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Photonic waveguides are prime candidates for integrated and parallel photonic interconnects. Such interconnects cor-
respond to large-scale vector matrix products, which are at the heart of neural network computation. However, parallel

interconnect circuits realized in two dimensions, for example, by lithography, are strongly limited in size due to disad-

vantageous scaling. We use three-dimensional (3D) printed photonic waveguides to overcome this limitation. 3D opti-

cal couplers with fractal topology efficiently connect large numbers of input and output channels, and we show that the
substrate’s area and height scale linearly. Going beyond simple couplers, we introduce functional circuits for discrete spa-
tial filters identical to those used in deep convolutional neural networks. ~ © 2020 Optical Society of America under the terms

of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/0OPTICA.388205

1. INTRODUCTION

The interconnection of numerous input and output channels
(IO-channels) is the basic operation behind many applications.
A parallel and energy-efficient interconnect has therefore been a
desired technology for decades [1,2], finding use in diverse fields
such as telecommunication, inter- and intra-chip data buses, and
potentially bio-photonics [3]. Most timely, it also is highly desired
for connecting layers of deep neural networks (NNs) to efficiently
provide the typically large-scale vector matrix products [4].

The integration of such an apparatus is challenging. To achieve
parallelism, serial routing is naturally not an option, and a large
number of direct physical links connecting the IO-channels is
required. Such channel multiplexing can be created in different
dimensions, for example, in wavelength or space, and here we
address spatial multiplexing. If a direct connection architecture is
realized electronically, the capacity of the long connection wires
will result in prohibitive energy dissipation and bandwidth lim-
itations [5,6]. There are additional, more practical challenges.
Lithographic fabrication typically integrates circuits in two dimen-
sions (2D), and a 2D interconnect’s footprint grows quadratic
with the number of IO-channels (M| No). Memristive cross-bar or
wavelength-division-multiplexing-based approaches illustrate this
fundamental relationship.

Optical routing removes the energy dissipation associated
with charging the capacity of electronic signaling wires [5], and
free-space interconnects with many IO-channels have long been
explored [1,2]. Integrated photonic interconnects, however,
remain size limited by the unfavorable scaling between area and the
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number of IO-channels in 2D [7-10]. Such scaling also is found
for wavelength-division multiplexing.

We demonstrate the integration of such photonic interconnects
in 3D for the first time. Complex 3D-routed waveguides are cre-
ated by two-photon polymerization [11,12]. We introduce a fractal
architecture that efficiently connects many 10-channels, and we
demonstrate an integrated photonic interconnect of unreported
size hosting 225 input and 529 output channels within a foot-
print area of only 0.46 x 0.46 mm?. As provided by Google in an
analysis of its proprietary hardware [13], the neural network model
most heavily employed on its servers (MLPO) hosts five layers and
20 million parameters. Assuming a symmetric distribution, this
indicates around 2200 neurons in each layer, which sets the future
target for M and Np. However, already significantly smaller net-
works with two layers and 800 neurons achieve 99% recognition
rate in the famous MNIST task [14]. We will show that due to
linear scaling connecting the layers of such a deep NN ina 3D pho-
tonic integrated circuit can be done within a mm°. Going beyond,
we demonstrate a 3D-waveguide architecture implementing nine
spatial filters with a Haar convolution kernel [15] of stride and
width three. Such convolutional filters represent a fundamental
operation of deep convolutional NNs [4]. Our concept is based on
mature fabrication technology, which has also been exploited for
photonic wirebonding between chips [16,17].

2. SCALING OF INTERCONNECTS

A strategy to overcome many of the bottlenecks currently experi-
enced in NN computation is to realize integrated circuits adhering
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Fig. 1.  (a) Topology of a deep neural network. Links between layers
of neurons correspond to large-scale interconnects. (b) Crossbar arrays
link input and output channels (IO-channels, black dots) in parallel
in 2D; 10-channels are arranged along a line. (c) In three dimensions,
IO-channels can be arranged in an array, while connections are imple-
mented in the third dimensions. (d) The number of IO-channels of a
parallel interconnect scales linearly with size in 3D. In 2D, scalability is
significantly worse.

to a NN’s complex topology [8,18-22]. As schematically illus-
trated in Fig. 1(a), a NN is formed by linking large numbers of
nonlinear neurons, which often are grouped in layers. It is particu-
larly the parallel intra-neuron interconnect that, despite recent
progress [22], still eludes a fully parallel and scalable hardware
integration. Most of today’s integrated circuits are created via
lithography, and are hence restricted mostly to 2D. In cross-bar
interconnects [see Fig. 1(b)], routing occurs via punctual contacts
between two layers hosting input and output wires. The /V; input
and No output channels are arranged along a column or row, and
hence the overall area scales with 4 o« M No. This is the general
behavior in 2D.

3D additive manufacturing has significantly matured
and allows complex structures with nanometric feature sizes
[11,23-25]. Crucially, the additional third dimension facilitates
simple wiring topologies that are scalable, as schematically illus-
trated in Fig. 1(c). Inputand output ports occupy a dedicated plane
each (not rows or columns as in 2D), while the third dimension
unlocks a circuit’s volume for wiring: for each of the M inputs,
a dedicated plane hosts all its connections to the No outputs.
Even in such a simple routing scenario, the system’s scaling of
area A o« M| No and height H o< IV} becomes linear. The strong
impact of 2D versus 3D integration on the scalability of a parallel
interconnect is schematically illustrated in Fig. 1(d). Interestingly,
the 3D routing strategy has been confirmed by evolution: the most
reduced topological property of the human neocortex leverages the
same effect. Neurons are located mostly on its surface, while long
range connections traverse mostly the volume.

However, 3D routing in electronics is challenging. The required
o Ny signaling layers make lithographic fabrication prohibitive
for the kind of dimensionality demanded by NNs. Heat creation
and heat dissipation from such a volumetric circuit’s center have
additionally been identified as problematic [26]. Disposing of this
dissipated energy is a major bottleneck already for the mostly serial
von Neumann processors [6], and parallel interconnects for NNs
require significantly more such layers and connections. Photonics
can overcome this challenge [5,27], which motivates the interest
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Fig. 2. (a) Design principle of an optical coupler with a fractal
geometry. Numerous layers of branching connections can be cascaded,
and distances from one layer to the next scale with /b, where b is the
branching ratio. (b) 3D illustration of a small network hosting simple
couplers. Chirality of the connections avoids the intersection of individual
waveguides between the inputand output ports.

in photonic interconnects [1,2] and ultimately in photonic NN
[8,28-34].

3. 3D INTERCONNECTS OF PHOTONIC
WAVEGUIDES

Low-loss 3D printed photonic waveguides have been demon-
strated at telecommunication wavelengths [16,17,35,36]. Our
waveguides were fabricated using a commercial 3D direct-laser
writing system from Nanoscribe GmbH (Photonic Professional
GT). A negative tone photoresist “Ip-Dip” was dropped on a fused
silica glass substrate (25 x 25 x 0.7 mm?) and photopolymer-
ized via two-photon absorption with a A =780 nm femtosecond
pulsed laser, focused by a 63X, (1.4 NA) objective lens. After
the writing process, the sample was immersed in a PGMEA (1-
methoxy-2-propanol acetate) solution for 20 min to remove the
unexposed photoresist. Samples were written using the scanning
mode based on a goniometric mirror, and the scanning speed
on the sample’s surface was kept constant at 10 mm/s. As the
optimization parameter, we used the writing laser’s power. The
diameter of individual waveguides was 4~ 1.2 pm, and they
were spaced by Dy =20 pm [cf. Fig. 2(a)]. Samples were struc-
turally inspected using a scanning electron microscope (SEM,
FEI Quanta 450 W). For optical characterization, we focused a
635 nm laser onto an input waveguide’s top surface using a 50X,
(NA = 0.8) microscope objective. The mode field diameter of the
focused beam was ~2 pm, hence larger than the input waveguide’s
diameter. The emission at the couplers’ output ports was collected
by a 10X, (NA = 0.30) microscope objective and imaged onto a
CMOS camera (iDS U3-3482LE, pixel spacing 2.2 pm) using an
achromatic lens with 100 mm focal distance (Thorlabs AC254-
100-A), resulting in an optical magnification of 5.6. The details of
the optical characterization setup can be found in Supplement 1.

A. Fractal Topology for Fully Connected Layers

Fully or densely connected layers are a principle topology in NN
[4,13]. We adopt a routing strategy based on fractal (self-similar)
branching, where each signal “wire” splits into & branches at the
/€1, ..., L] branching layers. Figure 2(a) schematically illus-
trates such a fractal tree’s 2D projection onto the (x, z) plane for
b=9and L =2. An input (top red arrow) is therefore distributed
to No = b output channels (bottom red arrows), here resulting
in Np = 81. Scaling of Ny is therefore exponential in L, and
No = 6561 connections are created for each input channel for
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b =19 and only L =4 branching layers. The tree’s architecture
is recursively defined according to the spacing between the Np
output channels D; = Dy and height H; o< Dy. The dimen-
sions inside the bifurcation layers / < L are H; =+/bHy, and
D;=+/b Dy+1. Horizontal and vertical distances scale identically,
resulting in constant branching angles throughout the entire
circuit.

When arranged in arrays, an additional design step must be
applied to avoid crossings from neighboring couplers before layer
/=L, where waveguides ultimately merge into their respective
outputs. Crucially, the translation invariance provided by the
scale-free structure aids geometries to avoid such unwanted inter-
sections. These details are illustrated for four neighboring couplers
with 6 =9 and L =1 in Fig. 2(b). We incorporated chirality into
the fractal couplers: the 4 connections from a point in layer / to
layer /4 1 have a negative curvature in the (x, y) plane, which
avoids intersections for connections made in parallel to the x and
y axes. Furthermore, avoiding intersections for diagonal links
additionally requires curvatures in the z direction. The details of
the chiral-fractal topology are given in Supplement 1.

Figure 3(a) shows an SEM image of a 3D fractal coupler array
hosting N = 81 input and No = 121 outputs, each with L =1
and & = 9. We can see that chirality successfully avoids unintended
intersections. In Fig. 3(b), we show fractal trees for two bifurcations
resulting in 1 X 81 coupling, with a circuit of M =9 inputs and
No = 121 outputs. Noteworthy, the fabrication times for 1 x 9
and 1 x 81 fractals are 11 s and 12 min, respectively, and the full
structure shown in Fig. 3(b) required approximately 17 min. As
for the single-bifurcation-layer 3D coupler, the two-bifurcation-
layer couplers are mechanically sound, even though they feature
waveguide sections with an aspect ration exceeding 150. This
excellent result motivated us to continue and integrate a full-scale
interconnect with over 200 inputs, each of which is connected to
81 outputs; see Fig. 3(c).

Figure 4(a) depicts the optical output of a standalone 1 x 9 frac-
tal coupler, and some of the output ports’ optical modes include
higher-order Gauss—Laguerre contributions. As our polymer
waveguides are freestanding in air, they have a high refractive index
contrast of An =n; — ny ~ 0.5, with n; = 1.5 and 7o =1, the
refractive indices of the polymer and air, respectively. According to
the commonly employed approximation M = 0.5(rdNA/X)?,
where M is the number of modes supported by the cylindrical
waveguide, and NA? = #? — #2, our waveguides support up to
M =22 optical modes, and the single-mode cut-off wavelength
is Ac =1755 nm. However, carly stage numerical simulations
confirm that mostly the first- and second-order optical modes are
excited, which agrees with our experimental results. We would like
to point out that the high refractive index contrast allows excep-
tionally narrow bending radii, which facilitates compact integrated
photonic circuits.

We analyzed 1 x 9and 1 x 81 standalone couplers (three each)
with respect to the relative power distribution at their output ports,
and statistical information is given in Figs. 4(b) and 4(c). For the
1 X 9 couplers, we find that (42 £ 4)% of the total optical output
power is provided by the central waveguide, with the remaining
~58% quite evenly distributed among the off-center ports [see
Fig. 4(b)]. For 1 x 81 couplers, (33 £ 6)% of light is contained in
the central waveguide [Fig. 4(c)]. This is not quite the square of the
1 X 9 ratio, indicating that cascading our bifurcating waveguides
cannot be fully approximated simply by linearly multiplying

hosting nine elements, including an inset with higher magnification
showing the low surface roughness. (b) SEM micrograph (10 kV, 40°)
image of nine parallel 1 x 81 couplers featuring two bifurcation layers.
(c) SEM micrograph (10 kV, 40°) of a large-scale array of 1 x 81 couplers,
showing an area containing 15 X 15 units.

the coupling ratios of the individual components. Higher-order
modes therefore appear to have an impact upon the splitting ratios.
Overall, the asymmetric splitting ratio is most likely caused by
the geometry, and in particular by the branching angles of our
waveguide couplers.

Finally, we used the camera images to characterize the optical
losses, where the injection spot focused onto the glass-substrate’s
top surface was used as the calibration reference. The average opti-
cal losses for individual 1 x 9 couplers are 5.5 dB, which rise to
10.6 dB for 1 x 81 couplers, averaging over 16 printed structures
each. These losses comprise optical injection losses / (not induced
by the structure), propagation losses P, and losses induced at
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Fig.4. (a) Optical transmission through a single bifurcation layer 1 x
9 coupler, with intensity color-coded on a logarithmic scale. Histograms
of the relative output intensity distribution for the 1 x 9 (b) and 1 x 81
(c) coupler. Statistical information obtained from three couplers each.

each coupling or bifurcation point C. The fractal design principle
allows us to determine each of these contributions. As previously
discussed, angles of the different bifurcation layers remain constant
due to the employed scale-free design principle. This results in
identical geometries for all bifurcation points in all topologies, and
hence we can assume losses C induced at each waveguide bifur-
cation point to be identical in all tested structures. Furthermore,
we have characterized three 1 x 9 couplers with v/ =3 times
larger height H; and distance D;. This leaves us with three loss
measurements (in dB): the standard 1 x 9 (L1x9 =1+ C+ P),
the three timeslarger 1 x 9 (Lixo=1+ C+3P),andthel x 81
(Lixs1 =1+2C+4P) couplers, and we obtain 7 =2.71dB,
P =1.14dB, and C=1.67dB. The single 1 x 9 and 1 x 81
couplers therefore exhibit 2.8 dB and 7.9 dB losses, respectively,
and considering the average propagation length of 51 um of a
single fractal coupler leads to P 20 dB/mm. Finally, we have
also characterized 1 x 9 couplersas part of alarge array, as shown in
Fig. 3(a). Losses increased from the 2.8 dB for the isolated t0 5.4 dB
for the coupler embedded in a large array. This might be due to the
additional, inverted bifurcating points justat the couplers’ outputs.

B. Haar Filters

The previously discussed highly connected couplers are typically
required in the final layers of deep NNs. However, their first layers
often highlight structural aspects of input information by tailored,
local connection topologies. Examples are convolutional NNs
commonly employed in object recognition [4]. Prominent convo-
lution kernels are so-called Haar filters. These feature 2D Boolean
entries, and this simplification creates a sparse representation of
information contained in images, which is a crucial operation for
NNis to be able to generalize to unseen test data [15]. We schemati-
cally illustrate in- and output properties of nine exemplary Haar
filters (F1-F9) in Fig. 5. There, each filter kernel’s 3 x 3 Boolean
weights (0: dark, 1: bright) are illustrated as input, and each filter is
assigned to a single and unique output port.

We developed a 3D routing topology, schematically illustrated
on the right in Fig. 5, to realize the nine Haar filters. Even in 3D
this is challenging, which can be appreciated from the intricate
network of connections, and we have used the same chirality rules
discussed for the fractal branching. The realization shown here is
according to a geometric arrangement between each filter and its
corresponding output waveguide for which the smallest number
(six) of intersecting waveguides was found. We then manually
modified individual waveguides to remove the remaining inter-
sections. In order to better illustrate the operating principle, we

Input

Fig. 5. Schematic illustration of the input—output mapping of nine
Haar filters (F1-F9) with Kernel width and stride three. A 3D-printed
waveguide architecture realizing all nine filters in parallel is shown on
the left, with filter F2 highlighted in orange. The highlighted structure
implements filter F2.

have highlighted the connection topology of filter F2 in orange.
For each filter, the input ports weighted by one are wired directly to
the filter’s output. For incoherent injection into 3 x 3 single-mode
input waveguides, the intensity at the filter’s output should there-
fore be proportional to the overlap between its Boolean weights
and the input.

In Fig. 6(a), we show the SEM image of the 3D printed spatial
filtering interconnect realizing nine Haar filters. Waveguides fea-
ture smooth surfaces, and the overall structure is stable. However,
one can identify a tendency that output waveguides with few
connections start leaning outwards. Figure 6(b) shows a densely
multiplexed array of Haar filter units. Such an interconnect would
implement the convolution of a 21 x 21-pixel input image simul-
taneously with filters F1-F9. As the individual filter units do not
overlap in space, the implemented convolution has stride three.

Figure 6(c) depicts the optical characterization of the filters’
connectivity using the same procedure as for the fractal optical
couplers. The individual sub-panels correspond to the transmis-
sion through a different filter (F1-F9) when injecting light into the
output port. The optical characterization was therefore carried out
in backward direction. We opted for this procedure since output
intensities of individual filters correspond to the filter’s Kernel only
in the backward direction. In forward direction, one would have
to iteratively inject into the individual input ports and then sum
the output intensities of the different injections, which is possible
in principle yet less systematic. Generally, we find an excellent
agreement between the designed filter kernels and the intensities
recorded in the reverse propagation direction. The different loss
mechanisms obtained for the fractal couplers are consistently
reproduced for the Haar filters, with the peculiarity that each
coupler exhibits distinct coupling losses C. This, however, is to be
expected; different filters rely on specific connection degrees and
topologies as well as different branching angles.

There is some crosstalk from the optically injected port onto
the image of the output plane. One cause might be the smaller
height of the overall 3D circuitry. Light not collected and guided
by the injected waveguide illuminates a smaller area on the circuit’s
output plane, which in turn results in a higher intensity when
imaged onto the camera. The outwards-leaning input connections
[see Fig. 6(a)] might additionally contribute. The resulting non-
orthogonal illumination of the waveguide’s tip will most likely
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Fig.6. (a) SEM micrograph (10kV, 40°) of a single Haar filter. (b) Full
micrograph (5 kV, 0°) of a large array hosting spatial filtering for connect-
ing layers of a convolutional neural network. (c) Optical characterization
of the filter’s connection topology, injection at the output port, and
recording the input ports emission.
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reduce the injection efficiency and therefore increase the crosstalk
of uncollected light to the output plane. For a fully integrated sys-
tem, this crosstalk will potentially be reduced significantly. Inputs
will in most cases be provided by optical fibers or waveguides arriv-
ing from an earlier stage of the optical system, for example, when
using a fiber bundle for collecting an input image. This will also be
true for the filter’s output, which will be connected to some fiber or
waveguide for further processing downstream. Finally, we have also
characterized the filters in the forward direction. However, as in
the backward direction, the individual responses are not perfectly
symmetric due to the multimode splitters, causing the aggregated
responses to not yet correspond well to their target. This highlights
the importance of single-mode splitters with more symmetric
splitting ratios.

4. DISCUSSION AND CONCLUSION

We successfully demonstrated complex and large-scale 3D pho-
tonic interconnects. Waveguides with an approximate diameter
of 1.2 um were created by direct-laser writing based on two-
photon polymerization. Using this novel integration strategy,
we demonstrated intricate 3D routing topologies for large-scale,
highly connected, and convoluting optical interconnects. These
exemplary architectures were oriented mostly towards applica-
tion in NNs, where such interconnects can realize the large-scale
vector matrix products fully in parallel with picosecond latency
and potentially low energetic cost [10]. It is the first time that
such complex and large-scale integrated optical interconnects
have been created in 3D. Most interestingly, as mentioned in the
introduction, a commercial NN heavily employed by Google
features around 2200 neurons in each layer. Using our fractal 3D
waveguide methodology, the entire interconnect for linking two
layers hosting 2200 neurons would fit inside 1 mm?! This ignores
additional hardware and phase shifters for re-programmability
[7], yet it impressively demonstrates the potential of 3D photonic
integration. Phase control functionality, and hence reconfigura-
bility of the device, can in the future be added using phase change
material coatings [37,38] based on atomic layer deposition [39].
Finally, a NN will require nonlinear elements, and densely spaced
arrays of semiconductor lasers are a promising approach [40] with
a compatible laser integration density. Future work will have to
elaborate on different branching topologies, such as 1 x 4, for
which we expect less asymmetric splitting ratios, and to carefully
optimize the couplers’ parameters such as the transition’s duration
when morphing from a single into numerous waveguides. More
advanced techniques, such as critical point drying, remove surface
tension during the delicate development process, which would
allow an even higher integration density.

As our concept scales linearly in size, it allows for novel rout-
ing topologies, which in turn will create new opportunities for
integrated special purpose NN chips. Here, either complete imple-
mentations of NN or the use of the photonic interconnect purely
as a NN accelerator is a possibility [10]. However, there is wider
relevance for computing. The end of Moore’s and in particular
Dennart’s scaling is arguably induced by energy penalties of a proc-
essor’s electronic signaling wires. Photonic routing could prolong
the scaling of classical electronic (or now: opto-electronic) von
Neumann processors, and these ideas can be expanded to intra- or
inter-chip connections.

Future applications can be expected in many other fields, and
telecommunication interconnects are certainly a highly interesting
possibility [7]. For coherent communication, as in many other
contexts, single-mode and polarization preserving propagation is
essential. Single-mode guiding at 1550 nm can be achieved either
by further reducing the waveguide diameter (to 0.82 pm for the
same cut-off wavelength as a SMF28 fiber) or by adding a lower
refractive index cladding layer. Modifying a waveguide’s cross
section is a proven method for maintaining optical polarization.
All these advances can be achieved via more elaborate 3D printing
protocols or simply by additional deposition techniques, and we
believe that no principle mechanisms prohibit this development.

Ultimately, we have demonstrated the first large-scale 3D
printed photonic circuit board. The here reported findings are
based on the first demonstrations of several, complex 3D photonic
circuits, and performance as well as topologies offer significant
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potential for further improvements. Beyond losses, it is in particu-
lar the asymmetric splitting ratios that deserve further attention,
even though such an imbalance can, by a certain degree, be com-
pensated for by using phase-tunable topologies [7] or by the
implementation of electro-optical and all-optical phase change
layers with a memristive effect [38].

Most importantly, we have addressed the non-scalability of
parallel and integrated interconnects for the first time. In order to
fully benefit from this new substrate, its functionalization is essen-
tial. External control over a waveguide section’s phase delay would
enable unitary optical transformations on a scalable substrate [7]
or by the direct implementation of electro-optical and all-optical
phase change layers with a memristive effect. An extension by
active or nonlinear photonic elements will establish a new type
of photonic device. And finally, small-scale low-bandwidth 3D
printed polymer circuits are actively considered in electronics, for
example, for wareables [41].
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