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Abstract: We investigate in detail the qualitative similarities between the pulse localization 

characteristics observed using sinusoidal phase modulation during linear propagation and those 

seen during the evolution of Akhmediev breathers during propagation in a system governed by the 

nonlinear Schrödinger equation. The profiles obtained at the point of maximum focusing indeed 

present very close temporal and spectral features. If the respective linear and nonlinear longitudinal 

evolutions of those profiles are similar in the vicinity of the point of maximum focusing, they may 

diverge significantly for longer propagation distance. Our analysis and numerical simulations are 

confirmed by experiments performed in optical fiber. 
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I. Introduction 

The study of solitons on finite background, and more specifically the class of Akhmediev 

breather (AB) [1] structures is a subject that is attracting much interest in the context of studying 

nonlinear localization in extreme events and modulation instability processes. In particular, in a 

nonlinear medium governed by the nonlinear Schrödinger equation (NLSE) with focusing 

nonlinearity, a small periodic perturbation (typically a sinusoidal amplitude or intensity 

modulation) imposed on a continuous background, can display rapid growth and decay 

characteristics which have been interpreted as prototype signatures of extreme or rogue wave 

dynamics [2]. Examples of such breather solutions have been demonstrated in hydrodynamics 

[3,4], plasma physics [5,6] and in optics [7-14]. Indeed, with progress in ultrafast measurement 

techniques, experiments performed in optical fiber have proven to be an especially convenient 

means of exciting nonlinear AB solutions and studying their localization properties in great detail 

[7-10]. In addition, the properties of AB solutions at their point of maximum localization (temporal 

compression) have motivated studies of applications in high repetition optical source development 

[11,12] and provided insights into the physics of supercontinuum formation [13]. 

A seemingly unrelated area of research that has also received much recent attention is the use 

of sinusoidal phase modulation on a continuous wave field for high speed temporal signal 

processing and other applications in ultrafast optics. For example, when combined with a 

dispersive element and taking advantage of the powerful time/space analogy [15,16], such phase 

modulation has enabled the development of a range of ultrafast sources [17,18], as well as the 

implementation of novel concepts such as lenticular lenses for optical sampling [19]. Very 

recently, the quality of pulse generation using this technique has been improved using simple 

additional triangular spectral phase shaping that enables elimination of unwanted sidelobes and 

background [20]. 

Interestingly, the pulse localization characteristics observed using sinusoidal phase modulation 

and those seen during the evolution of AB solutions possess a number of qualitative similarities. 

However, to our knowledge, these have not been the subject of any previous studies. Our objective 

here is to investigate these similarities in more detail, where we initially consider the characteristics 

of the localization profiles obtained at the point of maximum focusing, before then studying the 

longitudinal evolution of those profiles. Our analysis and numerical simulations are then confirmed 

by experiments performed in optical fiber.  
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II. Breathers and phase-modulated pulses 

at their point of maximum compression 

We first consider an Akhmediev-breather structure (AB) propagating in an optical fiber with 

Kerr nonlinear coefficient  and second order anomalous dispersion 2 (2 < 0). The spatio-

temporal evolution of the complex field envelope of the AB in the slowly varying envelope 

approximation (and neglecting a term of propagating phase) is analytically described by [2] :  
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The normalized distance B  is related to the dimensional distance via /B NLz L   with the 

nonlinear length  01/NLL P  for an initial plane wave of power 0P . The parameters a and b are 

the normalized perturbation frequency and instability growth rate, and in dimensional units are 

given by  
2

m2 1 / ca     and 8 (1 2 )b a a  . Here t is the temporal coordinate and m  

denotes the dimensional modulation frequency in the range 
m0 c   , where 

2

0 24 /c P   . 

Here 0 0.5a   with the limiting value 0.5a   leading to the well-known Peregrine soliton 

solution [21].  The temporal period is T0 = 2/m and at maximum compression, i.e. 0B  , 

Eq. (1) reduces to: 
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In the frequency domain, the AB spectrum [i.e., the Fourier transform s() of the temporal field 

(t)] consists of a discrete comb of spectral lines sBn = s(n m) that are equally spaced by m and 

with an amplitude given by [8,12,22] (here, factors of constant amplitude and phase are ignored) : 
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with 1n   and m2 / cp   . By writing: 
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one can rewrite Eq. (4) in the following form: 
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At the point of maximum compression, the expressions for r and q reduce to 2 1 2r a   and 

 1 1 2 2a aq   ), so that sBn  are real. We plot in Fig. 1 the temporal and spectral intensity 

profiles obtained for a = 0.2 (panels a1 and b1 respectively, black lines). 
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Figure 1 :  Comparison of (a) temporal and (b) spectral properties of Akhmediev breather with a = 0.2 (solid black 

lines, Eq. (2) and (5)) and a phase modulated sinusoidal wave with A = 1.43 rad (open circles, Eq. (8)) at the point of 

maximum compression for the same modulation frequency m. Temporal profiles are compared on linear and 

logarithmic scales (panels a1 and a2, respectively) and panel (a3) represents the local error ET between the two 

waveforms when the intensity is significant (above 5% of the peak power). The black dashed and the grey dotted lines 

in panel (b1) represent the evolution of the spectral wings of the waveforms as predicted by Eq. (10) and (11). Local 

error ES when comparing the two spectra is plotted on panel (b2). 
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Turning now to the case of a phase-modulated field, we consider the properties of a continuous 

wave whose temporal phase has been sinusoidally modulated at the same angular frequency m as 

the AB solution above: 
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   (6) 

with A the amplitude of the phase modulation. Using a Jacobi-Angi expansion, Eq. (6) can be 

rewritten as a sum of sinusoidal functions [23] : 
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leading to a comb spectrum made of components sPn  at frequency n m (with respect to the central 

frequency) having an amplitude of sPn =  Jn(A), where Jn is the Bessel function of the first kind of 

order n. The wave is therefore not Fourier limited. For A < 2.4, applying a triangular spectral phase 

profile enables the generation of a Fourier transform signal [20] that can be expressed as: 
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In order to compare the properties of the AB with a continuous phase modulated wave, we have 

computed the misfit factors MT and MS regarding the temporal and spectral profiles defined as: 
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with IT,x(t) and ISn,x the temporal and spectral intensity profiles obtained for the breather (subscript 

x =  B) and phase modulated signal (subscript x = P) and normalized to have the same average 

power. For a = 0.2, MT and MS can reach values as low as 0.044 and 0.025 when A = 1.43 rad. 

Temporal and spectral profiles of the wave obtained at the point of maximum compression for this 

value are plotted with circles in Fig. 1. We can clearly see that the two profiles are nearly 

undiscernible. We also plot on Fig. 1(a3) the temporal local error defined as 
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   , , ,  /T T P T B T BE t I I I    and we can see that this local remains well below 10% when the pulse 

intensity is significant, i.e. above 5% of the peak power. Regarding the spectrum, Fig. 1(b2) reveals 

that if the    , , ,  /S m S Pn S Bn S BnE n I I I    is extremely low in the central part of the spectrum, 

some discrepancy appears in the wings. Indeed, the AB has wings characterized by an exponential 

decrease of its tails leading to a typical triangular signature when plotted on a logarithmic scale 

[8,13,22] (see black dashed line in Fig. 1(b1)). The ratio between two successive components of 

the AB (with 1n  ) is indeed fixed: 

 

2

, 1 21

,

F Bn Bn

F Bn Bn

I s
q

I s

    (10) 

On the contrary, for moderate values of A, it can be shown that the spectral wings of P  follow a 

different trend (see grey dotted lines in Fig. 1(b1)) : 
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Figure 2 :  (a) Evolution of the spectral (a1) and temporal (a2) misfit factor MS and MT as a function of the parameter 

a of the AB (horizontal axis) and the index of modulation A of the sinusoidal phase (vertical axis). The red and blue 

vertical lines represent the value a = 3/8 and the value of a used for the figures in this theoretical section, respectively. 

The white dashed lines represent A0, i.e. the optimum value of A that achieves, for a given a, the minimal spectral 

misfit factor. The open circles represent the theoretical predictions derived from Eq. (12). The blue squares represent 

the points used for the experimental validation presented in section 4) (b) Summary of the spectral and temporal 

misfits factors (black solid and dashed grey lines, respectively) obtained for A0.  

 

A more exhaustive study showing the evolution of the misfit factor between the AB and a wave 

resulting from an initial phase modulation is shown in Fig. 2 for both the temporal and spectral 

intensity profiles. We note that higher a parameters lead to higher misfit factors between the two 

waves at their point of maximum compression. The value a  = ac = 3/8 appears as a turning point, 

leading to a pronounced increase in the misfit. Indeed, for a > ac  and as can be derived from Eq. 

(5), the central component of the spectrum, i.e. the continuous background of the wave, becomes 

in opposite of phase with respect to the rest of the spectrum. For a < ac, the misfit factors that can 

be reached remains low, below 0.2, indicating temporal and spectral profiles that are extremely 

close. As can be seen from panels (a) of Fig. 2, A has to be carefully chosen because the tolerance 
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for obtaining low values of M is quite narrow. The optimum value A0 to be applied to fit the 

spectrum obtained for a given value of a is plotted with a white dashed line. We can therefore 

make out that achieving low MS values also leads to low MT values. Increasing values of a 

corresponds to increasing values of A0. One can also notice that, for low values of a, A0 is in 

remarkable agreement with the following guideline: 

 0 4A q  (12) 

 

III.Evolution of breather and phase-modulated continuous wave 

 upon propagation 

Let us now consider the longitudinal evolution of the two waves. The longitudinal evolutions of 

the temporal and spectral properties of breathers in the presence of nonlinearity and dispersion are 

provided by Eq. (1) and (5), respectively. Regarding the linear evolution of the wave given by 

Eq. (8), the propagation in a dispersive medium induces a quadratic phase on the spectrum, leading 

to an additional spectral phase on the component sn of   2

2 / 2exp mi z n  . This leads in the 

temporal domain to: 
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where 
2

2P m z    is a normalized distance that takes into account both the level of dispersion 

of the fiber and the frequency of modulation.  

 

Figure 3 compares the evolution of the temporal and spectral intensity profiles of the AB and the 

phase-modulated wave that propagates in a nonlinear and linear medium, respectively, in the case 

of a = 0.2 and A = 1.43 rad. We can therefore notice that in the vicinity of the maximum of 

compression, the longitudinal evolutions of the two waves seem rather close. Indeed, both waves 

experience a stage of temporal compression followed by a symmetrical stage where the peak power 

of the structures decreases. In both cases, the wave seems to tend towards a continuous intensity 

profiles. Note however that the longitudinal scales that are involved are rather different. Inspection 
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of the evolution of the spectrum emphasizes one of the intrinsic major differences between the two 

waves : whereas the nonlinear evolution of the AB manifests itself with major changes in the 

spectrum with a growth and return cycle [8], the linear propagation does not affect the spectral 

intensity profile of the wave. 

 

 

 

 

Figure 3 :  Comparison of the longitudinal nonlinear propagation of an AB with a = 0.2 (panels 1) with the linear 

evolution of a tailored sinusoidal phase modulated wave with A = 1.43 rad (panels 2). The temporal and spectral 

evolutions are shown in panels (a) and (b) respectively. 

 

 

Details of the evolution of the peak-power of the structures are reported on Fig. 4 and exhibit very 

similar trends in the vicinity of the point of maximum compression. However, let us recall that the 

length scales are different. 
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Figure 4 :  Comparison of the evolution of the peak power of the structure for the nonlinear propagation of an AB 

(solid black line) and for the linear propagation of a phase modulated continuous wave (open grey circles). 

 

 

 

When observed over a longer propagation distance (Fig. 5), differences between the temporal 

evolution of the two waves become much more pronounced. Indeed, a perfect AB grows from a 

continuous wave and then decays without leaving any trace, a manifestation of the celebrated 

Fermi-Pasta-Ulam recurrence [24]. On the contrary, the phase-modulated wave never disappears 

and a carpet pattern appears, with same structure repeating with temporal phase shift of half a 

period. Similar patterns resulting from the diffraction of periodic objects are well-known in the 

field of spatial optics as the Talbot effect [25] and this self-imaging process can be extended to the 

temporal domain [26,27] using the very rich time/space analogy [15,28]. It is worth noting  that 

those typical phase shifts can be observed in the nonlinear propagation of a breathers when some 

losses are included [9,29]. 
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Figure 5 :  Longitudinal evolution of the temporal intensity profiles of an AB with a = 0.2 (a) and of a sinusoidally 

phase modulated signal with A = 1.43 rad  (b). Results of Fig. 3(a) are here plotted on a longer propagation distance 

in order to emphasize the Talbot carpet.  

 

 

 

A further means to visualize the various similarities and differences between the two waves is 

to plot their evolution in terms of the power and phase of their main spectral components. Indeed, 

we represent the evolution on Fig. 6 of the parameters  and   [30] defined respectively for this 

problem with spectra having an even symmetry as 
2 2 2

0 0 1/ 2s s s  
  

 
 and    1 02arg args s   . 

We can note that with these coordinates, the AB describes a separatrix. On the contrary, the 

trajectory of the phase modulated pulse is a full circle. Both trajectories are similar only in a small 

region around the maximum of compression, i.e. when the central component interferes 

constructively with the harmonic modulation. 
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Figure 6 :  Evolution of the spectral properties of the AB with a = 0.2 and phase modulated signal with A = 1.43 rad 

in a nonlinear and linear propagation respectively  (solid black curve and open circles respectively). 

 

IV. Experimental results 

In order to validate our analytical and numerical studies above, we have implemented the 

experimental setup is sketched on Fig. 7 and is based on devices that are commercially available 

and typical of the telecommunication industry. A continuous wave laser at 1550 nm is first 

temporally phase modulated using a Lithium Niobate electro-optic device driven by an amplified 

sinusoidal electrical signal. A linear spectral shaper (Finisar Waveshaper) based on liquid crystal 

on silicon technology is then used to apply the spectral triangular phase pattern required to generate 

Fourier-transform limited structures [31]. We operate at a repetition rate of 20 GHz. In order to 

ensure enhanced environmental stability, polarization-maintaining components have been used. 

The resulting signal is directly recorded by means of a high-speed optical sampling oscilloscope 

(1 ps resolution) and with a high-resolution optical spectrum analyser (5 MHz of resolution). 
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Figure 7 : Experimental setup. 

 

 

 

 

 

 

Temporal and spectral intensity profiles synthesized at the point of maximum compression for 

different values of A are summarized of Fig. 8. We can note an excellent agreement between theses 

profiles resulting from the phase modulation of a continuous wave and the typical profiles of 

breathers. The typical values a of those breathers that fits the experimental data are plotted on 

Fig. 2 with squares and are in very good agreement with our analysis above.  
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Figure 8 :  Temporal and spectral intensity profiles (panels a and b, respectively). Experimental records obtained for 

phase modulation A of 0.5, 1 and 1.41 rad (grey circles or line ; panels 1, 2 and 3, respectively) are compared with the 

profiles of a AB with a parameters of 0.032, 0.11 and 0.2 (black line or circles). 

 

By superimposing a quadratic spectral phase to the pulse achieved at the point of maximum 

compression, we are able to simulate the linear propagation of the structure [31]. Acting on the 

sign of the parabolic spectral phase formally enables us to mimic propagation in negative and 

positive values. As can be seen on Fig. 9(a), the experimental evolution of the intensity profile 

obtained for A = 1.41 rad can be qualitatively reproduced in the vicinity of the point of maximum 

compression by the longitudinal evolution of an AB with a = 0.2. When we move away for the 

compression point, discrepancies increase.  
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Figure 9 :  Longitudinal evolution of the temporal intensity. (a) Experimental records for a phase-modulated signal 

with A = 1.4 rad. (panel a1) are compared with the theoretical evolution of an AB for a = 0.2 (panel a2). (b) 

Longitudinal evolution of the peak-power for the phase-modulated signal (grey circles) and for the AB (black line). 
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V. Conclusions 

In conclusion, we have theoretically and numerically shown that a continuous wave with a periodic 

phase modulation evolving in a linear medium and an Akhmediev breather governed by the NLSE 

may present similar signatures. Indeed, for typical parameter a below 3/8, their temporal and 

spectral profiles at the point of maximum compression can be very close. Moreover, they both 

experience similar longitudinal evolution of their temporal properties in the vicinity of the 

maximum compression distance. Such unexpected similarities have been confirmed 

experimentally.  

 

These results highlight that care should be devoted when identifying localized structures in a 

chaotic field and attributing their origin a priori to nonlinear propagation [32,33]: the longitudinal 

evolution of a temporal structure shape is not sufficient to clearly address its linear or nonlinear 

nature. Knowledge of the powers that are involved is crucial and differences between the linear 

and nonlinear structures can also be apparent in the frequency domain. As breathers have also been 

stressed in other systems based on the Lugiato-Lefever equation , same care should also hold for 

the analysis of structures emerging from a cavity. 

 

This study also indicates new ways to easily generate profiles that are close to Akhmediev 

breathers. Indeed, previous methods may have relied on the spectral shaping of a comb [34] or on 

the use of an initial sinusoidally modulated intensity profile [8,11] associated with further 

propagation in a nonlinear fiber, as discussed in details in [14] and [35]. Here, we show that a 

simple and cost-efficient alternative based on electrooptic phase modulation yields AB-like 

structures with low a in the vicinity of the point of maximum compression. It has moreover the 

advantage of avoiding detrimental consequences of potential Brillouin backscattering. 
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