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Abstract: In this paper, the location of masses and of a piezoelectric patch for energy harvesting
reported onto a vibrating cantilever beam is studied and optimized. To this aim, a genetic algorithm
is adapted and utilized to optimize the voltage amplitude generated by the piezoelectric patches by
choosing attachment mass, attachment mass moment of inertia, attachment location, piezoelectric
patch location and force location on the beam as parameters. While an analytical approach is
proposed to evaluate the voltage amplitude, a multi-layer perceptron neural network is trained by
the derived characteristic matrix to obtain an approximate function for natural frequencies based on
the attachment parameters. The trained network is then used in the core of genetic algorithm
to find the best optimization variables for any excitation frequency. Numerical simulation by
COMSOL Multiphysics finite element software validates the calculated voltage by analytical approach.
The optimization method successfully matches the natural frequency of the beam with the excitation
frequency which therefore maximizes the output energy. On the other hand, the superiority of the
optimized design over the conventional configuration in harvesting the energy at high frequency
excitation is also approved.

Keywords: energy harvesting; cantilever configuration; piezoelectric patch; neural network;
genetic algorithm

1. Introduction

Energy harvesting by piezoelectric materials has attracted lots of interests during the last years
due to its high power density and architectural simplicity [1]. Piezoelectric materials are generally
used in the vibration based energy harvesting specially at small scales [2]. Among different types of
structures which have been developed to scavenge the energy from the ambient vibrations sources [3–7],
the conventional and still widely used configuration in this case is cantilever based piezoelectric energy
harvester which is deeply investigated in several researches by Erturk et el. [8–11]. In order to
maximize the harvested energy from a piezoelectric cantilever beam, previous works considered
geometry and parameters optimization on the piezoelectric cantilever beam [12–16] by using topology
optimization [17] or by using interval techniques [18], or added a tip attachment as a proof mass to
match the fundamental natural frequency of the beam to the excitation frequency [19,20]. However,
in some applications with high excitation frequencies like automotive engines, industrial machinery or
micro dimension applications the excitation frequency can exceed the fundamental natural frequency
of the beam. Then, the best location for the attachment to have maximum piezoelectric voltage may
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not be the tip of the beam due to vibrational mode shapes. For this case, Erturk et al. [21] investigated
the higher modal energy harvesting with a unimorph beam without attachment while the possibility
of having the attachment in-span of the beam can be considered. On the other hand, studies on
energy harvesting from high frequency excitation with having the mass in-span of the cantilever
beam received a restricted attention. Researches in this area did not consider modelling [22] or the
piezoelectric electromechanical coupling effect [23]. Furthermore, in all of the researches mentioned
above, attached mass on the beam is modelled as a lumped mass and the effects of mass moment of
inertia on the harvested energy are not investigated.

In piezoelectric cantilever configuration, it is usual to have piezoelectric layers which cover the
whole beam from clamped side to free end [9,10,24–26]. This configuration is mostly convenient for
the microscale dimensions. However, in the mesoscale dimensions this configuration suffers from low
power density since the most strain occurs close to the clamped side [4]. Besides, in excitation frequency
close to higher vibrational modes, charge cancellation may happens and continuous electrodes should
be avoided [21]. Because of these reasons some researches prefer to have a piezoelectric patch mounted
to a passive (non-piezoelectric) beam with the length of the piezoelectric patch being smaller than
that of the beam [4,19,27,28]. Generally, in these cases, the piezoelectric patch are mounted near to
clamped side of the beam to take the advantage of the maximum strain. However, for excitation
frequencies higher than the first natural frequency, again the clamped side may not be the best place
for the piezoelectric patch.

In this paper, for a general case of a given passive cantilever beam with mounted piezoelectric
patch and several in-span attachments as shown in Figure 1, the voltage amplitude of the
piezoelectric patch is found by analytical approach by extending the existing vibrational analysis
in the literature [29–32]. In this vibrational analysis, the method of sectioning the beam between
the attachments are utilized to find the response of the beam due to excitation. As such, the model
proposed for the voltage amplitude is general for any number of attachment. On the other hand,
in order to optimize the harvested energy from an external source of vibration, optimization is applied
on a particular case of a beam with one in-span attachment. The derived equation for piezoelectric
voltage is used as objective function of the optimization algorithm. In this case, the employed
optimization variables are: attachment mass, attachment mass moment of inertia, attachment location,
piezoelectric patch location and external force location. In order to deal with this multi parameter
optimization, genetic algorithm (GA) is used. However the attachment parameters do not appear in
the voltage equation while affecting the natural frequencies. To handle this, one can use the Rayleigh’s
quotient method to calculate the fundamental natural frequency of a cantilever beam with one in-span
attachment analytically [33]. But, for higher natural frequencies the Rayleigh’s quotient method is
almost impossible to be used since there is no information about the shape functions of the beam for
higher modes and using polynomial function as shape function [34] can produce significant error
especially with in-span attachment on the beam. Therefore, here a two steps optimization is suggested.

First, a multi-layer perceptron (MLP) neural network is trained in order to obtain approximate
functions for the natural frequencies based on the attachment parameters. Second, the trained network
is used in the evaluation process of the genetic algorithm to form a neural network based genetic
algorithm which can find the best combination of the optimization variables to match one of the
natural frequencies of the beam to the excitation frequency and maximize the piezoelectric voltage.
Both GA and MLP are already explored in the literature. However, utilization of MLP in the evaluation
process of the GA has two advantages: first, it can increase the speed of GA algorithm significantly
which is a known bottleneck of the GA algorithm in the literature. The second advantage is that MLP
can have very high accuracy in calculation of the natural frequencies if the training data is sufficient.
These advantages will be explained in details in the text.

To validate the analytical modelling and proposed optimization method of this paper, commercial
finite element software COMSOL Multiphysics (COMSOL, Inc., Burlington, NJ, USA) is used.
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The performance of optimization method in matching the natural frequency of the structure with the
excitation frequency is also assessed.

The rest of the paper is organized as follows—in Section 2, vibrational analysis is performed and
the piezoelectric voltage due to external excitation is found. In Section 3, first, neural network fitting
approach and genetic algorithm are described separately, then their combination in maximizing the
voltage amplitude based on the excitation frequency is presented. Section 4 is devoted to simulation
results in which the piezoelectric voltage from the proposed approach is compared with conventional
method in the literature. Finally, conclusions are discussed in Section 5.

Figure 1. Cantilever beam with several in-span attachments under external harmonic excitation.

2. Modelling

For a beam with several in-span attachments and a piezoelectric patch which is mounted on the
beam as shown in Figure 1, the regular method for deriving the equation of motion in transverse
vibration is to separate the beam between the attachments. In this case, the equations of motion for
each section by considering electrical coupling is in the following form [9]:

EI
∂4wn(x, t)

∂x4 + µ
∂2wn(x, t)

∂t2 + C
∂wn(x, t)

∂t
+ ϑv(t)

[
dδ(x− lp1)

dx
−

dδ(x− lp2)

dx

]
= F(t)δ(x− xF). (1)

In (1), wn(x, t) is the transverse displacement, n is the number of each segment, EI is the flexural
rigidity of the beam, µ is the mass per unit length, C is the damping constant, F(t) is the external force,
xF is the application location of the external force and δ is the Dirac delta function. The coupling term
ϑ which comes from the electrical circuit can be written as [9],

ϑ = −
EIpd31bp

2hp
(h2

c − h2
b), (2)

where, EIp is the flexural rigidity of the piezoelectric patch, d31 is the piezoelectric coupling coefficient,
hp and bp are piezoelectric thickness and width respectively while hb is the beam thickness. hc is
the distance from the top of piezoelectric layer to the neutral axis. It should be noted that the term[

dδ(x−lp1)

dx − dδ(x−lp2)
dx

]
specifies the end points of the piezoelectric patch on the beam; and for the

sections of the beam where there is no piezoelectric patch, this term is equal to zero. This term is due
to the fact that induced voltage in the piezoelectric patch generates point moments at its boundaries
which affects the mechanical response of the beam.

Now, to find the piezoelectric voltage due to external mechanical excitation, the response of
partial differential Equation (1) should be found. It is worthwhile to mention that the thickness and
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length of the piezoelectric patch is much less than the beam. As such the rigidity of the piezoelectric
patch is negligible in comparison to the beam. In addition, the effects of the attachment’s geometry on
the beam’s structural dynamic are highly superior to the effects of the piezoelectric patch geometry.
Therefore, in the following modal analysis of the beam, the geometry of the piezoelectric patch is
neglected in comparison to the beam and attachment.

2.1. Free Vibration Analysis

By following the Ansatz separation, solution of (1) is expressed in the following form:

wn(x, t) = ϕn(x)q(t). (3)

ϕn(x) is the mode shape of the beam and q(t) is the generalized time-dependent coordinate
which satisfies

d2q(t)
dt2 = −ω2q(t). (4)

In (4), ω is the natural frequency of the system. In order to find the natural frequencies and mode
shapes of the beam with several in-span attachments, the external force and damping constant in (1)
are considered to be zero. As such, the equations of motion for each segment of the beam in short
circuit condition (v(t) = 0) is converted to the following eigenvalue problem [35,36]:

EI
∂4 ϕn(x)

∂x4 −ω2µϕn(x) = 0. (5)

Now based on (5), the exact solution for the eigenfunctions which are the mode shapes of the
beam, is in the following form [35,36]:

ϕn(x) = An sin βx + Bn cos βx + Cn sinh βx + Dn cosh βx, (6)

in which,

β4 = µ
ω2

EI
. (7)

In (6), An, Bn, Cn and Dn are unknown constants that can be found by applying proper boundary
and continuity equations. The clamped end boundary condition is written in the following form:

ϕ1(0) = ϕ′1(0) = 0. (8)

For the attachment point of each segment, the continuity of deformations and equilibrium of
forces and moments can be written as

ϕn(ln)− ϕn+1(ln+1) = 0

ϕ′n(ln)− ϕ′n+1(ln+1) = 0

ϕ′′n(ln)− ϕ′′n+1(ln)−
β4

µ
Jn ϕ′n(ln) = 0

ϕ′′′n(ln)− ϕ′′′n+1(ln) +
β4

µ
Mn ϕn(ln) = 0. (9)
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Mn is the mass of the attachment and Jn is the related moment of inertia of the attachment. Finally,
for the free end with attachment, boundary conditions are

ϕ′′N(L)− β4

µ
JN ϕ′N(L) = 0

ϕ′′′N(L) +
β4

µ
MN ϕN(L) = 0. (10)

By applying (8)–(10) to (6), the following characteristic equation is formed:

J̄4N×4N P4N×1 = 0, (11)

where J̄4N×4N is the characteristic matrix which is the function of β. On the other hand, β is a function
of ω based on the explicit expression mentioned in (7). In (11), P4N×1 is the matrix of the mode
shapes constants,

P = [A1, B1, C1, D1, · · · , AN , BN , CN , DN ]
T
1×4N . (12)

To find the nontrivial solution of (11), the determinant of the characteristic matrix J̄4N×4N should
be zero which forms the frequency equation and numerical approach should be used to find the natural
frequencies. On the other hand, by setting the determinant of characteristic matrix to zero, characteristic
Equation (11) will become undetermined. In this case, by integrating the normalization condition,
the set of equations become solvable and the coefficients in vector P4N×1 are found. In this method,
orthogonality condition can be used to find the perfect normalization. The generalized orthogonality
condition which results in a decoupled ODE of motion for a beam with in-span attachments is
expressed in the following form [31,32]:

N

∑
n=1

ln∫
ln−1

µ(ϕ
(r)
n (x)ϕ

(s)
n (x))dx + Mn ϕ

(r)
n (ln)ϕ

(s)
n (ln) + Jn ϕ′n

(r)
(ln)ϕ′n

(s)
(ln) = 0

(r 6= s). (13)

This orthogonality condition has a companion form as,

N

∑
n=1

EI
ln∫

ln−1

ϕ′′n
(r)
(x)ϕ′′n

(s)
(x)dx = 0 (r 6= s). (14)

In (13) and (14), (r) and (s) are the numbers of mode. Now, based on (13), the normalization
condition can be written for the case when (r = s) and in this case the right hand side of (13) is equal to
1. After integrating the normalization condition to the set of (8)–(10), the coefficients in vector P4N×1 in
(12) are found and the mode shapes can be found for each natural frequencies. Then, the displacement
for each point of the beam with considering the beam segments can be found by using the expansion
theorem in the following form:

wn(x, t) =
∞

∑
r=1

ϕ
(r)
n (x)q(r)(t). (15)
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2.2. Forced Vibration Analysis

By substituting (15) in (1) and multiplying each side of the equation by ϕ
(s)
n and integrating over

the length of the section, the following equation is derived:

∞

∑
r=1

q(r)(t)
ln∫

ln−1

EIϕ
(s)
n (x)

∂4 ϕ
(r)
n (x)

∂x4 dx +
∞

∑
r=1

q̈(r)
ln∫

ln−1

µϕ
(s)
n (x)ϕ

(r)
n (x)(t)dx+

∞

∑
r=1

q̇(r)
ln∫

ln−1

Cϕ
(s)
n (x)ϕ

(r)
n (x)(t)dx +

ln∫
ln−1

ϕ
(s)
n ϑv(t)

[
dδ(x− lp1)

dx
−

dδ(x− lp2)

dx

]
dx =

ln∫
ln−1

ϕ
(s)
n (x)F(t)δ(x− xF)dx. (16)

Equation (16) is true for each section of the beam. By summing these equations for all sections in
the entire length of the beam, the following familiar form of ordinary differential equation (ODE) of
motion is derived:

M̄∆̈ + C̄∆̇ + K̄∆ = F̄− V̄, (17)

in which,

M̄rs =

L∫
0

µϕ(s)(x)ϕ(r)(x)(t) +
N

∑
n=1

Mn ϕ(s)(ln)ϕ(r)(ln) +
N

∑
n=1

Jn ϕ′
(s)
(ln)ϕ′

(r)
(ln) (18)

C̄rs =

L∫
0

Cϕ(s)(x)ϕ(r)(x)(t) (19)

K̄rs =

L∫
0

EIϕ′′
(s)
(x)ϕ′′

(r)
(x)dx (20)

F̄r = F(t)ϕ(r)(x f ) (21)

V̄ = ϑv(t)
(

ϕ′(r)(lp2)− ϕ′(r)(lp1)
)

(22)

∆ =
[

q(1) q(2) · · · q(r)
]T

(23)

ϕ(r)(x) =
N

∑
n=1

ϕ
(r)
n (x) [H(x− ln−1)− H(x− ln)] . (24)

In (17), M̄rs is the element of the mass matrix, C̄rs is the element of the damping matrix, K̄rs is the
element of the stiffness matrix, F̄r is the modal vector’s element of external forces, V̄ is the vector of the
electromechanical coupling voltage, ∆ is the vector of the time dependent coordinates and H is the
Heaviside function. Now, by applying the orthogonality conditions and normalization in (13) and (14),
the mass and stiffness matrices can be rewritten in the following form:

M̄rs = δrs K̄rs =
(

ω(r)
)2

δrs, (25)

where δrs is the Kronecker delta symbol. Based on (25), mass and stiffness matrices are diagonal while
the damping matrix is not. For solving the equation of motion in (17) analytically, it is better to have a
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set of decoupled ODE which is impossible with non-diagonal damping matrix. However, the damping
of a system is a model parameter and it is not a physical parameter [31]. Therefore, it is possible to
assume a modal damping matrix for the system in the following form:

Crs = 2ζ(r)ω(r)δrs, (26)

where ζ(r) is the modal damping constant. It is possible to define the numerical value for this modal
damping constant by using the Rayleigh damping theory which is common in the Finite Element
Method (FEM) software. The Rayleigh damping can be defined as

Crs = αM̄rs + βK̄rs, (27)

where α, β are the Rayleigh’s damping coefficients. By substituting (25) and (26) in to (27), the modal
damping can be calculated as

ζ(r) =
α + β(ω(r))2

2ω(r)
. (28)

Now, by considering diagonal damping matrix, the decoupled set of ODE of motion can be
written in the following form:

q̈(r)(t) + 2ζ(r)ω(r) q̇(r) + (ω(r))2q(r)(t) = F(t)ϕ(r)(x f )− ϑv(t)
(

ϕ′(r)(lp2)− ϕ′(r)(lp1)
)

, (29)

v(t) in (29) is found by the electrical circuit equation with mechanical coupling as follows [9]:

v̇(t) +
hp

Rlε
s
33bLp

v(t) =
∞

∑
r=1

ϕ(r) q̇(r)(t) (30)

and

ϕ(r) = −
d31EIphpchp

εS
33Lp

lp2∫
lp1

d2 ϕ(r)(x)
dx2 dx = −

d31EIphpchp

εS
33Lp

(ϕ′(r)(lp2)− ϕ′(r)(lp1)). (31)

In (30), Rl is the resistive load, Lp is the piezoelectric length, εS
33 is the piezoelectric permittivity

constant at constant strain by assuming plan-stress assumptions and hpc is the distance of the
piezoelectric patch center in thickness direction to the neutral axis. In order to solve (30) and (29)
first, external harmonic force is modelled by F(t) = F0ejΩt , where Ω is the excitation frequency.
By considering a linear electromechanical system, the response of v(t) is also harmonic in terms of
v(t) = V0ejΩt while V0 and F0 are the amplitudes of the voltage and external force respectively. Now,
the particular solution of non-homogeneous differential equation in (29) is:

q(r)(t) =

[
ϕ(r)(xF)F0 −V0ϑ(ϕ′(r)(lp2)− ϕ′(r)(lp1))

]
ejΩt

(ω(r))2 −Ω2 + j2ζrω(r)Ω
. (32)

By substituting (32) in (30) the following equation for voltage amplitude is derived:

V0 =

∞
∑

r=1

jΩΦ(r)ϕ(r)(xF)F0
(ω(r))2−Ω2+j2ζ(r)ω(r)Ω

∞
∑

r=1

jΩΦ(r)ϑ(ϕ′(r)(lp2)−ϕ′(r)(lp1))

(ω(r))2−Ω2+j2ζ(r)ω(r)Ω
+ 1+jΩτc

τc

, (33)
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in which,

τc =
Rlε

S
33bLp

hp
(34)

τc is the time constant of the electrical circuit. The voltage equation in (33) is similar to one which is
reported by Erturk et al. [9]. However, the difference lies on calculating the natural frequencies(ω(r))
and mode shapes (ϕ(r)) which are based on modal analysis of a beam with in-span attachments. After
finding the amplitude of voltage, the displacement of each point of the beam with the help of (15)
and (32) can be found by the following equation:

w(x, t) =
∞

∑
r=1

ϕ(r)(x)×

[
ϕ(r)(xF)F−V0ϑ(ϕ′(r)(lp2)− ϕ′(r)(lp1))

]
ejΩt

(ω(r))2 −Ω2 + j2ζrω(r)Ω
. (35)

As can be seen in (33), voltage amplitude is a complex number which has an absolute value and a
phase angle. In the framework of this paper, just the absolute value is important for optimization.

Figure 2. Multi layer perceptron neural network.

3. Optimization

It is desired to have the maximum possible of piezoelectric voltage amplitude in (33) for
any excitation frequency. The geometrical optimization on the beam and piezoelectric has been
studied before [12,37]. Therefore, by considering constant geometrical parameters for beam and
piezoelectric patch and considering just one attachment on the beam, the optimization variables that
can influence the voltage amplitude in (33) are piezoelectric patch location (lp1), force location (xF),
attachment location (l1), attachment mass (M) and attachment mass moment of inertia (J). Among these
optimization variables, force location and piezoelectric patch location directly appear in the voltage
amplitude (33). However, the other three optimization variables related to attachment do not directly
appear in the voltage amplitude. Instead, they affect the continuity conditions in (9), and only these
latter affect the characteristic matrix in (11) which itself affects the natural frequencies and mode
shapes that appear in the voltage amplitude (33). On the other hand, there is no closed form expression
between the natural frequencies and the attachment parameters. In fact, there is just closed form
expression for first (fundamental) natural frequency of the beam with in-span attachment based on the
Rayleigh’s quotient method [33]. But, for higher natural frequencies the Rayleigh’s quotient method
cannot be used since there is no information about the shape functions without knowing the natural
frequencies. As such, performing optimization based on the attachment parameters is a challenge that
will be addressed in the next section.
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3.1. Multi Layer Perceptron Neural Network

In this section, neural network fitting algorithm in MATLAB software is utilized for the purpose
of finding approximate functions for the natural frequencies based on the optimization variables.
The algorithm is based on the multi-layer perceptron (MLP) which is a class of artificial neural network.
MLP consists three layers of artificial neurons—input layer, output layer and hidden layers. There is
just one input layer and one output layer in the MLP network and the number of neurons in input and
output layers are equal to the number of input and output variables. However, there can be different
numbers of hidden layers in MLP and the main method to increase the performance of the MLP is to
define the adequate number of hidden layers which can be done with the trial and error approach.

Having this background, it is now desired to have a MLP network that can get attachment
parameters and gives the natural frequencies. To do so, the MLP network should be trained with
the training data which consist of input data and target data. Input data are optimization variables
regarding the attachment including attachment location, attachment mass and attachment mass
moment of inertia. Target data consist of natural frequencies related to the input data. In this paper
maximum number of natural frequencies and mode shapes for modal analysis is considered to be 4
which is sufficient enough to model a cantilever even under high excitation frequencies. Therefore,
each set of input data consists of 3 optimization variables, which has a set of target data consist of 4
natural frequencies.

The MLP network should have the ability to get any combination of the attachment parameters
and give the related natural frequencies. To form the training data for this MLP network, 20 different
attachment masses in the domain of (0 < M < µL), 20 different attachment mass moments of inertia in
the domain of (0 < J < 0.0042 µL3) and 20 different attachment locations in the domain of (0 < l1 < L)
have been chosen to form 8000 combinations of attachment parameters. For each of these combinations,
there are 4 natural frequencies which should be found by the numerical approach on the characteristic
matrix in (11). Therefore, input training data is a matrix with 3 rows and 8000 columns while the
target data is a matrix with 4 rows and 8000 columns. Number of hidden layers is 50 and the Bayesian
Regularization method has been used to train the network.

After successful training of the network by obtaining natural frequencies for finite set of variables,
a continuous function is approximated as a black box which can get any variable in the predefined
domain and gives the related natural frequencies immediately as shown in Figure 2 and it is not
necessary to calculate the natural frequencies by numerical approach on the characteristic matrix in
Equation (11). This will boost the speed in the evaluation procedure of the GA optimization which
will be discussed later.

3.2. Finding Analytical Expression for Mode Shape Constants

By using MLP neural network, the natural frequencies in (33) are found as functions of the
attachment parameters. But, in voltage amplitude (33), mode shapes are also functions of the
attachment parameters since attachment parameters affect the continuity (9) and mode shapes constants
in (12). Finding analytical expressions for the mode shape constants based on (8)–(10) are almost
impossible due to huge size of the expression for each of the constants. Alternative approach proposed
by Naguleswaran [36,38] is used here to decrease the number of the unknown constants in (12).

For the case when the beam has just one in-span attachment, some algebraic simplification can be
done on the mode shapes by defining two coordinate systems for two sections of the beam as shown
in Figure 3. The reference of the second coordinate system has been placed at the tip of the beam and
the points in the second coordinate system are shown by “ ”̃.
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Figure 3. Cantilever beam with two different coordinate system.

The following equation is true for the relation between the points in the first and the points in the
second coordinate:

x̃ = x− L (36)

By applying the clamped end boundary conditions mentioned in (8) to Section 1 of the beam, the
following result related to the mode shape constant of the first section is obtained:

−A1 = C1 − B1 = D1. (37)

Now, by considering the second coordinate system for the second section of the beam and
considering no tip mass for the beam, the free boundary condition can be written for the second section
of the beam in the following form:

d2 ϕ2(0̃)
dx̃2 =

d3 ϕ2(0̃)
dx̃3 = 0. (38)

By applying (38) to the mode shape of the second section of the beam, (39) is obtained:

A2 = C2 B2 = D2. (39)

Using (37) and (39), mode shapes for Segment 1 and 2 can be written as

ϕ1(x) = A1(sin βx− sinh βx) + B1(cos βx− cosh βx)

ϕ2(x̃) = A2(sin βx̃ + sinh βx̃) + B2(cos βx̃ + cosh βx̃). (40)

By defining two coordinate systems, there are 4 unknown constants instead of 8 unknown constant.
These 4 unknown constants can be found by rewriting (9) for the new coordinate system,

ϕ1(l1)− ϕ2(l̃2) = 0

ϕ′1(l1)− ϕ′2(l̃2) = 0

ϕ′′1(l1)− ϕ′′2(l̃2)−
β4

µ
J1 ϕ′1(l1) = 0

ϕ′′′1(l1)− ϕ′′′2(l̃2) +
β4

µ
M1 ϕ1(l1) = 0. (41)

Now, to find each constant, first B2 is considered to be 1. Then, the first three conditions of (41) are
solved analytically with the help of MAPLE software to find the remaining three constants as functions
of the natural frequencies and attachment parameters. The code which is written in MAPLE software
is mentioned in the Appendix A. On the other hand, in this case there is no normalization in the mode
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shapes and the mass matrix in (17) is not an identity matrix while it is still diagonal. Therefore, (29)
without normalization will be in this form:

M̄rr q̈(r)(t) + M̄rr2ζ(r)ω(r) q̇(r) + M̄rr(ω
(r))2q(r)(t) =

F(t)ϕ(r)(x f )− ϑv(t)
(

ϕ′n
(r)
(lp2)− ϕ′n

(r)
(lp1)

)
. (42)

By considering (42) instead of (29), the mass matrix M̄rr enters the piezoelectric voltage
amplitude (33) and this latter is rewritten in the following form:

V0 =

∞
∑

r=1

1
M̄rr

jΩΦ(r)ϕ(r)(xF)F0
(ω(r))2−Ω2+j2ζ(r)ω(r)Ω

∞
∑

r=1

1
M̄rr

jΩΦ(r)ϑ(ϕ′(r)(lp2)−ϕ′(r)(lp1))

(ω(r))2−Ω2+j2ζ(r)ω(r)Ω
+ 1+jΩτc

τc

. (43)

The value of M̄rr is found analytically as function of the mode shape constants and attachment
specifications by Maple software and it is reported in Appendix A.

In the approach of the last two sections, natural frequencies and mode shapes have been found as
functions of the attachment specifications.

3.3. Genetic Algorithm Optimization

Now, it is desired to find the optimal voltage amplitude from (43) by finding the optimal position of
the attachment, the attachment mass, mass moment of inertia, external force location, and piezoelectric
patch location. As such, genetic algorithm is utilized in this paper, which has a great performance in
dealing with multi variable optimization problems. Genetic algorithm is an optimization method that
works based on the evolution theory and it is completely a simulation of real life in nature. By choosing
the voltage amplitude (43) as fitness function to be optimized, the mathematical framework of GA
optimization method works in the following steps:

• A number of individuals is chosen which forms the first generation of the population.
Each individual is a possible solution for the optimization of the fitness function. Higher number
of individuals decreases the possibility of being trapped in the local optimums. here,
200 individuals are considered in the population.

• Pairs of individuals are selected as parents with Roulette wheel method. The ratio of individuals
selected as parents to the overall individuals is 0.8.

• Two selected parents give birth to two offspring (two new possible solution) in the
crossover procedure.

• Then chromosomes of some offspring will be changed in mutation procedures. The chromosomes
for the optimization problem are the optimization variables. The percentage of offspring who
experienced the mutation to the whole population is called mutation percentage which is
considered here to be 10 percent.

• The last step is the evaluation procedure in which individuals with lowest fitness value will
be replaced by offspring. These newly born offspring with remaining individuals form the
next generation. To calculate the fitness value of each individual, MLP network and analytical
expression for the mode shape constants should be used which will be explained in the
next section.

• Newly formed generation will undergo the same procedure of the previous generation.

MATLAB GA toolbox performs the aforementioned steps and stops after a restricted number
of times.
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3.4. Neural Network Based Genetic Algorithm (NN-GA)

In the evaluation step of genetic algorithm, the fitness value of each individual should be
determined. As has been shown in Figure 4, each individual has 5 chromosomes in which 3 of
them are related to the attachment. MLP neural network calculates the natural frequencies of the
system based on the attachment parameters. Then, mode shapes are calculated by the analytical
expressions for the mode shape constants. Finally, with the help of mode shapes, natural frequencies,
force location and piezoelectric patch location, the fitness value of each individual are calculated by
using the voltage amplitude (43).

Using MLP neural network in the evaluation process of GA will increase optimization speed
significantly by eliminating the cumbersome numerical procedures to find the natural frequencies
related to each individual. Therefore, it is possible to choose the GA parameters (population number,
mutation percentage, ...) different to those mentioned above to compare the results and to avoid
trapping in the local optimums.

Figure 4. Diagram of neural network based genetic algorithm (NN-GA).

4. Simulation and Results

In this section, first the effect of each optimization variables on the voltage amplitude is
investigated solely. It should be noted that the effects of the electrical circuit parameters on the
voltage is not investigated here. Therefore, for constant electrical circuit parameters particularly the
resistance, the optimization of voltage is equivalent to optimization of power. Investigations are
performed on a cantilever beam with an in-span attachment which has a cubic shape with length (LM),
thickness (HM) and width (WM). All the features and dimensions of the system are reported in Table 1.
In next part of results, the neural network based genetic algorithm is used to find the best optimization
variables based on the excitation frequency of the external force. The natural frequencies of the
optimized structures are calculated to asses the performance of the optimization method in matching
one of the natural frequencies of the structure with the excitation frequency. Then, by simulating
the optimized structure in the COMSOL FEM platform, the natural frequencies and voltages which
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are derived by analytical method are compared with ones obtained by FEM simulation in COMSOL.
To investigate the performance of the optimization method, the voltages of the optimized structures
are also compared with the classical configuration in which a lumped mass is attached at the tip of the
beam and a piezoelectric patch mounted on clamped side of the beam and the results are discussed at
the end.

Table 1. Vibration system properties.

Beam Attachment Piezoelectric Patch (PZT-4)

hb 0.002 (m) M 0 < M < Mb hp 0.0002 (m)
wb 0.02 (m) HM 0 < HM < Lb/10 wp 0.02 (m)
Lb 0.3 (m) WM Varies Lp 0.03 (m)
E 107 (GPa) LM L/10 C11 138.9 (Gpa)
ρb 2330 (kg/m3) ρM 2330 (kg/m3) ρP 7500 (kg/m3)
Mb 0.0280 (kg) ζ 0.01 d31 −123 (pm/V)
α 10−4 εs

33 663.2 ε0
β 10−4 R 103 (Ohm)

4.1. Discussions

In Figure 5, the effects of patch location vs. the attachment location have been illustrated on the
voltage amplitude. As can be seen in this figure, it is obvious that when the excitation frequency is
near to first natural frequency, the best piezoelectric patch location and attachment location are near to
the clamped end. The reason for piezoelectric patch location is that in first vibrational mode shape
it has the most possible strain close to clamp side of the beam. The reason for optimum attachment
location is that the force is also applying at the end of the beam and in the next figure it will become
clear that having the attachment and force at the same point of the beam should be avoided. When the
excitation frequency approaches to the second natural frequency, then the best placement for the
piezoelectric patch and attachment is near to the midpoint of the beam. On the other hand, for the
excitation frequency near to higher natural frequencies, there are many local optimums for the mass
and piezoelectric patch location.

Figure 5. Piezoelectric voltage amplitude for different attachment location versus piezoelectric patch
location—M = µL, J = 0, xF = L. .

In Figure 6, the effects of attachment mass vs. force location on the voltage amplitudes are shown.
Based on this figure, attachment mass does not have optimums for voltages. It means that tuning
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the mass for matching the natural frequency with the excitation frequency is enough. On the other
hand, for the excitation frequencies close to first natural frequencies the best force location is at the
tip of the beam while for excitation frequencies close to the higher natural frequencies the optimum
force location is close to the mode shape apexes. Another important point is that for the excitation
frequencies close to higher natural frequencies, when the force and attachment are at the tip of the
beam, increasing the mass decreases the voltage amplitude. As such, when the attachment is at the tip
of the beam the optimum location for force is not at the tip of the beam.

Figure 6. Piezoelectric voltage amplitude for different attachment mass vs. force location—l1 = L,
J = 0, lp1 = 0.01L.

In Figure 7, the effects of attachment mass moment of inertia and force location on the voltage
amplitude are shown. When the excitation frequency is equal to the first natural frequency, there is no
optimum for the mass moment of inertia. When the excitation frequency reaches to second natural
frequency, the behavior of voltage amplitude is highly dependent on the force location. On the contrary,
for third and fourth natural frequency it can be deduced that increasing the mass moment of inertia
will increase the voltage generally. It will be shown in the next section that mass moment of inertia
will increase the bandwidth of accessible natural frequencies to match with the excitation frequency.

4.2. MLP Neural Network Fitting Function

In Figure 8, all possible accessible range of natural frequencies for the classical setup of cantilever
with tip attachment and for the proposed setup of this paper is shown. Figure 8a illustrates the
natural frequencies when the mass moment of inertia is zero and the attachment is at the tip of the
beam. Figure 8b illustrates the natural frequencies for all 8000 combination of mass, mass moment of
inertia and location. As can be seen, by considering in-span attachment and mass moment of inertia,
a higher frequency bandwidth becomes accessible for the system of cantilever beam and attachment.
For example, when excitation frequency is equal to 100 (Hz), 300 (Hz) or 600 (Hz), without considering
in-span attachment and its mass moment of inertia, it is impossible to match the natural frequency of
the system with the excitation frequency. On the other hand by increasing the mass moment of inertia
these frequencies become accessible as it is shown in Figure 8b. Based on Figure 8, for some excitation
frequencies such as 20 (Hz), 100 (Hz), 140 (Hz), 300 (Hz), 370 (Hz), 600 (Hz) and 750 (Hz), there are
infinite combinations that match the natural frequencies of the system to the excitation frequencies.
Now an interesting question is: which of them produce more voltage amplitude? Furthermore,
some other excitation frequencies such as 50 (Hz) and 220 (Hz) are impossible to match with the
natural frequencies of the system even by considering the mass moments of inertia. So, in these
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cases is it better to eliminate the attachment? These are the questions which will be addressed in the
optimization section.

Figure 7. Piezoelectric voltage amplitude for different attachment mass moment of inertia vs. force
location—l1 = L, M = µL, lp1 = 0.01L.

Figure 8. Natural frequencies for different combinations of the attachment parameters with and
without considering mass moment of inertia.

4.3. Optimization

The trained MLP neural network is a continuous function which gets 3 inputs and gives 4 outputs.
Therefore, plotting this network based on the inputs and outputs in a 3D plot is impossible. But,
the mean squared error after 1000 training epochs reached to 100 which is completely satisfying since
the scale of the natural frequencies as the target data are close to 102 (rad/s) for the first natural
frequency and 5× 103 (rad/s) for the fourth natural frequency. To check the fitting performance of
the network, it is possible to consider one of the inputs constant and plot the results for variations
of the two other inputs. This is done in Figure 9, in which the four natural frequencies of the beam
are illustrated based on the variation of the attachment location and attachment mass. It can be seen
that the data obtained from the trained network fits the discrete training data with high accuracy.
The discrete data plots for the first and second natural frequency are similar to plots obtained by Low
[29].
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Figure 9. MLP neural network approximated function and discrete training data—J = 0.

With a combination of an MLP neural network and genetic algorithm, now we have an
optimization algorithm which gets the excitation frequency and gives the optimum possible
optimization variables to maximize the voltage of the piezoelectric patch due to external excitation.
Now, by setting the desired excitation frequency, NN based GA will choose the optimization variables
based on the properties defined in Table 1. For each frequency specified in Figure 9, the best and mean
fitness values in the generations are illustrated in Figure 10. It should be noted that the fitness values
are obtained in the function evaluation step of GA for the output voltage multiplied to a negative sign
to convert the maximization to a minimization problem. Based on Figure 10, it is obvious that less
than 200 generations was enough for convergence.

Figure 10. Best and mean fitness data in the generation of the genetic algorithm.

In Table 2, for different excitation frequency, the optimization variables which have been chosen
by NN based GA are reported. Each optimized set of variables named as config (excitation frequency).
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Table 2. Optimization Variables for different excitation frequency.

Optimization Variables

Excitation M/µL l1/L lp/L xF /L J/µL3
Frequency (Hz)

Config (20) 20 0.7940 0.5350 0.0333 1 0.0020
Config (50) 50 1 0.3310 0.0333 1 0.0010
Config (100) 100 1 0.5180 0.4640 1 0.0021
Config (140) 140 1 0.7150 0.5443 1 0.0010
Config (220) 220 1 0.2220 0.1923 1 0.0042
Config (300) 300 1 0.2957 0.6103 1 0.0010
Config (370) 370 0.9835 0.8067 0.7070 1 0.0010
Config (600) 600 0.9335 0.1547 0.7050 1 0.0034
Config (750) 750 0.4471 0.5820 0.7340 1 0.0004

Table 3. Natural Frequencies for different optimized configurations.

Natural Frequencies

Excitation Solving 1st NF 2nd NF 3rd NF 4th NFFrequency Method

Config (20) 20 Analytical 19.994 99.174 374.013 660.643
COMSOL 20.21 104.67 365.99 641.64

Config (50) 50 Analytical 23.042 98.317 316.726 727.901
COMSOL 24.12 101.32 323.79 747.15

Config (100) 100 Analytical 19.532 99.963 372.406 658.138
COMSOL 19.519 102.88 371.99 665.84

Config (140) 140 Analytical 15.358 140.134 332.883 720.988
COMSOL 15.339 140.81 334.15 683.85

Config (220) 220 Analytical 23.980 118.376 281.125 558.614
COMSOL 24.48 119.12 288.56 525.31

Config (300) 300 Analytical 23.456 103.073 300.275 710.986
COMSOL 23.154 104.24 299 690.96

Config (370) 370 Analytical 13.748 146.678 370.493 689.775
COMSOL 13.657 147.95 379.23 689.42

Config (600) 600 Analytical 16.6254 126.09 337.366 600.502
COMSOL 16.407 127.07 343.82 582.71

Config (750) 750 Analytical 20.9287 123.002 392.883 749.025
COMSOL 20.515 123.55 394.62 730.83

In Table 3, the natural frequencies for optimized structures are calculated by analytical method
and FEM modal analysis by COMSOL. To model the beam and in-span attachment, 3D environment
of COMSOL is used. It should be noted that the cubic attachment and beam should not be in complete
contact. Otherwise, the continuity of the beam will be affected by the rigidity and thickness of the
attachment. Whereas, in continuity Equation (9), only the attachment mass and mass moment of
inertia is taking in to consideration. To remedy a very small rigid cylindrical connector is modelled in
COMSOL to mount the attachment on the beam. Furthermore, the same modal damping of analytical
modelling is chosen in the COMSOL 3D environment.

As can be seen in Table 3, the optimization method successfully matched one of the natural
frequencies of the structure with the excitation frequency, when the excitation frequency is in the
accessible frequency bandwidth of the structure. It is worthwhile to mention that when the natural
frequencies of the structure are calculated by analytical Euler–Bernoulli beam theory, one of the
natural frequencies of the structure is exactly matches the excitation frequency with 10−1 percent error.
However, when the natural frequencies of the structures are calculated by the FEM analysis, the error
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will be increased to 100 percent. This increase in error comes from the fact that in 3D FEM analysis of
the beam specially with attachment, there are other degrees of freedom like chord wise bending or
torsional degree of freedom that are coupled with the transverse bending of the structure. This will
deviate the natural frequencies of the beam in 3D FEM analysis from those of Euler–Bernoulli beam
theory. To compare the piezoelectric voltages of the optimized design and classical configuration,
the frequency response plot for each configuration around its excitation frequency are illustrated in
Figure 11.

Figure 11. Frequency response for different configurations mentioned in Table 2

Several points can be deduced by the frequency response plot in Figure 11. First, it is obvious
that the piezoelectric voltages derived by analytical method and FEM analysis are in good agreement.
In fact, in COMSOL the Rayleigh damping is defined with same coefficient which is very important in
terms of verification of the results. As can be seen in the figure, the amplitude of the voltage even at
the peaks are in good agreement with the analytical calculations.

The next important point that can be seen in the frequency response plot is that, the voltage of
the optimized design is highly superior to the classical configuration even for the cases when the
excitation frequency is in the accessible bandwidth of the classical configuration(like 140 HZ, 370 HZ
and 750 HZ). For other frequencies like 100 Hz, 300 Hz and 600 Hz which is outside the accessible
bandwidth of the classical configuration, obtained voltages for optimized configurations are extremely
superior to the classical configuration thanks to consideration of in-span attachment and its mass
moment of inertia, which can convert the excitation frequency to resonance frequency.

5. Discussion

By using the evolutionary optimization algorithms like GA, it is always possible to be in the local
optimums. To reduce the possibility of local optimums, GA can be applied several times with different
parameters (population of individuals, mutation rate, etc.). In general, this procedure is very time
consuming. However, by introducing the MPL in the core of evaluation process, the GA is performing
fast enough to be applied several times with different parameters. On the other hand, even without
applying the GA for several times, still the improvement of obtained results in comparison to the
classical approach of tip attached cantilever beam is significant.

The optimization methodology is applied on a particular case of a beam with one in-span
attachment. However, with the proposed analytical approach for the calculation of the piezoelectric
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voltage, the optimization methodology can be applied on a beam with several in-span attachment as
well. On the other hand in this case more training data will be required for the MLP neural network.

Finally, while the optimization methodology proposed in this paper is for piezoelectric energy
harvesting scope, it could be worth to explore its application to piezoelectric sensing scope. Most of
the existing miniaturized piezoelectric sensors studies are focused on on fabrication technology and on
their integration, but also on their combination with piezoelectric actuation in order to form one single
and same structure for both actuation-sensing (named as self-sensing) [39–41]. Perspective works
could therefore explore the use of optimization methodologies, among which the one in this paper,
to design sensing or self-sensing structures with piezoelectric elements.

6. Conclusions

In this paper, a neural network based genetic algorithm has been proposed to maximize the
voltage amplitude of a piezoelectric patch mounted on a cantilever beam with in-span attachment.
The effects of attachment location, attachment mass, attachment mass moment of inertia, piezoelectric
patch location and force location on the beam have been illustrated on the piezoelectric voltage
amplitude. It has been shown that when the excitation frequency of a beam exceed the fundamental
natural frequency, conventional configuration of cantilever beam with tip attachment and clamp side
mounted piezoelectric patch does not provide the optimum voltage amplitude. The optimization
results demonstrate that for excitation frequencies higher than fundamental natural frequency the
piezoelectric voltage amplitude with optimization variables suggested by the proposed NN-GA has
significant superiority over the conventional configuration.

Future works would extend the proposed approach to 2D structures like plates or circular
diaphragms to optimize the harvested energy from the harmonic pressure. The work will also focus on
the fabrication and realization of the optimized structures. Future works also include the fabrication of
one optimized design from the proposed technique and perform extensive experimental tests on it.
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Appendix A. Analytical Expression for Mode Shape Constants

The constant of the mode shapes in Equation (40) are found by applying equations in (41) and
the diagonal mass matrix in (43) is found by (18), all with the code written in MAPLE software as
shown below,

ϕ1 := x 7→ A1 (sin (β x)− sinh (β x)) + B1 (cos (β x)− cosh (β x)) :

ϕ2 := x 7→ A2 (sin (β x) + sinh (β x)) + B2 (cos (β x) + cosh (β x)) :

ϕd1 := x 7→ d
dx

ϕ1 (x) :

ϕd2 := x 7→ d
dx

ϕ2 (x) :
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ϕdd1 := x 7→ d2

dx2 ϕ1 (x) :

ϕdd2 := x 7→ d2

dx2 ϕ2 (x) :

B2 := 1 :

Constants := solve(
{

ϕ1 (l1)− ϕ2
(
l̃2
)
= 0, ϕd1 (l1)− ϕd2

(
l̃2
)
= 0, EIϕdd1 (l1)− EIϕdd2

(
l̃2
)
+

ω2 Jϕd1 (l1) = 0
}

, {A1, A2, B1})

Mrr :=
∫ l1

0
(ϕ1 (x))2 dx +

∫ 0

l̃2
(ϕ2 (x))2 dx + M (ϕ1 (l1))

2 + J (ϕd1 (l1))
2
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