Autoencoders, unsupervised learning, and deep architec-
tures,” in Proceedings of ICML workshop on unsupervised and transfer
learning, pp. 37–49, 2012.

[17] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “Lstm-based encoder-decoder for multi-sensor anomaly
detection,” arXiv preprint arXiv:1607.00148, 2016.

[18] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for
unsupervised anomaly detection and diagnosis in multivariate time
series data,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 1409–1416, 2019.

[19] K. K. Reddy, S. Sarkar, V. Venugopalan, and M. Giering, “Anomaly
detection and fault disambiguation in large flight data: a multi-modal
deep auto-encoder approach,” in Annual Conference of the Prognostics
and Health Management Society, 2016.

[20] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term mem-
ory networks for anomaly detection in time series,” in Proceedings,
p. 89, Presses universitaires de Louvain, 2015.

[21] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying con-
volutional neural network for network intrusion detection,” in 2017
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pp. 1222–1228, IEEE, 2017.

[22] D. Li, D. Chen, J. Goh, and S.-k. Ng, “Anomaly detection with
generative adversarial networks for multivariate time series,” arXiv
preprint arXiv:1809.04758, 2018.

[23] E. Habler and A. Shabtai, “Using lstm encoder-decoder algorithm for
detecting anomalous ads-b messages,” Computers & Security, vol. 78,
pp. 155–173, 2017.

[24] A. Cretin, B. Legeard, F. Peureux, and A. Vernotte, “Increasing the
resilience of atc systems against false data injection attacks using dsl-
based testing,” in Proc. Doctoral Symp.(ICRAT), pp. 1–3, 2018.

[25] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794, ACM, 2016.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural
networks, vol. 3361, no. 10, p. 1995, 1995.

[28] “The OpenSky network – Free ADS-B and Mode S data for research.”
https://opensky-network.org.

[29] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
networks, vol. 18, no. 5-6, pp. 602–610, 2005.


