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Abstract— This article deals with the development of a
vision-based control law to achieve high-accuracy automatic
six degrees of freedom (DoF) positioning tasks. The objective
of this work is to be able to replace a biological sample under
an optical device for a non-invasive depth examination at any
given time (i.e., performing repetitive and accurate optical
characterizations of the sample). The optical examination,
also called optical biopsy, is performed thanks to an optical
coherence tomography (OCT) system. The OCT device is used
to perform a 3-dimensional optical biopsy, and as a sensor
to control the robot motion during the repositioning process.
The proposed visual servoing controller uses the 3D pose
of the studied biological sample estimated directly from the
C-scan OCT images using a Principal Component Analysis
(PCA) framework.

The proposed materials and methods were experimentally
validated using a spectral-domain OCT and a 6-DoF robotic
platform. The obtained results have demonstrated the per-
tinence of such methods which offer a positioning accuracy
around 0.052 ± 0.03 mm (mean error ± standard deviation)
for linear errors and 0.41 ± 0.16◦ for angular ones over a
8× 9× 3.5 mm3 workspace.

I. INTRODUCTION
A. Motivations

A large number of diseases are diagnosed only by a
medical procedure commonly referred to as ”biopsy” [1]
which is eventually the case for several types of cancers.
This medical procedure is also known as the physical biopsy
which requires the extraction of sample cells or tissues for
ex-vivo optical and/or chemical examination to prove the
presence or extent of disease (Fig. 1(a)).

Furthermore, when the suspected tissue is collected, a
second step is necessary. It concerns the ex-vivo analysis,
usually performed under an optical microscope, in some
cases also analyzed chemically, by a pathologist. However,
this procedure, even if it remains a landmark in diagnosis
and medicine, raises several questions. As reported in [2],
the added clinical value decreases in some cases, because
of the procedure invasiveness and the different cases of
contraindications (e.g., presence of infectious risk factors,
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Fig. 1: Physical biopsy versus optical biopsy: (a) an example
of a physical biopsy2 procedure using a hollow needle and
(b) an optical biopsy for a retina3 acquired by OCT system.

risk of haemorrhaging, risk of malignant degeneration, risk
of dispersion of cancer cells during the sampling process,
etc.). More recently, other complementary or alternative
methods have emerged, such as the optical biopsy technique
(Fig. 1(b)). This procedure refers to the examination of the
suspected tissue under an optical microscope at a cellular res-
olution [3]. Numerous optical biopsy techniques have been
developed over the last two decades, such as fluorescence
confocal microscopy [4], [5], multi-photon microscopy [6],
optical coherence tomography [7], [8], and others at the
research stage.

This article focuses specifically on the OCT modality,
notably through the automatic control of the acquisition of
3D optical biopsies. In particular, the ability to accurately
reposition an OCT probe (respectively, the observed sample)
at given pose (i.e., position and orientation), where the
physician can assess the sample evolution over time, and
then carry out comparative studies of the tissue. To tackle
this problem, we investigated the development of a visual
feedback control law, also called visual servoing [9]. As can
be seen in (Fig. 1(b)), OCT images are characterized by an
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unfavorable signal-to-noise ratio (similar to the ultrasound
images), low texture, no geometric visual features that can be
easily detected, extracted and tracked over time. As a result,
using geometric visual features [10] as usually reported in
the literature is highly challenging.

B. Background

OCT technology [11] has been considered in numerous
medical and surgical applications. In [12]–[14], the authors
discussed the integration of an OCT device into the surgical
workflow for providing to the physician a real-time and high-
resolution visual feedback of the operative site (observed
tissues). A miniaturized OCT in the form of millimeter
size probe [15] was also considered for such surgical task.
OCT usage has also shown significant added clinical value,
namely in laser surgery [16]. The cross-section OCT im-
ages (also called B-scan) were used for both detecting the
position of the laser in real-time and evaluating the quality
of ablation/resection of pathological tissues [17]. In the
same manner, the B-scan OCT images were employed for
guiding a robotic platform to carry out a laser ablation of
pathological tissue [18], and to track a surgical instrument
during an intervention [19]. These preliminary works are
original and engaging despite a lack of autonomy of the
proposed approaches.

More recently, it was suggested to perform highly accurate
and automatic 3-DoF positioning task which consists of the
replacing a biological sample under the OCT probe for fur-
ther examination. The proposed approach was based on using
a featureless visual servoing control law [20]. The controller
was derived using wavelets representation of the B-scan
OCT images. The contribution of this work is that using
wavelets representation allowed overcoming the unfavorable
signal-to-noise ratio, which generally characterizes the OCT
images [21]. Therefore, the authors in [22], [23] used the
wavelets coefficients as visual inputs in the vision-based
control law for regulating the sample pose error within the in-
plane robotic stages. Similarly, 6-DoF positioning task was
performed by merging both OCT data (for the in-plane DoF)
and conventional camera (for the out-plane DoF) in the same
visual servoing control scheme [24]. Note that the clinical
objectives of these investigations concern the achievement of
repetitive and accurate optical biopsies in the aim to monitor
the variation of the suspected tissue over time.

C. Contributions

In this article, it is proposed a new framework for repetitive
optical biopsy acquisition that go beyond the state-of-the-art
related to use the OCT volume image (also called C-scan)
in a visual servoing control loop for managing the out-plane
motion. Our work also investigated an efficient method to
control the entire 6-DoF based only using OCT data without
any additional external sensor. The most challenging task of
this work is to compute the biological sample pose in the
OCT frame (respectively, the robot frame) and vice versa
without advanced image processing or 3D reconstruction

algorithms. To tackle this, we used a Principal Compo-
nent Analysis (PCA) which is an orthogonal transformation
framework [25]–[27] to recover, as accurate as possible, the
3D pose of an object. PCA has demonstrated its relevance
and effectiveness in a wide range of engineering sciences
such as image processing, data registration and fusion, super-
vised learning, and clustering. Earlier this year, authors [28]
proposed a new formulation of 2D direct visual servoing
based on PCA decomposition of the image. In this work,
conventional images were projected on a new orthogonal
basis in aim to compactly express the visual information, i.e.,
using the image coefficients obtained by the PCA approach.

Our development goes further by applying the PCA
method on C-scan OCT data. The proposed PCA-based 3D
direct visual servoing is validated experimentally using a
spectral-domain OCT system which is mounted in an eye-
to-hand configuration with respect to the robotic platform.
The validation scenario consists of replacing the sample at
its desired pose at which an initial 3D optical biopsy was
acquired. The obtained results in terms of accuracy and
controller behaviour are very satisfactory since the linear
error was evaluated as 0.052±0.03 mm which is close to the
human cell which its size vary from 0.1 mm to 0.03 mm.

In the remainder of this article, Section II presents the
proposed methodology to express analytically the 3D direct
visual servoing controller. Section III discusses the exper-
imental robotic setup as well as the proposed validation
scenarios to assess the relevance of the developed methods.
Also, the obtained results were discussed and analyzed.

II. METHODOLOGY

As mentioned above, one of the challenging task in this
work is the 3D pose estimation of the sample viewed by
the OCT device (i.e., expressed in the OCT frame Rc). To
tackle this, we investigated the use of OCT C-scan data to
express the sample pose in the OCT frame (respectively,
robot frame Rr) without using advanced and complex image
processing algorithms or any other 3D reconstruction of the
sample. Instead of formulating the object 3D pose directly
using the C-scan image which is high dimensional data (e.g.,
1024×860×640 voxels), we opted for a PCA-based repre-
sentation for the OCT data to reduce both the complexity
and the estimation process.

A. Notations and Symbols

In this article, the used notations and symbols are sum-
marized in TABLE I.

Symbol Description
D the data set describes the OCT C-scan as a point cloud
dij the ith point in the data set D and j represents the

point information such as its position or its intensity
d̄ the centroid of the point cloud
B the covariance matrix of data set D
b2i the variance of the ith variable
bij the covariance of the ith and jth variable
A a diagonal matrix with the eigenvalues of B



V the eigenvector matrix of B
gi the ith eigenvector of V
vi the normalized vector of gi

In×n a n× n identity matrix
cMo the transformation matrix which describes the 3D pose

of the object frame Ro with respect the OCT frame
Rc

cRo the rotation matrix which describes the object frame
Ro with respect the OCT frame Rc

ct̄o the translation vector which describes the object frame
Ro with respect the OCT frame Rc

θu the rotation represented in the angle/axis parameteri-
zation form

s, s∗ the current and the reference features vectors, respec-
tively

e, ė visual servoing vector error and its time derivative
vc saptial velocity vector which gathers the instantaneous

linear vc and angular ωc velocities of the camera/robot
L3D interaction matrix which relates the ė to vc

L+
3D pseudo-inverse of the interaction matrix

01×3 a 1× 3 row vector of zeros
03×3 a 3× 3 zeros matrix
[u]× the skew-symmetric matrix associated to the vector u
sincθ the cardinal sinus
λ a positive gain coefficient of the visual servoing con-

troller
λt, λr positive gain coefficients for regulating the translation

and rotation errors, respectively

TABLE I: Notations summary.

B. PCA-based 3D Pose Estimation

The PCA is a powerful linear algebra method, namely
used for simplifying the complexity of large-dimensional
data thanks to a more compact representation. Indeed, this
method can be considered mathematically as an orthogonal
linear transformation that maps a data set to a new coor-
dinate system, called eigenspace. This new space has its
bases, called eigenvectors or principal components which are
obtained by projecting the data on them.

Let us consider a data set D ∈ Rn×m which describes the
OCT C-scan as a point cloud. The matrix D collects the n
points, where the m-dimension of each point could gather
the 3D position (x, y, z) expressed in the C-scan frame Ri
with a voxel intensity (e.g., grayscale).

Fig. 2: Geometric representation of PCA.

An example of a geometric interpretation of PCA applied

to a sample of 3D points within a spheroid shape is shown
in Fig. 2. The centroid d̄ of such spheroid cloud is obtained
as follows:

d̄j =
1

n

n∑
i=1

dij , j = 1, 2, 3 (1)

where d̄ =
[
d̄1, d̄2, d̄3

]>
is the point cloud centroid in

xyz-coordinates, pi = [di1, di2, di3]
> is the 3D position of

the ith point in xyz-axes respectively, and n is the length of
data set.

The covariance matrix, also called the correlation matrix,
provides relevant information about the point cloud rotation.
It is consequently obtained by

Bm×m =


b21 b12 · · · b1m
b12 b22 · · · b2m

...
...

. . .
...

b1m b2m · · · b2m

 (2)

whereby b2i is the variance of the ith variable, and bij is the
covariance between the ith and jth variables.

Furthermore, the variance is a measure of how the data is
spread out, and it is formulated as

b2i =

n∑
i=1

(
dik − d̄k

)2
n− 1

, where 1 ≤ k ≤ m (3)

while the covariance is a measure of how much the dimen-
sions vary from the mean with respect to each other and it
is computed by

bij =

n∑
i=1

(
dij − d̄j

) (
dik − d̄k

)
n− 1

, where j 6= k and j 6= i.

(4)
Since the data cloud has three dimensions, the variable m

varies as x, y and z. Consequently, the covariance matrix is
deduced as

B3×3 =

 cov(dx,dx) cov(dx,dy) cov(dx,dz)
cov(dy,dx) cov(dy,dy) cov(dy,dz)
cov(dz,dx) cov(dz,dy) cov(dz,dz)

 .
(5)

The vector dx = [d11, d21, . . . , dn1] is the column vector
in the data set D which represents the x-position of all points.
Similarly, the column vectors dy and dz are the yz-position,
respectively.

For instance, the covariance of the element (1,2) from the
previous matrix equals to

b12 = cov(dx,dy) =
1

n− 1

n∑
i=1

(
di1 − d̄1

) (
di2 − d̄2

)
.

(6)
The PCA method decomposes the covariance matrix to

V>BV = A. (7)

The matrix A is a diagonal matrix which gathers the
eigenvalues of B. The elements of A (i.e., a1, a2, · · · , am)



are deduced by the characteristic equation ‖A − aiI‖ = 0,
where I is a m×m identity matrix.

The columns of matrix V are the eigenvectors of B.
These characteristic vectors can be calculated by solving
the equation ‖B − aiI‖gi = 0, where 1 ≤ i ≤ m. By
normalizing the vector gi as vi =

gi√
g>i gi

, the matrix V is

formed by these unit vectors. The fact that these unit vectors
are orthogonal to each other, the matrix V is considered
as the rotation matrix of the point cloud. Therefore, the
instantaneous transformation that maps the object pose into
the OCT frame Rc is defined by

cMo =

[
V d̄

01×3 1

]
=

[
cRo

ct̄o
01×3 1

]
. (8)

where cRo is a 3 × 3 matrix that describes the object
rotation with respect to the OCT frame Rc, while ct̄o is
a 3 × 1 column vector that describes the object translation
with respect to the OCT frame Rc, and 01×3 is a row vector
of zeros.

C. 3D Direct Visual Servoing Control Law

After deducing the instantaneous pose of the observed
object from the OCT C-scan, a classical visual servoing
controller [9] is applied. The feature vector s = (̄t, θu)
is defined as the pose vector which gathers the translation t̄
of the point cloud and its rotation θu in form of angle/axis
parameterization. Therefore, the error to be regulated to zero
is deduced as the difference between the current features
vector and the reference one, i.e., e = s− s∗.

The time variation of the error is related to the spatial
velocity of the camera/robot vc by the interaction matrix
L3D ∈ R6×6 as

ė = L3Dvc (9)

in which vc = (vc, ωc) gathers the instantaneous linear and
angular velocities of the camera/robot.

In case that the reference feature vector equals to
s∗ = (∗t̄,0), then the interaction matrix related to e is
determined by

L3D =

[
−I3×3

[̄
t
]
×

03×3 Lθu

]
(10)

where I3×3 is a 3 × 3 identity matrix, [•]× is the skew-
symmetric matrix associated to a vector, and Lθu is given
by [29]

Lθu = I3×3 −
θ

2
[u]× +

(
1− sincθ

sinc2 θ2

)
[u]

2
× (11)

where sincx is the sinus cardinal.
At this stage, the spatial velocity vc can be deduced for

ensuring an exponential decoupled reduction of the error (i.e.,
ė = −λe) as

vc = −λL−13De (12)

where λ is a gain coefficient, since L3D is square and has a
closed-form inverse [29].

III. EXPERIMENTAL VALIDATION
The proposed methods and materials were validated using

an OCT device mounted in an eye-to-hand configuration to
a parallel robotic platform on which are placed the samples
to be analysed (Fig. 3).

Fig. 3: Illustration of the experimental framework used to
validate the proposed methods.

A. Optical Coherence Tomography
A Telesto-II 1325nm spectral domain from ThorLabs4 has

been adopted in this study. It provides 1D depth (A-scan), 2D
cross-sectional (B-scan) or 3D volumetric (C-scan) images
with micrometer resolution (5.5 µm and 7 µm for axial
and lateral resolutions, respectively) and millimeter depth
(3.5 mm of penetration). The Telesto-II allows a maximum
field-of-view of 10×10×3.54 mm3 with the highest A-scan
line rate of 76 kHz. The OCT probe is also equipped with a
coaxial CCD (Charge Coupled Device) camera of 640×480
pixels of resolution. This camera is useful to adjust the focus
plane by a fine-tuning along the optical axis. Consequently,
the operator can regulate the OCT focus since both the OCT
and the camera focus plans are the same. Besides that, the
operator can define directly in the CCD image plane which
part of the sample should be scanned (Fig. 4).

Fig. 4: Example of B-scan and C-scan OCT data. (a) A
white light image of a fly, (b) cross-section (B-scan) OCT
image acquired at the arrow position, and (c) the C-scan OCT
(volume) acquired inside the rectangular box.

Moreover, the Thorlabs API (Application Programming
Interface) provides a threshold tool which supplies the sam-
ple external surface as shown in Fig. 4(c). Afterwards, the

4www.thorlabs.com



acquired C-scan is segmented by using the PCL (Point Cloud
Library) [30]. The segmentation parameters are constant
when the samples studied are of the same type, for example,
taken from the same organ.

B. Robotic Sample Holder

The sample (organic or inorganic) to be characterized is
placed or fixed on the robotic platform. The latter consists of
a 6-DoF parallel robot from Physical Instruments5 (Space-
FAB SF-3000 BS). Each DoF is individually actuated by a
high-resolution continuous DC motor which is equipped with
a shaft encoder.

The robotic system is characterized by the following
features: i) translation ranges (tx, ty, tz)max = (50 mm,
100 mm, 12.7 mm) with a linear resolution of 0.2 µm
and a repeatability of ±0.5 µm, and ii) rotation ranges
(rx, ry, rz)max = (10◦, 10◦, 10◦) with an angular resolution
of 0.0005◦ and a repeatability of ±0.0011◦.

Two computers equip the experimental platform: the first
(a 2.33 GHz Core Intel CPU with Windows 7 OS) is used
for implementing the inner control laws of the robot, and
the second one (a 3.50 GHz Xeon Intel CPU with Windows
7 OS) is dedicated to the image acquisition (OCT and
camera) as well as the image processing and visual servoing
algorithms. Both the computers communicate with each other
thanks to an asynchronous TCP/IP protocol.

C. Validation Scenarios

The proposed controller has been experimentally validated
using different biological samples (e.g., an ant and a fly)
and solid 3D objects (Fig. 5). The operator places the

Fig. 5: Example of used samples: (first row) the CCD camera
images and (second row) the corresponding OCT C-scan
images.

sample on the robotic platform and performs a first opti-
cal characterization (i.e., 3D optical biopsy acquisition and
examination) of the sample. This first acquired 3D optical
biopsy is considered as the desired/reference pose for further
examinations. Consequently, in case that the operator needs
to perform a new characterization of the sample to observe
its change, the sample is then placed at any location on the
platform that is visible by the OCT (within the OCT field-
of-view). To carry out this comparison, the sample must be

5www.physikinstrumente.com

placed in the same spatial pose as the first examination as
accurate as possible i.e., at almost at the cellular resolution.
This means that the controller should converges with an
accuracy of about 50µm. To reposition manually the sample
at the reference position is very challenging if not impossible.
However, the proposed 3D direct visual servoing controller
can accurately achieve this due to the high-resolution OCT
data used for controlling the robot motion to the convergence
toward the reference pose. In the following, we will discuss
the results obtained experimentally on different samples and
positioning tasks achievement.

Finally, for better behavior of the proposed controller, the
gain coefficient λ in (12) is opted to have different values
between the linear and angular robotic stages. Thereby, λ is
defined as follows

λ =


λt 0 0 0 0 0
0 λt 0 0 0 0
0 0 λt 0 0 0
0 0 0 λr 0 0
0 0 0 0 λr 0
0 0 0 0 0 λr

 . (13)

D. Experimental Results
In these trials, the OCT field-of-view was fixed to 8 ×

9 × 3.5 mm3 for ensuring a ”reasonable” OCT frame-rate
(the larger the field-of-view, the shorter the frame-rate). For
instance, in this work, we tuned the spatial resolution of our
OCT device to have a voxel spacing of 20× 20× 3.46 µm3

which generates a volume of size 400× 450× 1024 voxels
every two seconds.

Fig. 6: Image sequence showing the 3D positioning task
achievement. Snapshot (a) shows the desired pose, (b) that of
the initial pose, (c)-(e) represent intermediate pose acquired
during the positioning task and (f), the reached pose.



Fig. 7: Plot of the 3D trajectory performed by the sample
(respectively, the robot) during the pose regulation task.

1) Validation trial 1: During this trial, a solid organic
sample (a tiny part of a grapes branch, Fig. 5(a)) used
to evaluate the performance of the proposed visual ser-
voing control law. As mentioned, the desired pose s∗ is
initially defined during a first examination. The sample is
afterwards placed at an arbitrary pose, considered as the
initial one (s) to begin the control loop. For this trial (test
3 in TABLE II), the initial error is estimated as ei =
(2.6 mm,−5.6 mm,−1.8 mm,−10.6◦,−9.6◦,−19.7◦).

Figure 6 depicts an image sequence grabbed during the
positioning task achievement. One can highlight that the
control law allows converging accurately towards the desired
pose. Indeed, the desired position (Fig. 6(a)) is almost similar
to the reached one (Fig. 6(f)). For this trial, the average linear
error is estimated to mean(tx, ty, tz) = 0.075 mm while the
average angular one to mean(rx, ry, rz) = 0.344◦.

Furthermore, the sample trajectory was recorded and plot-
ted in Fig. 7. It is known that a 3D visual servoing scheme
allows obtaining a straight-line trajectory of the sample’s
gravity center. This is almost the case for the trajectory
shown in Fig. 7.

The regulation to zero of the error e versus the number
of iterations for each robotic stage is recorded and plotted
separately in Fig. 8. As can be noticed, the convergence is
not carried out exponentially because the 3D OCT data (C-
scan images) are generally noised (i.e., speckle-like noise)
which characterizes this type of imaging modality, likewise
ultrasounds images. Indeed, the acquired B-scan images
contain a noise level 0.0102, based on the method proposed
in [32], while the classical lena image has a noise level
around 0.0032. Besides that, the C-scan images contain a
noise level about 26.736. Even under unfavourable working
conditions, the proposed controller still accurate and robust.

Both the linear (vx, vy, vz) (in mm/s) and the angular
(ωx, ωy, ωz) (in degree/s) velocities expressed in the OCT
frame are shown in Fig. 9(a) and (b), respectively. The
behavior of the OCT velocities is similar to that of the error
regulation. The reasons why they are not perfectly smooth
are the same as for those of the error, i.e., the inherent
noise aspect of OCT data. However, one can remark that
the computed velocities are relatively smooth, a proof that

Fig. 8: Plotting of the error evolution for each DoF during
the regulation task 1 (left column represents the linear stages
while the right one those of the angular stages).

Fig. 9: Representation of the camera velocities recorded
during the pose regulation task 1 (left are the linear velocities
and right the angular ones).

the 3D pose estimation method is relatively accurate despite
the use of noised OCT measures.

2) Others validation trials: Other tests were carried out
using the biological samples (e.g., a fly and an ant, Fig. 5(b)
and (c), respectively). The validation scenario remains sim-
ilar to those of trial 1. However, these samples have more
details that can complicate the pose computation of the object
in the OCT frame.

As can be seen in Fig. 10, the proposed control
law allows converging the sample from an arbitrary ini-
tial position to the reference one. In this trial (test 9



test translations (mm) rotations (degree) gainsample number type of measure
tx ty tz ‖t‖ θux θuy θuz θ‖u‖ control

branch 1

initial pose 2.04 7.16 1.84 18.42 3.79 1.05
λt = 3reached pose 5.61 1.76 0.44 16.51 4.84 1.41

initial error 3.57 -5.37 -1.40 -1.60 1.05 0.02
λr = 0.52final error 0.001 0.037 -0.001 0.013± 0.02 0.305 -0.005 -0.343 0.218± 0.185

initial pose 4.05 5.2 1.36 17.77 4.87 1.01
reached pose 5.28 4.26 1.19 8.16 -7.64 10.14 λt = 3

initial error 1.236 -0.948 -0.18 -9.767 -12.294 9.173branch 2

final error 0.003 -0.005 -0.006 0.004±0.001 0.007 0.182 -0.01 0.066±0.1 λr = 0.52

initial pose 2.02 6.83 1.56 23.1 9.94 10.28
reached pose 5.28 1.51 0.34 11.57 -0.88 -8.48 λt = 3

initial error 3.17 -5.23 -1.256 -11.318 -10.107 -18.866branch 3

final error -0.09 0.09 -0.04 0.075±0.03 0.212 0.717 -0.103 0.344±0.328 λr = 0.52

initial pose 2.74 5.8 0.78 -11.06 2.43 17.45
reached pose 5.17 3.58 0.68 -6.82 0.49 -2.77 λt = 3

initial error 2.316 -2.0 -0.218 5.814 -1.57 -21.838fly 4

final error -0.11 0.218 -0.116 0.149±0.06 1.577 0.372 -1.613 1.18±0.706 λr = 0.52

initial pose 2.8 6 0.7 -2.8 1.9 15.5
reached pose 5.2 3.8 0.4 -3.3 -0.4 -5.1 λt = 3

initial error 2.465 -2.07 -0.218 -0.12 -2.604 -21.434fly 5

final error 0.034 0.077 0.003 0.038±0.037 0.416 -0.246 -0.787 0.483±0.276
λr = 0.52

initial pose 2.78 5.93 0.69 -2.69 2.42 15.92
reached pose 5.24 3.61 0.52 -3.65 -1.07 -6.66

λt = 2

initial error 2.436 -2.071 -0.231 0.045 -3.187 -23.596fly 6

final error -0.022 0.256 -0.056 0.112±0.126 1.01 0.306 -1.018 0.778±0.409 λr = 0.698

initial pose 2.72 5.81 0.81 -11.03 2.40 17.00
reached pose 5.12 3.72 0.64 -6.18 -0.15 -5.97 λt = 3

initial error 2.334 -1.98 -0.243 5.484 -2.195 -23.229fly 7

final error -0.066 0.139 -0.0716 0.092±0.04 0.628 0.359 -0.26 0.416±0.19 λr = 0.52

initial pose 5.13 3.54 0.91 6.95 11.8 -12.55
reached pose 5.64 3.28 1.72 5.48 -1.96 -16.79 λt = 3

initial error 0.498 -0.25 0.816 -1.236 -13.731 -4.045ant 8

final error -0.001 0 0.001 0.001±0.001 0.045 0.026 0.231 0.101±0.114 λr = 0.52

initial pose 2.16 7.36 1.39 16.42 13.35 -9.25
reached pose 6.06 2.95 1.75 11.12 1.92 -28.38 λt = 3

initial error 3.948 -4.384 0.349 -4.849 -13.626 -19.37ant 9

final error 0.05 0.023 -0.008 0.027±0.021 0.452 -0.199 -0.238 0.296±0.136 λr = 0.52

initial pose 1.65 6.71 0.77 -4.25 0.67 14.15degraded reached pose 4.27 2.46 1.09 -12.89 -8.3 -8.23 λt = 0.8

initial error 2.63 -4.23 0.327 -8.88 -8.9 -22.26fly
10

final error 0.03 0.003 0.005 0.004±0.001 0.373 0.03 0.112 0.172±0.179 λr = 0.2

mean error ± STD 0.0516±0.03 0.406±0.162

TABLE II: Summary of different trials achieved with constant gain values.

Fig. 10: Image sequence depicting the performing of a 6 DoF
positioning task 2. (a) both the initial and desired poses, (b)
- (e) some intermediate poses while the sample converges
towards the desired one, and (f) the final pose which overlaps
the desired one. Note in this example, we segmented the
the 3D object for a better illustration of the performed
positioning task (see Multimedia Extension 1).

in TABLE II), the initial error is measured as ei =
(3.9 mm,−4.4 mm, 0.3 mm,−4.8◦,−13.6◦,−19.4◦). The
reached position (Fig. 10(e)) is almost similar to the
desired one (Fig. 10(a)). The average linear error is
mean(tx, ty, tz) = 0.027 mm, while the average angular
one to mean(rx, ry, rz) = 0.296◦. As can be noticed, even
the shape of studied sample is more complex, the controller
is still accurate.

A last trial (test 10 in TABLE II) was conducted to assess
the controller robustness to the modification of the observed
sample (i.e., tissue degradation). Therefore, the scenario of
the first trial is modified by comparing an old C-scan image
of a fly, which is saved during a previous test, with a new fly
sample which misses different part of its body (e.g., its legs
and antennas). Afterwards, the controller guides the robot
by reducing the pose error between the old C-scan image
(the reference pose) and the new sample which is located in
an arbitrary initial pose (see the attached multimedia). The
controller showed that it is still accurate and robust, where
the average linear error is mean(tx, ty, tz) = 0.004 mm and



the angular one is mean(rx, ry, rz) = 0.173◦.
TABLE II gathers the different conducted tests. One can

be noticed that the controller is highly accurate in translation
as well as in rotation, even some shortcomings concerning
the rotation around the z-axis (optical axis). Besides that,
the convergence region is relatively large compared to state-
of-the art methods dealing with the use of OCT data as
control signal in a visual servoing control loop, such as those
reported in [23], [31]. In these methods, the convergence
area is around ±4 mm in translation and ±10◦. In our
work, to ensure the convergence of the proposed method, the
operator has to make sure to position the sample manually
in the field-of-view of the OCT which is smaller than that
of the robot used for automatic positioning.

IV. CONCLUSION

In this article, we have demonstrated that the use of a
direct 3D visual servoing allows performing high accurate
positioning tasks. This work was developed in the context
of the optical characterization of tissues using an optical
coherence tomography system. The challenge was to be
able to place automatically (at almost the cellular resolution)
the sample at the same pose for carrying out several time-
spaced examinations and studying the evolution of tissues. To
tackle this problem, we developed an original visual servoing
method which uses the OCT 3D data (C-scan images) as the
visual information. To compute the 3D pose of the sample
in the OCT frame, we used a Principal Component Analysis
framework.

The proposed materials and methods were successfully
validated using an experimental robotic setup equipped with
a spectral-domain OCT system. The obtained results in
terms of accuracy, versatility and behavior are satisfactory
to consider future investigations on a more clinical context
in collaboration with an anatomical pathology laboratory.
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