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Abstract

Due to the growing number of publications and applications based on
the exploitation of Bloch Surface Waves and the numerous errors and ap-
proximations that are used to evaluate their properties, we judge important
for the successful interpretation and understanding of experiments to im-
plement an adapted formalism allowing to extract the relevant information.
Through comprehensive calculations supported by an analytical develop-
ment, we establish generalized formula for the propagation length and the
Goos-Hänchen shift, which are different from what is usually employed in
the literature. The relative errors in the estimation of these two quantities
are evaluated to vary between 50% and 200%. The effect due to a slight
deviation of the angle of incidence or of the beam-waist position with re-
spect to the structure are studied showing high effects on the Bloch Surface
Waves properties. This formalism is adapted to any polarization-dependent
Lorentzian-shape resonant structures illuminated by a polarized Gaussian
beam.

Introduction
Quantification of the Bloch Surface Wave (BSW) properties is very important to
predict its effectiveness in being used in integrated or in surface optics. BSWs
are electromagnetic surface modes used to design different configurations for ap-
plications ranging from sensing1–3 to surface-optics4–11 or micro-manipulation.12,13

BSW is of a great interest in integrated optics14,15 due to its very large (> 3 mm16)
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Propagation Length (PL) and the possibility to be excited in both Transverse Elec-
tric (TE) and Transverse Magnetic (TM) polarizations contrarily to surface plas-
mon. Similarly to the latter, BSW can either be excited in the Kretschmann con-
figuration (total internal reflection)17,18 or more simply by diffraction.19,20 How-
ever, 3D BSW electromagnetic field distribution has never been theoretically re-
ported except very recently by pure numerical methods (Finite Difference Time
Domain8 or Finite elements21). This is a prerequisite for evaluating the two most
important properties of BSW, namely its propagation length (PL) and lateral or
Goos-Hänchen shift (LGH), which will be defined later. This will be addressed
through two different ways: (a) a rigorous method based on the Transfer Matrix
Method (TMM) combined to the description of a 3D polarized Gaussian beam
by an accurate Plane Wave Expansion (PWE) and, (b) an analytical calculation
of the electromagnetic field associated to the BSW itself. As it will be demon-
strated, both methods converge to the same result that fails the commonly used
formulas in the literature. For the PL, we establish an equation that is widely
valid for any surface wave excited within high quality-factor resonance having a
Lorentzian shape (surface plasmon, Fano, membrane mode, symmetry protected
modes, Bounded In the Continuum (BIC) modes...). For the LGH, we demonstrate
its value to be dependent on the incident beam dimension while it is currently con-
sidered as intrinsic to the structure itself.

On the one hand, several studies16,22–24 used theoretical formulas based on a
development obtained for plane wave illumination.25,26 For example, Soboleva et
al.23 used the formula given in Eq. 1 of that paper to discuss the occurrence
of a giant Goos-Hänchen shift on the reflected beam issued from the excitation
of a BSW. In that paper, the measured reflectance angular spectrum is used to
estimate the Fano profile of the resonance and subsequently operated to evaluate
the lateral shift of the reflected beam. Nevertheless, as in most theoretical stud-
ies,27–29 the approach used to assess the reflected beam distribution is based on the
consideration of one-dimensional angular distribution for the beam (see Eq. 3 of
reference by Soboleva et al.23) assuming that the incident beam is a 2D Gaussian
beam (prismatic) instead of a realistic 3D beam. Such approximation leads to less
reliable physical properties of the studied phenomenon as it will be discussed in
more details below. On the other hand, in diverse studies,22,23,30 the use of the
reflectance spectrum to estimate the BSW properties is somewhat questionable.
In fact, the BSW corresponds to a surface mode that is excited in the total in-
ternal reflection condition meaning that the reflection coefficient is equal to 100%
in amplitude for purely dielectric flat layers. Consequently, the signature of the
BSW excitation on the reflection coefficient only involves its phase but not the
amplitude nor the intensity that is usually experimentally measured. When the
reflectance spectrum exhibits a dip resonance, this gives directly the effective index
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of the BSW (through the tangential wave-vector component) but means above all
that losses occur by scattering or by absorption as explicitly studied by Michelotti
et al.30 In this case, the relationship between the angular width of the reflectance
dip and the BSW properties is no longer intuitive. More, precisely, when ab-
sorption (imaginary part of the dielectric constant) occurs, the dip in reflectance
and the maximum in transmission coefficient do not correspond to the same value
of the angle of incidence (as usually encountered in the case of surface plasmon
resonance). In fact, the mathematical solution corresponding to the extrema of
reflectance and transmission leads to two different values of the angle of incidence
while the analytical expression of these two quantities have the same denomina-
tor.31 Assuming that the angle of incidence is a real value causes a small shift
between their angular positions.

Here we provide theoretical models capable of accurately determine the two
main properties of surface wave that are vital for the interpretation of experimen-
tal results. We also demonstrate the importance of extrinsic factors (illumination
conditions) in determining the Goos-Hänchen shift and the propagation length oc-
curring within the excitation of such surface waves through a generalised formalism
applicable to Lorentzian-shape resonances.

Results
Proposed structure and plane wave analysis. For illustration purposes, we
consider a typical configuration of one-dimensional Photonic Crystal (1D-PhC) by
optimizing its geometry using a plane wave illumination through a very simple
algorithm based on TMM (see details in Supplementary Notes 1 and 2) that links
the electric incident and reflected field amplitudes to the transmitted and back
reflected ones on the interface of two different layers. The total transfer matrix,
which is the product of all single matrices, determines the transmitted and reflected
amplitudes over the entire multi-layered system (see Supplementary Equations S.4
and S.5) taking into account all the geometrical and physical parameters of the
structure (thicknesses and permittivities) and the incident plane wave properties
(polarization, wavelength, angle of incidence). The eigenvalues of this total matrix
are the eigenmodes of the structure that can be simply calculated through basic
inverse matrix algorithm.

We use this TMM method to adapt a multilayer design22,32 that consists of
N -periods of bilayered stacks (see Fig. 1a) to operate at telecom wavelength in
TE polarization. All geometrical parameters are given in the caption of Fig. 1.

Fig. 1b shows the square modulus of the transmitted electric field amplitude
(in logarithmic scale) at the upper interface as a function of the bi-layer number
(N) at λ = 1550 nm. Note that additional Bloch modes (indicated by H1 to
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Figure 1 | Schematic of the studied 1D-Photonic Crystal structure and
transmission properties. a, The incident beam illuminates the structure from
a glass substrate at an angle θm. It is linearly polarized along the y−direction
(Transverse Electric polarization). The bi-layer stack is composed of a layer of
high index media (nh = 2.23) with a thickness dh = 294 nm deposited on a second
layer made in low index material (nl = 1.75) of thickness dl = 240 nm. The total
number of stacks is named N and the structure is terminated by a top layer of
high index material of dtop = 550 3 thickness. b, Transmitted electric intensity
in logarithmic scale versus the number of bi-layers N . Additional modes H1, H2

and H3 occur when N increases corresponding to smaller values of the angle of
incidence. c, Variations of θBSW as a function of the number of bilayers (N) in
blue solid line and its Full Width to Half Maximum (FWHM) variation ∆θ (in
log-scale) in red dashed line. d, Variations of the quality factor Q of the Bloch
Surface Wave excitation with the bilayer number N for different values of the
optical refractive index imaginary part n′′.
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H3 on Fig. 1b) occur inside the PhC structure as discussed in Supplementary
Note 3 and presented on Supplementary Figure 2. The angle of incidence and the
natural logarithm of the Full Width at Half Maximum FWHM) ∆θT of the BSW
resonance are given on Fig. 1c. As expected, the angular position θBSW converges
asymptotically but promptly (N ≃ 7) to the value corresponding to the pole of the
transmission coefficient of the infinite structure. ∆θT varies exponentially with N
(see red with stars line on Fig. 1c) meaning rather similar variations for the BSW
resonance quality factor defined by:

Q =
θBSW

∆θT
(1)

This exponential increase of the Q-factor with N will be very hard to be exper-
imentally verified because, in practice, losses due to scattering by surface defects
and by material absorption lead to a finite value of the Q-factor even if the number
of stacks increases33 (see Fig. 1d). Although such loss mechanism is quite hard to
be quantified, most of the authors agreed to model it by adding a small imaginary
part n′′ to the optical refractive index.

Unfortunately, when introducing such absorption34 through n′′ for all media
(except glass substrate), the BSW angular position remains the same while the
BSW efficiency becomes weaker. In our case, we estimate that BSW excitation is
negligible for n′′ > 10−3. Fig. 1d shows the quality factor Q variations with the
number of b-layers N for different values of the imaginary part n′′. For loss-less
materials, Q tends to infinity as Q = e0.8623N+0.0586 while asymptotic behaviors
occur for n′′ ̸= 0. We have verified that the constants in the last relation only
depend on the effective index associated with the BSW excitation (here neff =
n1 sin θBSW = 1.3928).

To go further through formal calculation, both the Gaussian shape of the illumi-
nation beam and the transmission coefficient of the structure must be analytically
expressed (see Supplementary Notes 4 and 5 respectively). Fortunately, in the case
of a BSW excitation, the transmission coefficient spectrum can be realistically ap-
proached by a Lorentzian function (see more details in the Supplementary Note
5) leading to express it as:

t(kx, ky) =
tmax

1 + 2i
∆k

(kx − kBSW
x )

· 1ky (2)

Where kBSW
x is the tangential wave-vector component associated with the BSW

excitation and tmax is the value of the transmission coefficient for kx = kBSW
x

calculated through the TMM. ∆k is the FWMH of the square modulus of the
reflection or the transmission coefficient given by: ∆k = 2π

λ
n1 cos θm∆θT/R.
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Modeling of the polarized 3D Gaussian beam. In a real experiment, a
finite beam (commonly Gaussian spatial shape) is used to illuminate the multi-
layered structure either by the Kretschmann configuration or by diffraction. To
model such a beam, the plane wave spectrum PWE (or angular spectrum) method
is used by coherently summing the amplitude response of all the plane waves
composing the Gaussian beam (see Supplementary Note 4 for more details). This
can be done over the entire structure even inside the layers. The angular spectrum
of a 3D polarized Gaussian beam has been described since 199935 and verified by
comparison with experimental and/or results based on different methods.35–37 An
extended formalism from linear to elliptical or circular polarized beam is given by
Supplementary Equations S.6 to S.8.

The transmitted electric field distribution associated with the BSW is then
calculated in the direct space Oxyz through the Supplementary Equation S.15.
The latter involves the transmission Jones matrix of the structure that is basi-
cally given by the TMM as t̃(kx, ky) = −TT−1

21 × TT22 (see the Supplementary
Equation S.4). All results calculated through this integral are obtained without
any approximation meaning that the vectorial character of both the incident field
and the transmission coefficient is taken into account. Nonetheless, due to the
resonant character of the transmission, one can reduce the calculation to a scalar
equation by considering only the resonant term of the transmission (for instance
the TE term in our case). Replacing the transmission coefficient through its ex-
pression given by Eq. 2 and after fastidious algebra (see Supplementary Note 5),
the transmitted electric field amplitude is analytically expressed as a function of
the beam-waist W0 and the FWHM (∆k) of the transmission coefficient through:

Et(x, y, z = 0) =

√
I0tmax∆k

4 cos θm
e
−
8∆k cos θ2m x−W 2

0 (∆k)2

16 cos θ2m

×

[
erf

(
4 cos θ2m x−W 2

0 ∆k

4W0 cos θm

)
+ 1

]
e
−

y2

W 2
0 e−ikBSW

x x (3)

Where erf is the error function defined by erf(x) = 2√
π

∫ x

0

e−x2

dx and ∆k is the
FWHM of the transmittance spectrum defined before.

Equation 3 provides all the BSW properties (PL, LGH, maximum efficiency...)
as it will be discussed below.

Numerical simulations. Based on combination of TMM and PWE methods
introduced in the previous section (see Supplementary Equation S.13), one can
calculate the electric field distribution over all the structure for any illumination
direction, beam-waist or polarization. This versatile character is demonstrated
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in Figs 2 that show the electric field intensity distribution in the mean plane of
incidence (Oxz) across the whole structure for a BSW excitation with a Gaussian
beam of, W0 = 10 µm in Fig. 2a, W0 = 30 µm in Fig. 2b and W0 = 1 mm in
Fig. 2c. The spatial shape of the excited BSW greatly depends on the value of
the incident beam-waist W0. When the beam waist is small, only a portion of
the incident energy is coupled to the BSW giving rise to a comet shape for the
intensity distribution of the BSW at the top interface. In this case, the calculation
of the propagation length PL is simple. When W0 increases (Fig. 2b), the angular
aperture of the beam decreases and the overlap with the BSW grows resulting in a
more efficient excitation of the latter. Nevertheless, the comet shape becomes less
evident due to the competition between the propagation length and the beam width
itself. When the beam-waist is very large (Fig. 2c), the comet shape completely
disappears in the face of the Gaussian shape. In all three cases, we can clearly see
that large electric field confinement occurs in the top layer. For the sake of clarity,
the vertical scale in the substrate zone is chosen to be large enough to see both the
incident and reflected beams. The latter is greatly affected by the BSW excitation
and appears to be split into two asymmetrical beams when the incident beam
waist is small enough due to the presence of large out-of-BSW spectral (angular)
components.

From the numerical results on can determine the BSW characteristics corre-
sponding to experimentally observed quantities that are recorded within the trans-
mitted near-field, namely the lateral or Goos-Hänchen shift and the propagation
length. Other properties could also be explained such as the Imbert or transverse
shift,38 or the angular shift of the secondary reflected beam.39 The latter phe-
nomena originated from the spin-orbit coupling between light and a flat interface,
occur on the reflected beam and are mediated by the angular dispersion of the re-
flection coefficient.40 Generally, they occur only with circular or elliptical incident
polarized beams. Furthermore, two different definitions are still used for the LGH,
which can be considered as the displacement of the maximum of the intensity or,
that of the intensity centroid.41 Nonetheless, it is commonly agreed to consider
the maximum intensity shift in cases where large propagation lengths occur such
as for surface plasmon resonance or BSW.16,35 Consequently, we will restrict our
definition to this last one as indicated on Fig. 1a. Note that the Goos-Hänchen
shift also exists for acoustic waves and was recently studied by analogy with op-
tics.42 Additional properties dealing with the reflected beam are also reachable as
it will be discussed in the following.

Figure 3a shows the 3D map of the BSW electric near-field intensity distribu-
tion at the top interface in a xOy plane as it can be measured by means of Scanning
Near-field Optical Microscope (SNOM). We can clearly see the surface wave char-
acter through the intensity decay that occurs along the propagation direction (Ox
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allowing the visualization of both incident and reflected beams.
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here). Top-view distributions are given in Fig. 3b showing the excitation of the
BSW (comet shape) only in TE polarization and highlighting the lateral shift that
accompanies this excitation.

In some recent experimental studies, it was sometimes found that the near-field
images of the BSW present a different behavior compared to what is expected (a
pure comet shape) as pointed out in Fig. 3b. For example, Dubey et al.16 show
(see Fig. 4b of that paper) the cross-section made over the intensity map along the
propagation direction of the BSW to exhibit a depletion next to the maximum.
At a first glance, this effect can be attributed to a surface irregularity of the top
interface. In fact, by introducing an angular mismatch less than 1◦ on the angle of
incidence, numerical simulations allow reproducing an almost identical behavior as
shown in Figs 3c and d. From Fig. 3a or 3b, we determine both the spatial position
of the intensity maximum that gives LGH = 649 µm and the PL = 1.37 mm.

Nonetheless, there is another parameter which is difficult to experimentally
estimate and which could also affect the excitation of the BSW, namely the incident
beam defocusing. In fact, in all numerical simulations the beam-waist is supposed
to be centered on the top of the substrate. Fig. 4 shows two different cases of
defocusing. Both of them correspond to the N = 7 -structure illuminated by a
beam-waist (W0 = 5 µm) Gaussian beam. The first one (Fig. 4a) corresponds
to a beam-waist located 300 µm under the PhC structure while it is supposed
to be 100 µm above the substrate-PhC interface in the second (Fig. 4b). As in
Fig. 2, the calculated amplitudes of the electric field are mapped in the Oxz plane
with different spatial scales. In the first case, oscillations affect the BSW itself
especially near its intensity maximum (see the blue dashed line at the top of Fig.
4c) while an additional lateral shift of this maximum occurs in the second case
(solid black line). This demonstrates how the BSW shape can be significantly
affected by a small focusing default of the incident beam. In addition, another
effect arises on the interference pattern appearing in the reflected beam due to
the spatial broadening of the beam falling the s. In fact, the total lateral shift at
reflection becomes greater and leads to increase the spatial separation between the
different angular components of the incident beam. The region where the beam
impinges the first interface is emphasized in the blue rectangle in the bottom of
Fig. 4a. One can see the occurrence of curved fringes similar to caustics resulting
from the interference between two highly focused incident and reflected beams.
This demonstrates the difficulty of interpreting some experimental results but it
also shows the way to have an effective excitation of the BSW.

The reflected beam. Experimentally, the excitation of BSW is controlled
by exploiting the reflected beam (presence of a dip in the reflectance). Conse-
quently, the properties of the latter deserve to be understood to extract informa-
tion about the BSW excitation. In particular, the oscillation pattern appearing
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Experimentally, this kind of distributions is measured by means of scanning near-
field optical microscope to estimate both the Goos-Hänchen shift LGH (difference
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on the reflected beam in the case of strongly focused beams is often highlighted
as a signature of the BSW excitation.43 Very recently, Petrova et al.3 exploited
the properties of the reflected beam for biosensing applications. Several theoreti-
cal studies have been performed in this context27–29 but all of them considered a
2D-Gaussian beam (prismatic beam) instead of a realistic 3D-beam. In those refer-
ences, the authors studied the effect of the angular dispersion of the Goos-Hänchen
shift and they linked it to the fringe pattern that appears on reflection. To point
out this phenomenon which occurs also in Surface Plasmon excitation within the
Kretschmann configuration, we consider an incident beam with W0 = 5 µm il-
luminating the 1D-PhC in the case of N = 7 and we calculate the electric field
distribution in three different planes. Fig. 5a shows the electric field amplitude in
the Oxz plane as in Fig. 2. The fringe pattern is clearly apparent on the reflected
beam. A zoom-in over the reflected beam cross-section in the Oxy plane in the
substrate, at z = 1 mm below the first interface, is shown in Fig. 5b. The spatial
oscillations of the electric field intensity are perfectly visible. However, experimen-
tally, the reflected beam is observed perpendicularly to its propagation direction as
in Fig. 5c where the presented electric intensity distribution is evaluated through
the TMM/PWE algorithm without any projection operation nor symmetry con-
siderations. To the best of our knowledge, this is the first time that such images
are calculated in the case of a real 3D Gaussian beam. In fact, the 2D calculations
lead to a similar pattern but with different oscillation features.

Figures 6a and 6b show a transverse cross-section (along the Ox axis) 1 mm
under the first interface (substrate-PhC) for a beam-waist varying from W0 = 5 µm
to W0 = 50 µm in the case of 3D and 2D Gaussian beams respectively. At a first
glance, the two results seem to be very similar. However, even if the global shapes
are comparable, the cross sections shown on Fig. 6c (where the beam waist was
fixed to W0 = 6.87 µm for both simulations) show a quantitatively different result.
The oscillations are not at all concordant and their intensity levels are clearly
different. This is directly due to the contribution of the plane waves that are out
of the incidence plane. Indeed, even if the global polarization of the beam is TE,
these out-of-incidence plane waves exhibit TM components whose weight increases
as their propagation direction falls out from the plane of incidence. Nonetheless,
the Gaussian envelop of the beam amplitude produces a two-lobes shape as shown
on Fig. 2c by Bouhelier et al.37 This is explicitly given by Supplementary Equation
S.6 where the x− and z−components of the electric field are not zero even in TE
polarization (χ = π/2 → α = 0 and β = 1). Although, the contribution of
these TM components to the BSW (in transmission) is negligible because only
TE components resonate, this does not prevent their contribution to the reflected
beam.

This interpretation is derived from the Maxwell-Gauss equation (DivE = 0),
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which must be fulfilled for each incident plane wave of the field expansion in the
Fourier space. This implies a depolarization term that appears for all waves with
wavevector that is not located in the plane of incidence. This is true for both
TE and TM polarized beams as shown by Supplementary Equations S.11 and
S.12 where the field was also expressed in the (TE,TM) basis. Consequently, the
response of a realistic Gaussian beam cannot be calculated by limiting the plane
wave expansion over only one spatial frequency component (the kx one) as it is done
by Andaloro et al.27 In the latter paper, authors claimed that the y-dependence
can be suppressed because it does not affect the beam-interface interaction which
is rigorously false especially if we deal with the reflected beam. According to us,
the same argument is at the origin of the clear discrepancy, in terms of number
of oscillations and amplitude, between the experimental and theoretical results
as shown on Fig. 2 of the paper by Petrova et al.3 Therefore, a quantitative
exploitation or comparison with experimental results must take into account the
contribution of these components.

Goos-Hänchen shift and Propagation Length. The number of bi-layers
is fixed to N = 7 in the following as in Fig. 2 from which one determined the
LGH and PL for the three beam-waist values to be: {LGH = 49.85 µm,PL =
1.3736 mm} for W0 = 10 µm, {LGH = 124.34 µm,PL = 1.3740 mm} for W0 =
30 µm and {LGH = 1.07 mm,PL = 1.3745 mm} for W0 = 1 mm. Even if
the propagation length is almost constant, its value, in addition to the evolution
of the LGH, is in clear contradiction with a simple theory based on plane wave
analysis25,26 estimating these two quantities to be:

PL =
λ

π∆θR
, LGH =

− λ

2π

∂ϕ

∂θ
(4)

where ∆θR is the FWHM of the dip resonance appearing in the reflectance spec-
trum and ϕ is the phase of the transmission coefficient through the whole structure.
Experimentally, the transmission phase variation can hardly be measured. Never-
theless, as it is well-known, this phase is equal to the half of the reflection coefficient
phase. Consequently, assuming an interferometric detection (heterodyne), one can
reach the reflection phase value. Unfortunately, this proportionality between the
two phases of transmission and reflection coefficients is no longer valid when deal-
ing with absorption. However, the LGH of the BSW cannot be obtained by any
far-field detection of the reflected beam. Only direct measurement of the near-field
allows access to this property. Theoretically, the variation of ϕ with the angle of
incidence is given in Supplementary Figure 3. From this figure, and according to
Eq. 4, we estimate the theoretical values of the Goos-Hänchen shift to be constant
(LGH = 770 µm), which is inconsistent with the calculated values from Fig. 2 that
depend on the beam dimension. This discrepancy needs to be elucidated.
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To this end, we consider at first the same N = 7 bi-layer 1D-PhC and we
calculate the evolution of the LGH as a function of the beam-waist value through
the TMM/PWE algorithm. Fig. 7a shows that LGH significantly varies with W0
as long as the angular width of the beam ( λ

πW0
) is 22 times larger than the angular

width of the BSW (here ∆θT = 0.642 mrad) corresponding to W0 ≃ 1 cm as
shown by the solid blue line on Fig. 7a. The effect of absorption is also studied on
the same Fig. 7a where we consider the two cases of n′′ = 10−4 (red dashed line)
and n′′ = 10−3 (dashed dotted green line) and study their impact on the LGH. As
expected, the latter varies dramatically with losses. Second, the evolution of LGH
depicted in Fig. 7a shows an asymptotic behavior limiting it to a maximum value
to the propagation length PL (see Supplementary Note 6) independently from the
beam dimension. This obviously contradicts the results obtained by Konopsky et
al.29 where formula 2 of that paper states that LGH is proportional to the square
root of the beam diameter. Nonetheless, all the demonstrations made in that paper
are formulated for Gaussian beams illuminating an interface near the critical angle
in total internal reflection configuration which is different from our case where a
sharp resonance with a large Q−factor of 1856 occurs.

To clarify the issue, we make use of the analytical expression of Eq. 3. The
spatial position of the transmitted intensity maximum corresponds to the value of
x for which the x−derivative of the square modulus of the electric field amplitude
given by Eq. 3 vanishes. This condition leads to Eq. 5 that was numerically solved
(see the Supplementary Note 6) for the three cases of Fig. 7a. They correspond
to the colorful thick vertical lines depicted on the same figure showing a perfect
agreement with the TMM/PWE (see large circles corresponding to intersection of
these thick vertical lines with the solid blue line). We have verified the relative
error to be less than 5× 10−3.

W0
√
π

2PL cos θm

[
erf

(
cos θmLGH

W0
− W0

2PL cos θm

)
+ 1

]
− e

−
(

cos θmLGH
W0

− W0
2PL cos θm

)2

= 0

(5)

For the propagation length (PL), Eq. 4 cannot be exploited if we assume
purely dielectric structure without any absorption because, as mentioned above,
the reflectance is equal to 100% and does not exhibit any dip. Nevertheless, intro-
ducing a small absorption allows the presence of a dip in the calculated reflectance.
Experimentally, this dip can bring all one needs to determine the BSW propaga-
tion length PL due to the fact that ∆θR ≈ ∆θT even if absorption occurs. As
determined from Fig. 2, we obtain a propagation length of PL ≈ 1.374 mm inde-
pendently of the beam-waist value while Eq. 4 leads to an almost twice smaller
value of PL = 769 µm. We notice that expression of PL given by Eq. 4 is com-
monly used to interpret or to exploit experimental results.16,22,24 Again, we are in
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Figure 7 | Variations of the Goos-Hänchen lateral shift. a, in the case of
N = 7 as a function of the beam-waist for three different values of the imaginary
part of the refractive index of the media (all the layers except the glass substrate
and air obviously). The blue curve corresponds to the lossless case while the red
and green ones correspond to n′′ = 10−4 and n′′ = 10−3 respectively. The yellow,
ocher and purple vertical thick lines correspond to three different values of the
beam-waist W0. All the three curves in a correspond to values calculated within the
Transfer Matrix Method (TMM) combined to the Plane Wave Expansion (PWE)
algorithm while the circles are obtained from Eq. 5. b, Comparison between
TMM/PWE results (solid line) and values calculated from Eq. 5 (green circles)
of the LGH as a function of n′′ in the case of a fixed value of the beam-waist
(W0 = 300 µm) .
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front of a contradiction that needs to be clarified.
For this purpose (see Supplementary Note 7 for more detail), we will still

consider the analytical expression of the transmitted field given by Eq. 3 where
we can clearly see that for x → ∞(x >> W0), the predominant term in the
amplitude expression is e−∆kx

2 (erf(∞) → 1) that corresponds to the electric field
behavior far from its maximum. This allowed expressing the propagation length
as:

PL =
2

∆k
=

λ

πn1 cos θm∆θT,R
(6)

Replacing θm = 1.189 rad, n1 = 1.501 and ∆θT = 0.642 mrad into Eq.6 leads
to PL = 1.376 mm which perfectly agrees the value (1.374 mm) graphically de-
termined through the results of the TMM/PWE algorithm. We have verified the
good agreement between the TMM/PWE results (solid line) and this analytical
formula (green circles) on Fig. 7b when the imaginary part of the refractive op-
tical index vary from 10−6 to 10−1. This perfect agreement between a rigorous
numerical method and the mathematical formulation of the transmitted field is an
indisputable proof of the accuracy of the two methods.

In a real experiment, the detection is made in air not in the substrate medium.
Assuming that a hemispherical lens is used as a substrate (normal incidence be-
tween air and lens), one can express the FWHM of the reflectance in air by :
∆θair

R = n1∆θR. Unfortunately, in most experimental studies, it is very difficult to
know if the presented reflectance spectrum corresponds to the angle measured in
air or in the substrate.

Discussion
From Eqs. 4 and 6, we can determine the correction term for the propagation
length to be CS

PL = 1
n1 cos θm

in the substrate or CA
PL = 1

cos θm
in air. The latter be-

comes significantly important for larger value of θm (larger effective index BSWs).
For the studied structure in this paper, this correction is equal to CS

PL ≈= 1.8
meaning a relative error between the two PL values of 80%.

To validate our formalism through experimental measurements, let us consider
the configuration studied by Descrovi et al.:22 from near-field detection, authors
measured an experimental value of PLexp = 470 µm, while the use of Eq. 4
leads to a lower value of LP = 448 µm. By considering the correcting term given
by our formalism, and taken into account the presence of the substrate, we find
PL = 448.5/(1.501 cos 50.32o) = 468 µm that agrees perfectly the experimental
measured value. Generally, BSW configurations are designed to operate at large
angle of incidence θm compared to the critical angle to avoid a direct transmission
of a part of the incident light especially if we work with highly focused beams.
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This causes the relative error to increase drastically reaching 580% at θm ≈ 80◦.
For the configuration studied by Michelotti et al.,30 the correcting term is equal
to CPL = 1.64 which would correspond to an error of 64%.

For the Goos-Hänchen shift LGH, the error depends on the beam-waist value
(W0). In our case, this error can reach 86% for highly focused beams (W0 = 10 µm)
and is only twice smaller (43%) in the case of wide beams as considered in the
study by Soboleva.23

In summary, the combination of the PWE with the TMM, and the use of an
accurate angular spectrum expansion of a Gaussian beam, turn out to be a pow-
erful tool for simulating and conceiving 1D-PhC structures dedicated to surface
wave excitation. The use of the PWE can be extended to integrate any other
method (Rigorous Coupled Wave Analysis (RCWA) for instance) able to take into
account diffraction by grating (periodic) or by individual pattern.5,14,44,45 The ex-
amples discussed in this paper demonstrate the versatility of this tool that allows
highlighting and estimating the unexpected effects of some external parameters
(alignment error, focusing default, presence of adhesion layer on the top surface)
on the excitation of the surface wave. This combination is essential for the cal-
culation of the reflected beam through the consideration of a realistic incident
3D beam. The major result of this paper is obtained through rigorous analytical
mathematical development that leads to a significant correction of the two impor-
tant properties of the BSW, namely the lateral shift (Eq. 3) and the propagation
length (Eq. 6), for which inaccurate formulas are so far commonly used in the
literature.

Data availability
Materials and data that support the findings of this research are available within
the paper. All data are available from the corresponding author upon request.

Codes availability
Numerical codes that support the analytical demonstration related to this research
are available from the corresponding author upon request.
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