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Abstract: Reconstruction of 3D objects in various tomographic measurements is an important problem
which can be naturally addressed within the mathematical framework of 3D tensors. In Optical
Coherence Tomography, the reconstruction problem can be recast as a tensor completion problem.
Following the seminal work of Candès et al., the approach followed in the present work is based on
the assumption that the rank of the object to be reconstructed is naturally small, and we leverage this
property by using a nuclear norm-type penalisation. In this paper, a detailed study of nuclear norm
penalised reconstruction using the tubal Singular Value Decomposition of Kilmer et al. is proposed. In
particular, we introduce a new, efficiently computable definition of the nuclear norm in the Kilmer et
al. framework. We then present a theoretical analysis, which extends previous results by Koltchinskii
Lounici and Tsybakov. Finally, this nuclear norm penalised reconstruction method is applied to
real data reconstruction experiments in Optical Coherence Tomography (OCT). In particular, our
numerical experiments illustrate the importance of penalisation for OCT reconstruction.

Keywords: tensor completion; tubal SVD; nuclear norm penalisation

1. Introduction

1.1. Motivations and Contributions

3D Image reconstruction from subsamples is a difficult problem at the intersection of the fields of
inverse problem, computational statistics and numerical analysis. Following the Compressed Sensing
paradigm [5], the problem can be tackled using sparsity priors in the case where sparsity can be proved
present in the image to be recovered. Compressed sensing has evolved from the recovery of a sparse
vector [6], to the recovery of spectrally sparse matrices [7]. The problem we are considering in the
present paper was motivated by Optical Coherence Tomography (OCT), where a 3D volume is to be
recovered from a small set of measurements along a ray across the volume, making the problem a kind
of tensor completion problem.

The possibility of efficiently addressing the reconstruction problem in Compressed Sensing,
Matrix Completion and their avatars greatly depend on formulating it as a problem which can be
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relaxed as a convex optimisation problem. For example, the sparsity of a vector is measured by the
number of non-zero components in that vector. This quantity is a non-convex function of the vector
but a surrogate can be easily found in the form the `1-norm. Spectral sparsity of a matrix is measured
by the number of nonzero singular values and, similarly, a convex surrogate is the `1-norm of the
vector of singular values, also called the nuclear norm.

The main problem with tensor recovery is that the spectrum is not a well defined quantity and
several approaches have been proposed for defining it [8,9]. Different nuclear norms have also been
proposed in the literature, based on the various definitions for the spectrum [10–12]. A very interesting
approach was proposed in References [2,3]. This approach is interesting in several ways:

• the 3D tensors are considered as matrix of 1D vectors (tubes) and the approach uses a tensor
product similar to the classical matrix product, after replacing multiplication of entries by, for
example, convolution of the tubes,

• the SVD is fast to compute,
• a specific and natural nuclear norm can be easily defined.

Motivated by the 3D reconstruction problem, our goal in the present paper is to study the natural
nuclear norm penalised estimator for tensor completion problem. Our approach extends the method
proposed in [4] to the framework developed by [3]. The main contribution of the paper is

• to present the most natural definition of the nuclear norm in the framework of Reference [3],
• to compute the subdifferential of this nuclear norm,
• to present a precise mathematical study of the nuclear norm penalised least-squares

reconstruction method,
• to illustrate the efficiency of the approach on the OCT reconstruction problem with real data.

1.2. Background on Tensor Completion

1.2.1. Matrix Completion

After the many successes of Compressed Sensing in inverse problems, Matrix and tensor
completion problems have recently taken the stage and become the focus of an extensive
research activity. Completion problems have applications in collaborative filtering [13],
Machine Learning [14,15], sensor networks [16], subspace clustering [17], signal processing [12], and
so forth. The problem is intractable if the matrix to recover does not have any particular structure. An
important discovery in References [1,18] is that when the matrix to be recovered has a low rank, then it
can be recovered based on a few observations only [18] and using nuclear norm penalised estimation
is a reasonably easy problem to solve.

The use of the nuclear norm as a convex surrogate for the rank was first proposed in Reference [19]
and further analysed in a series of breakthrough papers [1,4,7,20–22].

1.2.2. Tensor Completion

The matrix completion problem was recently generalised to the problem of tensor completion. A
very nice overview of tensors and algorithms is given in Reference [23]. Tensors play a fundamental
role in statistics [24] and more recently in Machine Learning [14]. It can be used for multidimensional
time series [25], analysis of seismic data [10], Hidden Markov Models [14], Gaussian Mixture based
clustering [26], Phylogenetics [27], and much more. Tensor completion is however a more difficult
problem from many points of view. First, the rank is NP-hard to compute in full generality [9]. Second,
many different Singular Value Decompositions are available. The Tucker decomposition [9] extends
the useful sum of rank one decomposition to tensors but it is NP-hard to compute in general. An
interesting algorithm was proposed in References [28,29]; see also the very interesting Reference [30].
Another SVD was proposed in Reference [31] with the main advantage that the generalized singular
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vectors form an orthogonal family. The usual diagonal matrix is replaced with a so called "core"
tensor with nice orthogonality properties and very simple structure in the case of symmetric [32] or
orthogonally decomposable tensors [33].

Another very interesting approach, called the t-SVD was proposed recently in [3] for 3D tensors
with applications to face recognition [34] and image deblurring, computerized tomography [35] and
data completion [36]. In the t-SVD framework, one dimension is assumed to be of a different nature
from the others, such as, for example, time. In this setting, the decomposition resembles the SVD
closely by using a diagonal tensor instead of a diagonal matrix as for the standard 2D SVD. The t-SVD
was also proved to be amenable to online learning [37]. One other interesting advantage of the t-SVD
is that the nuclear norm is well defined and its subdifferential is easy to compute.

The t-SVD proposed in Reference [3] is a very attractive representation of tensors in many settings
such as image analysis, multivariate time series, and so forth. Obviously, it is not so attractive for the
study of symmetric moment or cumulant tensors as studied in Reference [14], but for large image
sequences and times series, this approach seems to be extremely relevant.

1.3. Sparsity

One of the main discoveries of the past decade is that sparsity may help in certain contexts
where data are difficult or expensive to acquire [5]. When the object A0 to recover is a vector, the
fact that it may be sparse in a certain dictionary will dramatically improve recovery, as demonstrated
by the recent breakthroughs in high dimensional statistics on the analysis of estimators obtained via
convex optimization, such as the LASSO [38–40], the Adaptive LASSO [41] or the Elastic Net [42].
When A0 is a matrix, the property of having a low rank may be crucial for the recovery as proved in
References [4,43]. Extensions to the tensor case are studied in References [11,44,45]. Tensor completion
using the t-SVD framework has been analyzed in Reference [36]. In particular, our results complement
and improve on the results in Reference [36]. Reference [46] deserves special mention for using more
advanced techniques based on real algebraic geometry and sums of squares decompositions.

The usual estimator in a sparse recovery problem is a nuclear norm penalized least squares
such as the one studied here and defined by (27). Several other types of nuclear norms have been
used for tensor estimation and completion. In particular, several nuclear norms can be naturally
defined such as in for example, References [11,47,48]. It is interesting to notice that, sparsity promoting
penalization of the least squares estimator crucially relies on the structure of the subdifferential of
the norm involved. See for instance References [4,49] or Reference [50]. In Reference [11] a subset
of the subdifferential is studied and then used in order to establish the efficiency of the penalized
least squares approach. Another interesting approach is the one in [48] where an outer approximation
of the subdifferential is given. In the matrix setting, the work in References [51,52] are famous for
providing a neat characterization of the subdifferential of matrix norms or more generally functions of
the matrix enjoying enough symmetries. In the 3D or higher dimensional setting, however, the case
is much less understood. The relationship between the tensor norms and the norms of the flattening
are intricate although some good bounds relating one to the other can be obtained, as, for example, in
Reference [53].

The extension of previous results on low rank matrix reconstruction to the tensor setting is
nontrivial but is shown to be relatively easy to obtain once the appropriate background is given.
In particular, our theoretical analysis will generalise the analysis in Reference [4]. In order to do this,
we provide a complete characterisation of the subdifferential of the nuclear norm. Our results will be
illustrated by computational experiments for solving a problem in Optical Coherence Tomography
(OCT).

1.4. Plan of the Paper

Section 2 presents the necessary mathematical background about tensors and sparse recovery.
Section 3 introduces the measurement model and the present our nuclear-norm penalised estimator.



Mathematics 2020, xx, 5 4 of 31

In Section 4 we prove our main theoretical result. In Section 5, our approach is finally illustrated in
the context of Optical Coherence Tomography, and some computational results based on real data
are presented.

2. Background on Tensors, t-SVD

In this section, we present what is meant by the notion of tensor and the various generalisations of
the common objects in linear algebra to the tensor setting. In particular, we will introduce the Singular
Value Decomposition proposed in Reference [3] and some associated Schatten norms.

2.1. Basic Notations for Third-Order Tensor

In this section, we recall the framework introduced by Kilmer and Martin [2,3] for a very special
class of tensors which is particularly adapted to our setting.

2.1.1. Slices and Transposition

For a third-order tensor A, its (i, j, k)th entry is denoted by Aijk.

Definition 1. The kth- frontal slice of A is defined as

A(k) = A (:, :, k) .

The jth-transversal slice of A is defined as

~A(j) = A (:, j, :) .

A tubal scalar (t-scalar) is an element of R1×1×n3 and a tubal vector (t-vector) is an element of Rn1×1×n3

Definition 2 (Tensor transpose). The conjugate transpose of a tensor A ∈ Rn1×n2×n3 tensor At obtained by
conjugate transposing each of the frontal slice and then reversing the order of transposed frontal slices starting
from the slide number 2 to the slice number n3 and then appending the conjugate transposed frontal slice A(1)> .

Definition 3 (The “dot” product). The dot product A · B between two tensors A ∈ Rn1×n2×n3 and B ∈
Rn2×n4×n3 is the tensor C ∈ Rn1×n4×n3 whose slice C(n) is the matrix product of the slice A(n) with the
slice B(n):

C(k) := (A · B)(k) := A(k) B(k), k = 1, . . . , n3. (1)

We will also need the canonical inner product.

Definition 4 (Inner product of tensors). If A and B are third-order tensors of same size n1 × n2 × n3, then
the inner product between A and B is defined as the following (notice the normalization constant of FFT),

〈A, B〉 =
n1

∑
i=1

n2

∑
j=1

n3

∑
k=1

AijkBijk. (2)

2.1.2. Convolution and Fourier Transform

Definition 5 (t-product for circular convolution). The t-product A ∗ B of A ∈ Rn1×n2×n3 and B ∈
Rn2×n4×n3 is an n1 × n4 × n3 tensor whose (i, j)-th tube is given by

C (i, j, :) =
n2

∑
k=1

A (i, k, :) ∗ B (k, j, :) , (3)
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where ∗ denotes the circular convolution between two cubes of same size.

Definition 6 (Identity tensor). The identity tensor J ∈ Rn1×n1×n3 is defined to be a tensor whose first frontal
slice J1 is the n1 × n1 identity matrix and all other frontal slices Ji, i = 2, . . . , n3 are zero.

Definition 7 (Orthogonal tensor). A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies

Q> ∗Q = Q ∗Q> = J. (4)

Â is a tensor which is obtained by taking the Fast Fourier Transform (FFT) along the third
dimension and we will use the following convention for Fast Transform along the 3rd dimension

Â = fft (A, [ ], 3) .

The one-dimensional FFT along the 3th-dimension is given

Â(j1, j2, k3) =
n3

∑
j3=1

A(j1, j2, j3) exp(−2
iπ j3k3

n3
), ∀ j1, j2, 1 6 j1 6 n1, 1 6 j2 6 n2.

Naturally, one can compute A from Â via ifft
(

Â, [ ], 3
)

using the inverse FFT, and is defined:

A(j1, j2, k3) =
n3

∑
j3=1

Â(j1, j2, j3) exp(2
iπ j3k3

n3
), ∀ j1, j2, 1 6 j1 6 n1, 1 6 j2 6 n2.

Definition 8 (Inverse of a tensor). The inverse of a tensor A∈ Rn×n×n3 is written as A−1 satisfying

A−1 ∗ A = A ∗ A−1 = J. (5)

where J is the identity tensor of size n× n× n3.

Remark 1. It is proved in Reference [3] that for any tensor A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , we have

A ∗ B = C ⇔ Â · B̂ = Ĉ.

2.2. The t-SVD

We finally arrive at the definition of the t-SVD.

Definition 9 (f-diagonal tensor). Tensor A is called f-diagonal if each frontal slice A(i) is a diagonal matrix.

Definition 10 (Tensor Singular Value Decomposition: t-SVD). For M ∈ Rn1×n2×n3 , the t-SVD of M is
given by

M = U ∗ S ∗V>, (6)

where U and V are orthogonal tensor of size n1 × n1 × n3 and n2 × n2 × n3 respectively. S is a rectangular
f-diagonal tensor or size n1 × n2 × n3, and the entries in S are called the singular values of M. This SVD can
be obtained using the Fourier transform as follows:

M̂(i) = Û(i) · Ŝ(i) ·
(

V̂(i)
)>

. (7)

This t-SVD is illustrated in Figure 1 below. Notice that the diagonal elements of S, i.e., S(i, i, :) are
tubal scalars as introduced in Definition 1. They will also be called tubal eigenvalues.
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Definition 11. The spectrum σ(A) of the tensor A is the tubal vector given by

σ(A)i = S(i, i, :) (8)

for i = 1, . . . , min{n1, n2}.

Figure 1. The t-SVD of a tensor.

2.3. Some Natural Tensor Norms

Using the previous definitions, it is easy to define some generalisations of the usual matrix norms.

Definition 12 (Tensor Frobenius norm). The induced Frobenius norm from the inner product defined above
is given by,

‖A‖F = 〈A, A〉1/2 =
1
√

n3
‖Â‖F =

√√√√ n1

∑
i=1

n2

∑
j=1

n3

∑
k=1

A2
ijk. (9)

Definition 13 (Tensor spectral norm). The tensor spectral norm ‖A‖S∞ is defined as follows:

‖A‖S∞ = max
i
‖σ(A)i‖2 (10)

where ‖.‖2 is the l2-norm.

Proposition 1. Let M be n1 × n2 × n3 tensor. Therefore

‖M‖S∞ = ‖F (M)‖S∞ ,

where F corresponds to the Fast Fourier Transform.

Definition 14 (Tubal nuclear norm). The tensor nuclear norm of a tensor A denoted as ‖A‖~ is the sum of
singular values of all the frontal slices of A. Moreover,

‖A‖~ =
min{n1,n2}

∑
i=1

√√√√ n3

∑
j=1

S(i, i, j)2

=
min{n1,n2}

∑
i=1

‖σ(A)i‖2. (11)

Note that by Parseval’s inequality√√√√ n3

∑
j=1

S(i, i, j)2 =
1
√

n3

√√√√ n3

∑
j=1

Ŝ(i, i, j)2. (12)
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Therefore, it is equivalent to define the tubal-nuclear norm via in the Fourier domain. Recall moreover
that the Ŝ(i, i, j) are all non-negative due to the fact that Û(k)Ŝ(k)V̂(k)t

is the SVD of the kth slice of A.

Proposition 2 (Trace duality property). Let A, B be n1 × n2 × n3 tensor. Therefore

|〈A, B〉| 6 ‖A‖~‖B‖S∞

Proof. By Cauchy-Schwartz, we have

|〈A, B〉| = |〈F (A),F (B)〉|
= |〈F (U)F (S)F (V>),F (B)〉|

=

∣∣∣∣∣ n3

∑
i=1

tr
(

Ŝ(i)V̂(i)>F (B)(i)
>

Û(i)
)∣∣∣∣∣

=

∣∣∣∣∣ n3

∑
i=1

min{n1,n2}

∑
j=1

Ŝ(i)
jj

(
V̂(i)>F (B)(i)

>
Û(i)

)
jj

∣∣∣∣∣
6

min{n1,n2}

∑
j=1

(
‖Ŝjj‖2

)1/2
(
‖(V̂>F (B)tÛ)jj‖2

)1/2

6
min{n1,n2}

∑
j=1

(
‖Ŝjj‖2

)1/2 (‖F (B)jj‖2
)1/2 ,

taking the maximum of ‖F (B)jj‖2 and the sum the slices of
(
‖Ŝjj‖2

)1/2, and apply (12) and inverse of
FFT, we obtain the result.

Proposition 3. Given tensor A ∈ Rn1×n2×n3 . We have

‖A‖~ 6
√

rank(A)‖A‖F.

Proof. Again by Cauchy-Schwartz, we have

‖A‖~ =
min{n1,n2}

∑
j=1

‖S(j, j, :)‖2

=
rank(A)

∑
j=1

‖S(j, j, :)‖2

6
√

rank(A)

(
min{n1,n2}

∑
j=1

‖S(j, j, ; )‖2
2

)1/2

6
√

rank(A)‖A‖F.

Lemma 1. We have

‖PS⊥1
ÂλPS⊥2

‖~ = max
‖W‖S∞61

〈W, PS⊥1
ÂλPS⊥2

〉
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Proof.

〈W, PS⊥1
ÂλPS⊥2

〉 = 〈F (W),F (PS⊥1
ÂλPS⊥2

)〉 denote B = F (PS⊥1
ÂλPS⊥2

) and take this t-svd

=
n3

∑
i=1

tr
(

V̂(i)>F (W)(i)
>

Û(i)Ŝ(i)
)

=
n3

∑
i=1

min{n1,n2}

∑
j=1

(
V̂(i)>F (W)(i)

>
Û(i)

)
jj

Ŝ(i)
jj

If we take F (W) such as
(
V̂>F (W)>Û

)
jj is colinear with Ŝjj, i.e, ∀, j = 1, . . ., min{n1, n2}(

V̂>F (W)>Û
)

jj
= αjŜjj ⇔

(
V̂ŜWÛ>

)
jj
= αjŜjj with αj 6 1.

This means to solve the equation system to determine the αj. Thus,

|αj‖Ŝjj‖2| = 1 =⇒ |αj| =
1

‖Ŝjj‖2
.

With this result, the remaining of proof follows directly from the proof of Proposition 2.

2.4. Rank, Range and Kernel

The rank, the range and the kernel are extremely important notions for matrices. They will play a
role in our analysis of the penalised least squares tensor recovery procedure as well.

As noticed in Reference [3], a tubal scalar may have all its entrees different from zero but still be
non-invertible. According to the definition, a tubal scalar a ∈ R1×1×n3 is invertible if there exists a
tubal scalar b such that a ∗ b = b ∗ a = e. Equivalently, the Fourier transform â of a has no coefficient
equal to zero. We can define the tubal rank ρi of Si,i,: as the number of non-zero components of Ŝ(i, i, :).
Then, the easiest way to define the rank of a tensor is by means of the notion of multirank as follows.

Definition 15. The multirank of a tensor is the vector (ρ1, . . . , ρr) where r is the number of nonzero tubal
vectors S(i, i, :), i = 1, . . . , min{n1, n2}.

We now define the range of a tensor.

Definition 16. Let j denote the number of invertible tubal eigenvalues and let k denote the number of nonzero
noninvertible tubal eigenvalues. The rangeR(M) of a tensor M ∈ Rn1×n2×n3 is defined as

R(M) =
{
~U(1) ∗ c1 + · · ·+ ~U(j+k) ∗ cj+k | cl ∈ Range(sl ∗ ·), l ∈ {j + 1, · · · , j + k}

}
. (13)

Definition 17. Let j denote the number of invertible tubal eigenvalues. The kernel K(M) of a tensor M ∈
Rn1×n2×n3 is defined as

K(M) =
{
~V(j+1) ∗ c1 + · · ·+ ~V(n2) ∗ cn2 | sl ∗ cl = 0, l ∈ {j + 1, · · · , j + n2}

}
. (14)

3. Measurement Model and the Estimator

3.1. The Observation Model

In the model considered hereafter, the observed data are Y1,. . . ,Yn given by the following model

Yi = 〈Xi, A0〉 + ξi, i = 1, . . . , n,
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where the notation 〈·, ·〉 stands for the canonical scalar product of tensors. This can be seen as a
tensor regression problem Xi, i = 1, . . . , n are some tensors in Rn1×n2×n3 and ξi, i = 1, . . . , n are some
independent zero mean random variables. Assume that the frontal faces X(i) are i.i.d uniformly
distributed on the set

X = {ej(n1)e>k (n2), 1 6 j 6 n1, 1 6 k 6 n2}, (15)

where ek(n) are the canonical basis vectors in Rn.
Our goal is to recover the tensor A0 based on the data Yi, i = 1, . . . , n only for n as small as possible.

Definition 18. For any tensors A, B ∈ Rn1×n2×n3 , we define the scalar product

〈A, B〉 = ∑
i1=1,...,n1

∑
i2=1,...,n2

∑
i3=1,...,n3

Ai1,i2,i3 Bi1,i2,i3 ,

and the bilinear form

〈A, B〉L2(Π) =
1
n

n

∑
i=1

E [〈A, Xi〉〈B, Xi〉]

Here Π = 1
n ∑n

i=1 Πi, where Πi denotes the distribution of Xi. The corresponding semi-norm ‖A‖2
L2(Π) is

given by

‖A‖2
L2(Π) =

1
n

n

∑
i=1

E
[
〈A, Xi〉2

]

and will denote by M the tensor given by

M =
1
n

n

∑
i=1

(YiXi −E [YiXi]) .

3.2. The Estimator

The approach proposed in Reference [4] for low rank matrix estimation which will be extended to
tensor estimation in the present paper consists in minimising

Âλ ∈ argminA∈A Ln(A), (16)

where

Ln(A) = ‖A‖2
L2(Π) −

〈
2
n

n

∑
i=1

YiXi, A

〉
+ λ ‖A‖~, (17)

where ‖ · ‖~ is a tubal tensor nuclear norm that we will introduce in Definition 14.
Recall that nuclear norm penalisation is widely used in sparse estimation when the matrix to

be recovered is low rank [5]. Following the success of the application of sparsity to low rank matrix
recovery, several extensions of the matrix nuclear norm were proposed in the literature [11,12,47],
etc. Another type of nuclear norm was proposed in Reference [36] based on the tubal framework
of Kilmer [3]. Our estimator is another nuclear norm penalisation based estimator. As it will be
explained in Section 2 below, the nuclear norm used in the present paper has some advantages over
other norms in the context of tubal low rank tensors and the resulting estimator is most relevant in
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many applications where we want to recover a tensor which is the sum of a small number of rank-one
tensors.

4. Main Results

In this section, we provide our main results. First, in Section 4.2, we give a complete
characterisation of the subdifferential of the nuclear norm (Definition 14). Then, we propose a statistical
study of the nuclear-norm penalised estimator Âλ in Section 4.3.

4.1. Preliminary Remarks

4.1.1. Orthogonal Invariance

It is easy to see that the t-nuclear norm is orthogonally invariant. Indeed, consider two orthogonal
tensors O1 ∈ Rn1×n1×n3 , O2 ∈ Rn2×n2×n3 , k = 1, . . . , n3. Since the product of two orthogonal tensors is
itself orthogonal, we have

σ(A) = σ(O1 ∗ A ∗O>2 ). (18)

4.1.2. Support of a Tensor

Given that the t-svd of a tensor is

A = U ∗ S ∗V> (19)

=
min{n1,n2}

∑
k=1

~U(k) ∗~skk ∗ ~V(k)> , (20)

with (~U(1), . . . , ~U(min{n1,n2})) is a family of orthonormal matrix in Rn1×n1 , and (~V(1), . . . , ~V(min{n1,n2}))

a family of orthonormal matrix in Rn2×n2 and~skk = S(k, k, :) are the spectrum of A.
The support of A is the couple of linear vector spaces (S1, S2) of tubal tensors, where

• S1 is the linear span of (~U(1), . . . , ~U(min{n1,n2})) and
• S2 is the linear span of (~V(1), . . . , ~V(min{n1,n2})).

We also let S⊥j , j = 1, 2 to be the orthogonal complements of Sj and by PSj , j = 1, 2, the projector on
linear vector subspace S of tubal tensors.

4.2. The Subdifferential of the t-nuclear Norm

Our first result is a characterisation of the subdifferential of ‖ · ‖~. Recall first the particular case
of the matrix nuclear norm ‖ · ‖∗. By Corollary 2.5 in [52], we have

∂ ‖ · ‖∗ = {UVt + W | ‖W‖ 6 1, UtW = 0, VW = 0}.

This result is established in [52] using the Von-Neumann inequality and in particular the equality case
of this inequality.

4.2.1. Von-Neumann’s Inequality for Tubal Tensors

Theorem 1. Let A, B be n1 × n2 × n3 tensor. Therefore

〈A, B〉 6 〈SA, SB〉 (21)

where SA is a rectangular f -diagonal tensor, contains all the singular values of A.

Equality holds in (21) if and only if A, B have the same singular tensors.
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Proof. Let F denote the Fast Fourier Transform. We have

〈A, B〉 = 〈F (A) ,F (B)〉

=
〈
F
(

UA ∗ SA ∗
(

VA>
))

,F
(

UB ∗ SB ∗
(

VB>
))〉

=
〈
F
(

UA
)
· F
(

SA
)
· F
(

VA>
)

,F
(

UB
)
· F
(

SB
)
· F
(

VB>
)〉

=
n3

∑
k=1

〈
F
(

UA
)(k)
· F
(

SA
)(k)
·
(
F
(

VA>
))(k)

,

F
(

UB
)(k)
· F
(

SB
)(k)
·
(
F
(

VB>
))(k) 〉

.

Thus, using the Von Neumann inequality for matrices, we get

6
n3

∑
k=1
〈F
(

SA
)(k)

,F
(

SB
)(k)
〉

6 〈F
(

SA
)

,F
(

SB
)
〉

= 〈SA, SB〉,

where the last equality stems from the isometry property of Fast Fourier Transform.

Notice that the Von-Neumann inequality was extended in [54] to general tensors and exploited
in [55] for the computation of the subdifferential of some tensor norms. In comparison, the case of the
t-nuclear norm only need an appropriate use of the matrix Von Neumann inequality.

4.2.2. Lewis’s Characterization of the Subdifferential

Theorem 2. Let f : Rmin{n1,n2} 7→ R be a function convex, so :

( f ◦ σ)∗ = f ∗ ◦ σ.

The proof is exactly the same as in [52], Theorem 2.4.

Theorem 3. Let us suppose that the function f : Rmin{n1,n2} −→ R is convex. Then, the tensor

Y ∈ ∂ ( f ◦ σ) (X) if and only if σ (Y) ∈ ∂ f (σ (X)) . (22)

The proof is the same as in [52], Corollary 2.5 where the matrix Von Neumann inequality (and
more precisely, the exact characterization of the equality case) is replaced with Von Neumann inequality
for tubal tensors given by Theorem 4.1.

Theorem 4. Let r denote the number of ~S(k)
X which are non-zero. The subdifferential of the t-nuclear norm is

given by

∂‖X‖~ =
{

U ∗ D(~µ) ∗Vt + W| ~µk = ~S(k)
X /‖~S(k)

X ‖2, k = 1, . . . , r,

‖~µk‖2 = 1, r < k 6 min{n1, n2}
}

. (23)

Proof. We only need to rewrite (22) using the well-known formula for the subdifferential of the
Euclidean norm. We provide the details for the sake of completeness.
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Let ~SX be a t-vector in Rn1×1×n3 .

∂ f (σ(X)) = ∂

(
min{n1,n2}

∑
k=1

‖~S(k)
X ‖2

)
= ∂‖~S(1)

X ‖2 × . . .× ‖~S(min{n1,n2})
X ‖2 (24)

where in second equality we use the result of [56], Chapter 16,l Section 1, Proposition 16.8.
As is well known, the subgradient of the l2-norm is

∂‖w‖2 =


{ w
‖w‖2

}
if w 6= 0

{z, ‖z‖2 6 1} if w = 0

and plugg this formula into (24). Therefore

∂( f ◦ σ)(X) =
{

U ∗ D(~µ) ∗V>|~µ ∈ ∂ f (σ(X)), U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 , X = U ∗ S ∗V>
}

.

(25)

Let T be the set of indices j which tubal scalar σ(X)j 6= 0. Thus,

U ∗ D(~µ) ∗V> = UT ∗ D(~µT) ∗V>T + UTc ∗ D(~µTc) ∗V>Tc

Moreover,

~µT =



~S(1)
X

‖~S(1)
X ‖2
...

~S(min{n1,n2})
X

‖~S(min{n1,n2})
X ‖2


. (26)

Therefore, U ∗ D(~µ) ∗V> is of the form

UT ∗ D(~µT) ∗V>T + W

with W = UTc ∗ D(~µTc) ∗V>Tc and

~µTc ∈ {z, ‖z‖2 6 1}×|Tc |.

So we have,

‖W‖S∞ 6 1, U>T ∗W = 0 and W ∗VT = 0.

4.3. Error Bound

Our error bound on tubal-tensor recovery using the approach of Koltchinskii, Lounici and
Tsybakov [4] is given in the following theorem.
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Theorem 5. Let A ⊆ Rn1×n2×n3 be a convex set of tensors. Let Âλ be defined by

Âλ = arg min
A∈A

‖A‖2
L2(Π) − 2

〈 1
n

n

∑
i=1

YiXi, A
〉
+ λ‖A‖~, (27)

where we recall that ‖ · ‖~ denotes the tensor nuclear norm (see Definition 14). Assume that there exists a
constant ρ > 0 such that, for all tensor A ∈ A−A := {A1 − A2 : A1, A2 ∈ A},

‖A‖2
L2(Π) ≥ ρ−2‖A‖2

F. (28)

If λ ≥ 2 ‖M‖S∞ , then

‖Âλ − A0‖2
L2(Π) 6 inf

A∈A

‖A− A0‖2
L2(Π) +

(
1 +
√

2
2

)2

ρ2λ2 rank(A)

 .

Proof. We follow the proof of Reference [4]. We provide all the details for the sake of the completeness.

Âλ ∈ arg min
A∈A

Ln(Âλ) = ‖A‖2
L2(Π) − 2

〈 1
n

n

∑
i=1

YiXi, A
〉
+ λ‖A‖~. (29)

Let us compute the directional derivative of Ln at Âλ.

DLn(Âλ; h) = lim
t→0

Ln(Âλ + th)− Ln(Âλ)

t
.

The optimality condition of Âλ implies DLn(Âλ; A− Âλ) ≥ 0, ∀A ∈ A. Thus

Ln(Âλ + th) = ‖Âλ + th‖2
L2(Π) − 2

〈 1
n

n

∑
i=1

YiXi, Âλ + th
〉
+ λ‖Âλ + th‖~

= ‖A‖2
L2(Π) + 2t〈Âλ, h〉L2(Π) + t2‖h‖2

L2(Π) − 2
〈 1

n

n

∑
i=1

YiXi, Âλ
〉

−2t

〈
1
n

n

∑
i=1

YiXi, h

〉
+ λ‖Âλ + th‖~

lim
t→0

Ln(A + th)− Ln(A)

t
= 2〈Âλ, h〉L2(Π) − 2

〈
1
n

n

∑
i=1

YiXi, h

〉
+ λ

(
‖Âλ + th‖~ − ‖Âλ‖~

)
≥ 0

for all h ∈ TA(Âλ) (the tangent cone to A at Âλ). Taking h = A− Âλ, we have,

2〈Âλ, A− Âλ〉L2(Π) − 2
〈 1

n

n

∑
i=1

YiXi, A− Âλ
〉
+ λ lim

t→0

(
‖Âλ + th‖~ − ‖Âλ‖~

t

)
≥ 0. (30)

On the other hand,

lim
t→0

(
‖Âλ + th‖~ − ‖Âλ‖~

t

)
= max

G∈∂‖.‖(Âλ)
〈G, A− Âλ〉

= 〈Ĝλ, A− Âλ〉 (31)
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by compactness of G ∈ ∂‖.‖~(Âλ); see [57]. Combining (31) with (30), we obtain

2〈Âλ, Âλ − A〉L2(Π) − 2

〈
1
n

n

∑
i=1

YiXi, Âλ − A

〉
+ λ〈Ĝ, Âλ − A〉 ≤ 0. (32)

Consider an arbitrary tensor A ∈ A of tubal rank r with spectral representation

A = U ∗ S ∗Vt =
r

∑
j=1

~U(j) ∗~sjj ∗ ~V(j)t
(33)

where~sjj = S (j, j, :), and with support (S1, S2). Using that〈
1
n

n

∑
i=1

E [YiXi] , Âλ − A

〉
= 〈A0, Âλ − A〉L2(Π) (34)

it thus follows from (32) that

2〈Âλ − A0, Âλ − A〉L2(Π) + λ〈Ĝλ − G, Âλ − A〉 6 −λ〈G, Âλ − A〉+ 2〈M, Âλ − A〉 (35)

with

M =
1
n

n

∑
i=1

(YiXi −E [YiXi]) .

By the monotonicity of subdifferentials of convex functions, we have 〈Ĝ−G, Âλ− A〉 ≥ 0 (cf. [58],
Chapter 4, Section 3, Proposition 9). Therefore

2〈Âλ − A0, Âλ − A〉L2(Π) 6 −λ〈G, Âλ − A〉+ 2〈M, Âλ − A〉. (36)

Furthermore, by (23), the following representations holds

G =
r

∑
j=1

~U(j) ∗~µj ∗ ~V(j)> + PS⊥1
WPS⊥2

where W is an arbitrary tensor with ‖W‖S∞ 6 1 and

〈PS⊥1
WPS⊥2

, Âλ − A〉 = 〈PS⊥1
WPS⊥2

, Âλ〉

= 〈W, PS⊥1
ÂλPS⊥2

〉

and using Proposition 3, we can choose W such that

〈PS⊥1
WPS⊥2

, Âλ − A〉 = ‖PS⊥1
ÂλPS⊥2

‖~,

where in the first equality we used that A has support (S1, S2) . For this particular choice of W,
(36) implies that

2〈Âλ − A0, Âλ − A〉L2(Π) + λ‖PS⊥1
ÂλPS⊥2

‖~ 6 −λ

〈
r

∑
j=1

~U(j) ∗~µj ∗ ~V(j)> , Âλ − A

〉
+ 2〈M, Âλ − A〉 (37)
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Using the identity

2〈Âλ − A0, Âλ − A〉L2(Π) = ‖Âλ − A0‖2
L2(Π) + ‖Âλ − A‖2

L2(Π) − ‖A− A0‖2
L2(Π)

and the fact that

‖
r

∑
j=1

~U(j) ∗~µj ∗ ~V(j)>‖S∞ = ‖D(~µ)‖S∞

〈
r

∑
j=1

~U(j) ∗~µj ∗ ~V(j)> , Âλ − A

〉
=

〈
r

∑
j=1

~U(j) ∗~µj ∗ ~V(j)> , PS1

(
Âλ − A

)
PS2

〉

we deduce from (37) that

‖Âλ − A0‖2
L2(Π) + ‖Âλ − A‖2

L2(Π) + λ‖PS⊥1
ÂλPS⊥2

‖~ 6 ‖A− A0‖2
L2(Π)

+ λ‖D(~µ)‖∞‖PS1(Âλ − A)PS2‖~ + 2〈M, Âλ − A〉. (38)

Now, to find an upper bound on 2〈M, Âλ − A〉, we use the following decomposition:

〈M, Âλ − A〉 = 〈PA(M), Âλ − A〉+ 〈PS⊥1
MPS⊥2

, Âλ − A〉

= 〈PA(M),PA(Âλ − A)〉+ 〈PS⊥1
MPS⊥2

, Âλ〉

where PA(M) = M− PS⊥1
MPS⊥2

. This implies, due to the trace duality,

2|〈M, Âλ − A〉| = 2|〈PA(M),PA(Âλ − A)〉+ 〈PS⊥1
MPS⊥2

, Âλ〉|

6 2|〈PA(M),PA(Âλ − A)〉|+ 2|〈PS⊥1
MPS⊥2

, Âλ〉|

6 2‖PA(M)‖F‖PA(Âλ − A)‖F + 2‖PS⊥1
MPS⊥2

‖S∞‖PS⊥1
ÂλPS⊥2

‖~

6 Λ‖Âλ − A‖F + Γ‖PS⊥1
ÂλPS⊥2

‖~ (39)

where

Λ = 2‖PA(M)‖F, and Γ = 2‖PS⊥1
MPS⊥2

‖S∞

Using that

PA(M) = PS⊥1
MPS2 + PS1M and rank(PSj) 6 rank(A), j = 1, 2

we have with ∆ = ‖M‖S∞

Λ 6 2
√

rank(PA)(M)‖M‖S∞ 6 2
√

2rank(A)∆ 6
√

2rank(A)λ

Thus,

2|〈M, Âλ − A〉| 6
√

2rank(A) λ‖Âλ − A‖F + 2∆‖PS⊥1
ÂλPS⊥2

‖~ (40)
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Due to Proposition 3, we have

‖PS1(Âλ − A)PS2‖~ 6
√

rank(Âλ − A)‖PS1(Âλ − A)PS2‖F 6
√

rank(Âλ − A)‖Âλ − A‖F (41)

and using the assumption (28), it follows from (38) and (40) that

‖Âλ − A0‖2
L2(Π) + ‖Âλ − A‖2

L2(Π) + (λ− 2∆)‖PS⊥1
ÂλPS⊥2

‖~ 6 ‖A− A0‖2
L2(Π)+

+
(
‖D(~µ)‖S∞ +

√
2
)

ρλ
√

rank(A)‖Âλ − A‖L2(Π) (42)

Using (
‖D(~µ)‖S∞ +

√
2
)

ρλ
√

rank(A)‖Âλ − A‖L2(Π) − ‖Âλ − A‖2
L2(Π)

6
1
4

(
‖D(~µ)‖S∞ +

√
2
)2

ρ2λ2rank(A),

we deduce from (42) that

‖Âλ − A0‖2
L2(Π) + (λ− 2∆)‖PS⊥1

ÂλPS⊥2
‖~ 6 ‖A− A0‖2

L2(Π)

+
1
4

(
‖D(~µ)‖S∞ +

√
2
)2

ρ2λ2rank(A)

In Section, A, it is proved that we can set

ρ =
√

mn1n2n3/2
3 (43)

and

λ = 2n3‖F (A0)‖S∞ max

{√
t + log(m)

nn1n2
;

(
1 +

1
√

n1n2

)
t + log(m)

n

}
. (44)

5. Numerical Experiments

The proposed methods were numerically validated using 3D OCT images. OCT is widely studied
as a medical imaging system in many clinical applications and fundamental research. In numerous
clinical purposes, OCT is considered as a very interesting technique for in situ tissue characterization
known as “optical biopsy” (in opposition to the conventional physical biopsy). OCT is operating under
the principle of low coherence interferometry providing micro-meter spatial resolution at several MHz
A-scan (1D optical core in z direction) acquisition rate. In these experiments, we found that depth
was a different coordinate from the two other coordinates and the tubal SVD approach appeared
particularly relevant. One way of circumventing the problem in the case where the three coordinates
have the same properties is to perform the reconstruction three times using the proposed method and
take the average of the results.

5.1. Benefits of Subsampling for OCT

The OCT imaging device, as the case of the most medical imaging systems, obeys two key
requirements for successful application of compressed sensing methods: (1) medical imaging is
naturally compressible by sparse coding in an appropriate transform domain (e.g., wavelet, shearlet
transforms, etc.) and (2) OCT scanning system (e.g., Spectral-Domain OCT, the most used) naturally
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acquire encoded samples, rather than direct pixel samples (e.g., in spatial-frequency encoding).
Therefore, the images resulting from Spectral-Domain OCT are sparse in native representation, hence
yielding themselves well to various implementations of the ideas from Compressed Sensing theory.

Figure 2. Illustration of the Fourier-Domain Optical Coherence Tomography (OCT) operating. (A) the
optical principle and (B) the different available acquisition modes: A-scan (1D optical core), B-Scan (2D
image), and C-scan (volume).

Certainly, OCT enables high-speed A-scan and B-scan acquisitions (Figure 2B) but presents
a serious issue when it comes to acquiring a C-scan volume. Therefore, especially in case of
biological sample/tissue examination, using OCT volumes poses the problem of frame-rate acquisition
(generating artifacts) as well as the data transfer i.e., several hundred Mo for each volume (Figure 2B).

Indeed, OCT volume data can be considered as a n1 × n2 × n3 tensor of voxels. Thereby,
the mathematical methods and materials related to tensors study are well suited for 3D OCT data.

5.2. Experimental Set-up

An OCT imaging system ( Telesto-II 1325 nm spectral domain OCT) from THORLABS (Figure 3),
is used to validate the proposed distortion models. Axial (resp. lateral) resolution is 5.5 µm (resp. 7 µm)
and up to 3.5 mm depth. The Telesto-II allows a maximum field-of-view of 10×10×3.5 mm3 with a
maximum A-Scan (optical core) acquisition rate of 76 kHz.
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Figure 3. Global view of the OCT acquisition setup.

5.3. Validation Scenario

The method proposed in this paper was implemented in a MATLAB framework without taking
into account the code optimization aspects as well as the time-computation. In order to validate
experimentally the approach presented here, we acquired different OCT volumes (C-Scan images) of
realistic biological samples: for example, a part of a grape (Figure 4(left)) and a part of a fish eye retina
(Figure 4(right)). The size of the OCT volume used in these numerical validations, for both samples, is
An×m×l = 281× 281× 281 voxels.

Figure 4. Examples of the OCT volumes of biological samples used to validate the proposed method.
(first row) the initial OCT volumes and (second row), B-scan images (100th vertical slice) taken from
the initial volumes.

To access the performance of the proposed algorithm, we constructed several undersampled 3D
volume using 30%, 50%, 70%, and 90% of the original OCT volume. To do this, we created two types of
3D masks. The first consists of a pseudo-random binary masks Mv using a density random sampling in
which the data are selected in a vertical manner (Figure 5(left)). For the second type of mask, instead of
a vertical subsampling of the data, we designed oblique masks Mo as shown in Figure 5(right)) which
are more appropriate in the case of certain imaging systems such as Magnetic Resonance Imaging
(MRI), Computerized Tomography scan (CT-scan), and in certain instances, OCT imaging systems
as well.
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Figure 5. Illustration of the implemented 3D masks used to subsampled the data and creating the 3D
masks. (Left) a 3D mask allowing a vertical and random selection of the data, and (right) a 3D mask
allowing an oblique selection of the subsampled data.

5.4. Obtained Results

The validation scenarios were carried out as follows—the studied method was applied to each
OCT volume (i.e., grape or fish eye) using various subsampling rates (i.e., 30%, 50%, 70%, and 90%).
Also, in each case, the vertical Mv or the oblique Mo 3D binary masks were used. The results obtained
with our nuclear norm penalised reconstruction approach are discussed below.

5.4.1. Grape Sample

Figures 6 and 7 depict the different reconstructed OCT volumes using the oblique and the vertical
binary masks. Instead of illustrating the fully reconstructed OCT volume, we choose to show 2D
images (the 100th xy slice of the reconstructed volumes) for a better visualization, with the naked eye,
of the quality of the obtained results. It can be highlighted that the sharpness of the boundary is well
preserved; however, it loses some features in the zones where the image has low intensity. This is a
common effect of most of the compressed sensing and inpainting methods. In order to improve the
quality of the recovered data, conventional filters based post-processing could be also be used in order
to enhance contrast.

Figure 6. [sample: grape, mask: vertical]—Reconstructed OCT images (only a 2D slice is shown in
this example). Each row corresponds to an under-sampling rate: 30% (1st row), 50% (2nd row), 70%
(3th row), and 90% (4th row). The first column represents the initial OCT image, the second column
the under-sampled data used for the reconstruction, and the third column, the recovered OCT images.
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Figure 7. [sample: grape, mask: oblic]—Reconstructed OCT images (only a 2D slice is shown in this
example). Each row corresponds to an under-sampling rate: 30% (1st row), 50% (2nd row), 70% (3th
row), and 90% (4th row). The first column represents the initial OCT image, the second column the
under-sampled data used for the reconstruction, and the third column, the recovered OCT images.

5.4.2. Fish Eye Sample

we also performed validation experiments using an optical biopsy of a fish eye (see the images
sequence depicted in Figures 8 and 9).

Figure 8. [sample: fish eye retina, mask: vertical]—Reconstructed OCT images (only a 2D slice is
shown in this example). Each row corresponds to an under-sampling rate: 30% (1st row), 50% (2nd
row), 70% (3th row), and 90% (4th row). The first column represents the initial OCT image, the second
column the under-sampled data used for the reconstruction, and the third column, the recovered
OCT images.
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Figure 9. [sample: fish eye retina, mask: oblic]—Reconstructed OCT images (only a 2D slice is shown
in this example). Each line corresponds to an under-sampling rate: 30% (1st line), 50% (2nd line), 70%
(3th line), and 90% (4th line). The first column represents the initial OCT image, the second column
the under-sampled data used for the reconstruction, and the third column, the recovered OCT images.

5.5. The Singular Value Thresholding Algorithm

In this section, we describe the algorithm used for the computation of our estimator, namely a
tubal tensor version of the fixed point algorithm of Reference [59]. This algorithm is a very simple
and scalable iterative scheme which converges to the solution of (17). Each iteration consists of two
successive steps:

• a singular value thresholding step where all tubal singular values with norm below the level 2λ

are set to zero and the remaining larger singular values are being removed an offset 2λ.
• a relaxed gradient step.

In mathematical terms, the algorithms works as follows: Z(l) = shrink
(

A(l−1), δλ
)

A(l) = A(l−1) + δ PΩ

(
∑n

i=1 YiXi − Z(l)


In the setting of our algorithm, the Shrinkage operator operates as follows:

• compute the circular Fourier transform F (A(l−1)) of the tubal components of A(l−1),
• compute the SVD of all the slices of F (A(l−1)) and forms the tubal singular values,
• sets to zero the tubal singular values whose `2-norm lies below the level 2δλ and shrink the

other by 2δλ,
• recompose the spectrally thresholded matrix and take the inverse Fourier transform of the

tubal components.

On the other hand, PΩ is the operator that assigns to the entries indexed by Ω the observed values
and leaves the other values unchanged.

The convergence analysis of [59] directly applies to our setting.
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5.6. Analysis of the Numerical Results

In order to quantitatively assess the obtained results using different numerical validation scenarios
and OCT images, we implemented two images similarity scores extensively employed in the image
processing community. In particular, we use

• the Peak Signal Noise Ratio (PSNR) computed as follows

PSNR = 10 log10

( d2

MSE

)
(45)

where d is the maximal pixel value in the initial OCT image and the MSE (mean-squared error)
is obtained by

MSE =
n

∑
i=1

m

∑
j=1

(
Io(i, j)− Ir(i, j)

)2
(46)

with Io and Ir represent an initial 2D OCT slice (selected from the OCT volume) and the recovered
one, respectively.

• The second image similarity score consists of the Structural Similarity Index (SIMM) which
allows measuring the degree of similarity between two images. It is based on the computation
of three values namely the luminance l, the contrast c and the structural aspect s. It is given by

SSIM =
(

s
(

Ir, Io)
)(

l
(

Ir, Io

)(
c
(

Ir, Io
))

(47)

where,

l =
2µIr µIo + C1

µ2
Ir
+ µ2

Io
+ C1

, (48)

c =
2σIr σIo + C2

σ2
Ir
+ σ2

Io
+ C2

, (49)

s =
2σIr ,Io + C3

σIr σIo + C3
, (50)

with µIr , µIo , σIr , σIo , and µIr ,Io are the local means, standard deviations, and cross-covariance for
images Ir, Io. The variables C1, C2, C3 are used to stabilize the division with weak denominator.

5.6.1. Illustrating the Rôle of the Nuclear Norm Penalisation

In order to understand the rôle of the nuclear norm penalisation in the reconstruction, we have
performed several experiments with different values of the hyper-parameter λ which are reported
in Figure 10. This figure shows the performance of the estimator as a function of the ratio between
the largest singular value and the smallest selected singular value. This ratio is an implicit function
of λ, which is more intuitive than λ for interpreting the results. The smaller the ratio, the smaller the
number of singular values incorporated in the estimation. The corresponding values are reported in
Table 1.

Table 1. SME, PSNR, SSIM for various values of the ratio.

Ratio 1 2 3 4 5 6 7 8 9 10

SME 432.65 432.65 432.65 377.12 345.76 345.75 329.06 316.23 323.87 477.43
PSNR 21.76 21.76 21.76 22.36 22.74 22.74 22.95 23.13 23.02 21.34
SSIM 0.57 0.57 0.57 0.58 0.59 0.59 0.60 0.60 0.59 0.53
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Figure 10. Evolution of the PSNR, SSIM and SME performance criteria as a function of the ratio
between the largest singular value and the smallest singular value selected by the penalised estimator.

The results of these experiments show that different weights for the nuclear norm penalisation
imply different erros. In these experiments, one sees that the SME is optimised at a ration equal to 8
and the PSNR is maximised at 8 as well. The SSIM is maximum for values of the ratio equal to 7 and 8.
Estimation which does not account for the intrinsic complexity of the object to recover will clearly fail
to reconstruct the 3D images properly.

5.6.2. Performance Results

Tables 2 and 3 summarise the numerical values of MSE, PSNR, SSIM computed for each test,
that is, using different undersampling rates and masks, for our two different test samples (grape or
fish eye retina). The parameter λ was chosen using the simple and efficient method proposed in [60].
As expected the error decreases as a function of the percentage of observed pixels. The results also
show that the estimator is not very sensitive to the orientation of the mask. There seems to be a phase
transition after the 70% level, above which the reconstruction accuracy is suddenly improved in terms
of PSNR and SSIM, but the method still works satisfactorily at smaller sampling rates.

Table 2. [sample: grape]: Numerical values of the different image similarities (between initial image
and reconstructed one): MSE, PSNR and SSIM.

Sample: Part of a Grape

under-sampling rates 30% 50% 70% 90%
vertical masks

MSE
PSNR
SSIM

536.68
20.83
0.39

316.23
23.13
0.59

185.83
25.43
0.77

62.34
30.18
0.92

oblic masks
MSE
PSNR
SSIM

725.20
19.52
0.34

431.91
21.77
0.55

171.52
25.78
0.78

54.85
30.73
0.93
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Table 3. [sample: fish eye retina]: Numerical values of the different image similarities (between initial
image and recontructed one): MSE, PSNR and SSIM.

Sample: Fish Eye Retina

under-sampling rates 30% 50% 70% 90%
vertical masks

MSE
PSNR
SSIM

829.96
18.94
000.51

570.81
20.56
0.65

333.13
22.50
0.78

109.65
27.73
0.91

oblic masks
MSE
PSNR
SSIM

828.56
18.94
0.51

575.90
20.52
0.65

344.12
22.76
0.77

99.13
28.16
0.92

6. Conclusions and Perspectives

In this paper, we studied tensor completion problems based on the framework proposed
by Kilmer et al. [3]. We provided some theoretical analysis of the nuclear norm penalised
estimator. These theoretical results are validated numerically using realistic OCT data (volumes)
of biological samples. These encouraging results with real datasets demonstrate the relevance of
the low rank assumption for practical applications. Further research will be undertaken in devising
fast algorithms and incorporating other penalties such as, e.g., based on sparsity of the shearlet
transform [61].
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Appendix A. Some Technical Results

Appendix A.1. Calculation of ρ and a value of λ such that ‖M‖S∞ ≤ λ with high probability

Appendix A.1.1. Computation of ρ

Using the fact n = m× n3 where m is the number of pixels considered, we have with i = {j1, j2, j3}

‖A‖2
L2(Π) =

1
n

n

∑
i=1

E
[
〈A, Xi〉2

]
=

1
mn3

n3

∑
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n1

∑
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n2

∑
j2=1
〈A, Xj1,j2,j3〉

2 1
n1n2

=
1

mn3

n1

∑
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n2
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1
n1n2
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Â2
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=
1

mn3

n1

∑
j1=1

n2
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j2=1

1

n1n2n1/2
3

n3

∑
j3=1

A2
j1,j2,j3

=
1

mn1n2n3/2
3

‖A‖2
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Thus we can set

ρ =
√

mn1n2n3/2
3 . (A1)

Appendix A.1.2. Control of the Stochastic Error ‖M‖S∞

In this part, we will show that a possible value for the coefficient λ can be taken as

λ = 2n3‖F (A0)‖S∞ max

{√
t + log(m)

nn1n2
;

(
1 +

1
√

n1n2

)
t + log(m)

n

}
. (A2)

In order to prove this bound, we will need a large deviation inequality given by the following result

Proposition A1 (Theorem 1.6 in [62]). Let Z1, . . . , Zn be independant random variables with dimension
n1 × n2 that satisfy E [Zi] = 0 and ‖Zi‖S∞ 6 U almost surely for some constant U and all i = 1, . . . , n. We
define

σZ = max
{∥∥∥ 1

n

n

∑
i=1

E
[

ZijZ>ij
] ∥∥∥1/2

S∞
,
∥∥∥ 1

n

n

∑
i=1

E
[

Z>ij Zij

] ∥∥∥1/2

S∞

}
Then, for all t > 0, with probability at least 1− e−t, we have

∥∥∥ 1
n

n

∑
i=1

Zi

∥∥∥
S∞

6 2 max
{

σZ

√
t + log m

n
, U

t + log m
n

}
where m = n1 + n2.

The next lemma gives a bound of the stochastic error for tensor completion.

Lemma A1. Let X(i) be i.i.d uniformly distributed on X . Then for any t > 0 with probability at least
1− exp (−t), we have

‖M‖S∞ 6 2n3‖F (A0)‖S∞ max

{√
t + log(m)

nn1n2
;

(
1 +

1
√

n1n2

)
t + log(m)

n

}
(A3)

In order to prove this lemma, we will need the following lemma

Lemma A2. We draw X(j)
i with a uniform random position on {1, . . . , n1} × {1, . . . , n2} with null entries

everywhere except one input equals 1 at the position (k, l). Observe that

‖F (X(j)
i )‖S∞ = 1,

∥∥∥E [F (X(j)
i )
] ∥∥∥

S∞
=

√
1

n1n2
and (A4)
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,
∥∥∥E [Z>Z
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}
6
‖F (A0)‖S∞√
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Proof. Let X(j)
i of the form

X(j)
i =



0 0 . . . 0 . . . 0
...

...
...

...
...

...
0 . . . 0 1 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 0


. (A5)

Determine its Fourier transform and spectral norm of expectation of F (X(j)
i ). Thus,

F (X(j)
i ) =



0 0 . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 e−2iπ j k3
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...

...
...

0 0 . . . 0 . . . 0


. (A6)

Moreover,
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So, we have
∥∥∥F (X(j)

i )
∥∥∥

S∞
= 1, and

∥∥∥E [F (X(j)
i )
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6
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2

6
1
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Proof of Lemma A1. Consider the tensor completion under uniform sampling at random with
Gaussian error. Recall that in this case we assume that the pairs (Xi, Yi) are i.i.d. Using the fact
Yi = 〈Xi, A0〉+ εi and E [εiXi|Xi] = 0, we have

‖M‖S∞ =
∥∥∥ 1

n

n

∑
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(YiXi −E [YiXi])
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6
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εiXi
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S∞

= Λ1 + Λ2

In the following, we treat the terms Λ1 and Λ2 separately in the lemma and proposition below. Before
proceeding, notice that Λ1 is the Schatten norm of a quadratic function of X1, . . . , Xn. Furthermore,
〈Xi, A0〉 is the Fourier Transform of the tube (i1, i2) for the frequency k3. Using the Property 1, we have

Λ1 =
∥∥∥ 1

n

n
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i=1
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Define the operator Γ(j) which takes the slice j of a tensor (i.e tensor F (Xi)) and puts it in the same
place in a zero tensor. The following proposition

Proposition A2. Let T be a null tensor except at slice j. Therefore

‖T‖S∞ = ‖T(j)‖S∞ (A7)

Using A7, we have

Λ1 6 n3
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Lemma A3. Let X(j)
i be i.i.d a uniform random position on {1, . . . , n1} × {1, . . . , n2}.

Then, for all t > 0, with probability at least 1− e−t, we have

Λ1 6 2 max
{∥∥∥F (A0)

∥∥∥
S∞

√
t + log(m)

n1n2
n, ‖F (A0)‖S∞
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√
1

n1n2

 t + log(m)

n

}
(A8)

Proof. To prove this lemma, we apply the Proposition A1 for the random variables
Zij = F (Xi)
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.
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Using the duality trace and Jensen’s inequality, we have
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Thus, A8 follows from A1.

Now, we study the bound of Λ2. For this purpose, we use the proposition below is an immediate
consequence of the matrix Gaussian’s inequality of Theorem 1.6 of [62].
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Proposition A3. Let Z1, . . . , Zn be independent random variables with dimensions n1 × n2, and {εi} be a
finite sequence of independent standart normal. Define

σ := max
{∥∥∥ZiZ>i

∥∥∥
S∞

,
∥∥∥Z>i Zi
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}
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where m = n1 + n2

Using this fact and (A7), we have
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