
Instantiation of Parameterized Data Structures
for Model-Based Testing

Fabrice Bouquet, Jean-François Couchot, Frédéric Dadeau, and Alain Giorgetti

LIFC – INRIA Cassis project
FRE CNRS 2661, University of Franche-Comté
16 route de Gray, 25030 Besançon cedex, France

{bouquet,couchot,dadeau,giorgetti}@lifc.univ-fcomte.fr

Abstract. Model-based testing is bound, by essence, to use the enumer-
ated data structures of the system under test (SUT). On the other hand,
formal modeling often involves the use of parameterized data structures
in order to be more general (such a model should be sufficient to test
many implementation variants) and to abstract irrelevant details. Conse-
quently, the validation engineer is sooner or later required to instantiate
these parameters. At the current time, this instantiation activity is a
matter of experience and knowledge of the SUT. This work investigates
how to rationalize the instantiation of the model parameters.

It is obvious that a poor instantiation may badly influence the qual-
ity of the resulting tests. However, recent results in instantiation-based
theorem proving and their application to software verification show that
it is often possible to guess the smallest most general data enumeration.
We first provide a formal characterization of what a most general instan-
tiation is, in the framework of functional testing. Then, we propose an
approach to automate the instantiation of the model parameters, which
leaves the specifier and the validation engineer free to use the desired
level of abstraction, during the model design process, without having to
satisfy any finiteness requirement.

We investigate cases where delaying the instantiation is not a problem.
This work is illustrated by a realistic running example. It is presented
in the framework of the BZ-Testing-Tools methodology, which uses a B
abstract machine for model-based testing and targets many implemen-
tation languages.

1 Introduction

Model-based testing (MBT) [7] is the process of using a formal model to derive
tests cases that are to be run on an implementation, named the system under
test (SUT). The model is designed by a validation engineer from an informal
specification, without looking at the implementation, except for the signatures
of control and observable methods. Nevertheless, several factors influence the
design of this model, among which the fact that the test methodology only
supports finite data structures.

When writing a formal model from an informal specification, the validation
engineer develops a complementary skill of formal specifier. Thus, he/she can

J. Julliand and O. Kouchnarenko (Eds.): B 2006, LNCS 4355, pp. 94–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Instantiation of Parameterized Data Structures for Model-Based Testing 95

take benefit of some specific features of formal modeling. One of them is the
possibility to abstract details of the informal specification by designing an initial
model with parameters. In the B method, this first model is called an abstract
machine, and the parameters can be either machine parameters or abstract (i.e.
not enumerated) sets. Then, coming back to his/her validation activity, the en-
gineer has to make all the model data finite, by instantiating them cleverly. Up
to now, this instantiation is performed by hand from the specifier’s knowledge
of the SUT and the informal specification.

However, since the engineer does not (have to) know all the implementation
and informal specification details, his/her instantiation work is somewhat artifi-
cial and not optimal, neither in time nor in quality. Indeed, a poor instantiation
may not exploit all the possibilities of the model: it may leave “dead code” in
it, and no test case will be produced for this dead part of the model, leaving a
–possibly important– part of the SUT not validated.

The first contribution of this work is the formalization (as a proof obligation)
of the “most general instantiation” of a formal model with respect to a coverage
criterion, corresponding to the idea of leaving no execution case without an as-
sociated test. Checking this proof obligation corresponds to dead code detection.
The second contribution is to show how to discharge this proof obligation in a
theorem prover or a constraint solver. The third contribution is a method based
on sorted logic to find an approximation of the most general instantiation. This
work is presented in the framework of the BZ-Testing-Tools [1], an approach
performing model-based testing from B machines.

The paper is organized as follows. Section 2 presents a running example, a
gsm11-11 specification that will be used to illustrate our approach. Section 3
introduces the principles of model-based testing, as performed within the BZ-
Testing-Tools. The proof obligation defining the most general instantiation is
given in Sect. 4. The techniques for solving this proof obligation are detailed in
Sect. 5. The novel instantiation method proposed to guide them is presented in
Sect. 6. Finally, Section 7 concludes and presents future work.

2 Running Example

Our running example is a simplified B model of the interface between the Sub-
scriber Identity Module (SIM) and the Mobile Equipment (ME) within the GSM
11.11 (Global System for Mobile communication) digital cellular telecommunica-
tions system. It is based on an informal specification [8] produced by the Special
Mobile Group (SMG). Section 2.1 briefly presents the aims of the GSM 11.11
standard and describes a parameterized B model of a fragment of it, written for
test purposes. Then, Section 2.2 analyzes a former experience on this example
where the instantiation was at the charge of the specifier.

2.1 Informal and Formal Specifications

The GSM 11.11 is a standard for the second generation of mobile phones. In this
system, the mobile phone embeds a writable card (the SIM: Subscriber Identity

96 F. Bouquet et al.

Module) containing security and application data. The SIM stores data in files
hierarchically organized in a tree structure. The tree root and the other tree
internal nodes are respectively called the master file (MF) and the dedicated
files (DF). They are the directories of the file structure. The tree leaves are
called the elementary files (EF).

MACHINE
gsm1 (FILES)

CONSTANTS
MF , DF ,
EM , /* Elementary Files under the MF */
ED, /* Elementary Files under a DF */
FA,
mf , dg, dt

PROPERTIES
MF ⊆ FILES ∧ DF ⊆ FILES ∧
EM ⊆ FILES ∧ ED ⊆ FILES ∧
MF ∩ DF = ∅ ∧ MF ∩ EM = ∅ ∧
MF ∩ ED = ∅ ∧ DF ∩ EM = ∅ ∧
DF ∩ ED = ∅ ∧ EM ∩ ED = ∅ ∧
FILES = MF ∪ DF ∪ EM ∪ ED ∧
FA ∈ ED −→ DF ∧
mf ∈ FILES ∧ dg ∈ FILES ∧ dt ∈ FILES ∧
MF = { mf } ∧ DF = { dg, dt } ∧
ei ∈ EM

VARIABLES
cd, cf

INVARIANT
cd ∈ (MF ∪ DF) ∧ cf ⊆ (EM ∪ ED) ∧
card (cf) ≤ 1 ∧
(cf = ∅ ∨

(cf �= ∅ ∧ cf ⊆ ED ∧ cd ∈ DF) ∨
(cf �= ∅ ∧ cf ⊆ EM ∧ cd = mf))

INITIALISATION
cd := mf || cf := ∅

OPERATIONS
sw ←− SELECT FILE(ff) =

PRE
ff ∈ FILES

THEN
IF (ff ∈ (DF ∪ MF))
THEN

/* The last selected file is cd */
IF (

(cd = mf ∧ ff ∈ DF) ∨
(cd = dg ∧ ff = dt) ∨
(cd = dt ∧ ff = dg) ∨
(cd ∈ DF ∧ ff = mf) ∨
(ff = cd) ∨ ff = mf))

THEN
cd := ff || cf := ∅ || sw := 9000

ELSE
sw := 9404 /* Not activable. */

END
ELSE /* ff is an EF */

IF (
(ff ∈ EM ∧ cd = mf) ∨
(ff ∈ ED ∧ cd ∈ DF

∧ FA(ff) = cd) ∨ ff ∈ cf)
THEN

cf := {ff } || sw := 9000
ELSE

sw := 9404
END

END
END

END

Fig. 1. A small B model for the GSM 11-11 SIM - ME interface

During a communication between the SIM and the ME (Mobile Equipment),
the SIM is passive: it only answers to requests sent by the ME, which reads and
modifies the SIM files through functions defined in the communication interface.
Our model focuses on the SELECT function of this communication interface,
because it is the only one which interacts in a complex manner with the file
structure. This B machine, shown in Fig. 1, is simplified and its identifiers are
shortened in order to fit in the format of this paper. We now describe it in details.

The gsm1.mch machine is parameterized with the non empty finite set FILES
of all the files present on the SIM card. Since the master file is unique, it is mod-
eled in B by the mf constant. The SIM card can store files for many applications
but our model focuses on the main one, namely the GSM application, whose ded-
icated files are all directly under the MF. Consequently, the model distinguishes
four types of files: master file, dedicated file, elementary file under the master
file and elementary file under a dedicated file. These four types are respectively
modeled in B by the four pairwise disjoint sets MF, DF, EM and ED whose

Instantiation of Parameterized Data Structures for Model-Based Testing 97

union is the set FILES of all the SIM files1. The property MF = {mf } states
that there is a unique master file and the property DF = {dg, dt} fixes the set of
dedicated files used by the GSM application. These two identifiers respectively
represent the directories DF GSM and DF TELECOM containing the appli-
cation data and some telecommunication service features. The file structure is
completely defined by the total function FA which maps each elementary file in
ED to its FAther, the dedicated file containing it. The data are completed with
the ei constant, representing the EF ICCID, an EF at the MF level storing a
unique identification number for the SIM.

The SELECT function is the sole function which can select a SIM file. More
precisely, it aims at selecting a directory to become the new current directory
and an EF to become the new current elementary file, in conformance with
some access rules. It is modeled by the SELECT FILE operation, which assigns
a value to the two state variables cd (current directory) and cf (current EF).

The initialization chooses the master file as current directory. One can infer
from the informal specification that there is always a single selected directory.
Consequently, the variable cd takes its values in MF ∪ DF. The informal speci-
fication also expects that there is always zero or one selected EF. Consequently,
the variable cf is defined as a set of elementary files (i.e. is included in EM∪ED)
and its value is the empty set when no EF is selected. The property that its car-
dinality should be zero or one is added to the machine invariant. The last part
of the invariant checks that the current EF, when selected, is always a child of
the current directory.

The SELECT function works as follows. If the candidate for selection ff is a
directory, it is selected iff it is the master file, the current directory, an immediate
child, a sibling or the father of the current directory. Now, if ff is an EF, it is
selected iff it is a child of the current directory or was already selected.

2.2 A Previous Experience

In a former work [2], members of our team have published a B model for the
GSM 11.11 (named gsm_revue.mch), where all the sets were enumerated and
where the file structure was modeled by a binary relation, itself enumerated as
a set of pairs. After generating tests sequences, the authors have noticed that a
branch of the model was never activated (this phenomenon is reproduced by the
first ELSE branch of our running example, marked with /* Not activable. */).

The explanation for this phenomenon can be threefold. Firstly, the informal
specification may be contradictory. Secondly, there may be a discrepancy be-
tween the informal specification, assumed contradiction-free, and branches of
the B model, making these branches inconsistent. Thirdly, the enumeration of
sets in gsm_revue.mch may be too restrictive to activate each branch.

After a closer look, the main explanation appeared to be a discrepancy be-
tween specifications: The informal specifier has indeed written that “Selecting a
DF or the MF [always] sets the current directory”, whereas the formal specifier
1 Note that, for this use of the B machine for generating tests, it is equivalent to

consider the FILES machine parameter as an abstract set.

98 F. Bouquet et al.

has added a case of failure for this selection. The test campaign revealed that
this case was not activable, for the enumerated file structure of gsm_revue.mch,
but the question remained open, whether this property was general or due to
a too restrictive enumeration. Our contribution is a methodology, described in
Sect. 4, 5 and 6, to answer such a question. In the present case, it gives two
answers. Firstly, the branch remains dead for any tree structure of height 1,
meaning that the specifier choice of one DF and four EF was general enough for
such a detection. Secondly, this branch becomes activable when one considers at
least one dedicated file of depth 2.

From this example, it is clear that detecting “dead code” in a B model is
a cumbersome and error-prone activity. We want to investigate ways to assist
it with tools. Since the first two explanations for dead branches involve an in-
formal side, they cannot be fully automatized. We therefore focus on the third
explanation, i.e. an instantiation of data which is not general enough to activate
each branch, by setting a framework where this instantiation is automatically
performed.

This instantiation guessing method is based on tools supporting hereditary
finite data structures. This excludes inductive structures and binary relations
in all their generality. Thus, the model gsm_revue.mch has been revised by
replacing the binary relation defining the file structure with a total function
associating its father to each elementary file. When limited to DF of depth
1, this leads to gsm1.mch, used in the following sections to illustrate how the
guessing method proceeds to find a good instantiation of the sets of files in this
tree structure. The method will prove that no instantiation of these sets can
activate the branch marked /* Not activable. */ in Fig. 1, i.e. that the specifier
choice in gsm_revue.mch was not that restrictive.

Now, in order to prove that a DF of depth 2 is sufficient to activate this
dead branch, we have also written a larger model, named gsm2.mch2. Finally,
note that the idea of considering such DFs, excluded in version 5.0.0 of the
standard, is not artificial, since version 6.2.0. of the GSM 11.11 standard allows
their existence.

3 Principles of Model-Based Testing from B Machines

This section describes model-based testing (MBT) from B machines, as per-
formed in the BZ-Testing-Tools [1]. This process takes as an input a B abstract
machine, representing the system under test (e.g. wiper controller, smart card,
speed control device, etc.) from a functional point of view. Test targets are de-
rived from this model according to different coverage criteria, chosen by the
validation engineer. Once the test target is defined, the model is animated (us-
ing a boundary model-checking approach) in order to build a complete test case.
This test generation process relies on a set-theoretic solver, named CLPS-BZ [3],
interfaced with constraint logic programming.

2 Available at http://lifc.univ-fcomte.fr/∼couchot/specs/gsm2.mch.

http://lifc.univ-fcomte.fr/~couchot/specs/gsm2.mch

Instantiation of Parameterized Data Structures for Model-Based Testing 99

We present in this section the principles of test target definition, and the
associated coverage criteria. Then we introduce the CLPS-BZ solver. Finally, we
present the test target conditions of consistency.

3.1 Definition of the Test Targets

The BZ-Testing-Tools approach considers a test case as the activation of a sys-
tem behavior within a pertinent system state. This represents the behavioral
coverage. In addition, a decision coverage is considered to cover the different
possibilities of a disjunctive decision predicate, providing a specific coverage cri-
terion. Finally, the data coverage is obtained by a boundary analysis of the data
–input parameters and state variables– involved in the behavior. These three
items give the outline of the subsection.

Behavioral Coverage. A behavior can be seen as an operation in which no
branching exists. It is computed as a path in the control flow graph of a B
machine operation, in which each branching structure (IF, ASSERT or CHOICE
substitutions) creates a choicepoint. The behavioral coverage of the B machine
consists in producing one test target for the activation of each behavior, by
considering an activation condition for each behavior, as the conjunction of all
the predicates along the considered path.

1

2

3 7

4 86 10

5 9

0

ff ∈ FILES

ff ∈ (DF ∪ MF) ff �∈ (DF ∪ MF)

Cond1 ¬Cond1 Cond2 ¬Cond2

cd := ff ‖
cf := ∅ ‖
sw := 9000

sw := 9404

cf := {ff} ‖
sw := 9000

sw := 9404

Fig. 2. Control-flow graph of the SELECT FILE operation

The Fig. 2 presents the control flow graph of the SELECT FILE operation,
from the running example, where Cond1 is the first IF condition that is

(cd = mf ∧ ff ∈ DF) ∨ (cd = dg ∧ ff = dt)∨
(cd = dt ∧ ff = dg) ∨ (cd ∈ DF ∧ ff = mf)∨
(ff = cd) ∨ (ff = mf)

100 F. Bouquet et al.

and Cond2 is the second IF condition that is

(ff ∈ EM ∧ cd = mf) ∨ (ff ∈ ED ∧ cd ∈ DF ∧ FA(ff) = cd) ∨ ff ∈ cf.

Definition 1 (Set of Activation Conditions). The set of activation condi-
tions of a substitution is the set of activation conditions for each behavior ex-
tracted from an operation. We denote by act(Op) the set of activation conditions
for an operation Op.

Decision Coverage. The decision coverage is achieved by performing different
rewritings on the disjunctive predicates labeling the control-flow graph.

We consider four rewritings, each one deserving a particular decision coverage
criterion. Table 1 distinguishes these rewritings. It consists in creating a bounded
choice ([]) between the different elements of the rewriting, expanding the control
flow graph in as many subgraphs.

Table 1. Definition of the rewritings of the disjunctive predicates

Id Rewriting of P1 ∨ P2 Decision Coverage
1 P1 ∨ P2 DC and SC
2 P1 [] P2 D/CC
3 (P1 ∧ ¬P2) [] (¬P1 ∧ P2) FPC
4 (P1 ∧ P2) [] (P1 ∧ ¬P2) [] (¬P1 ∧ P2) MCC

Rewriting 1 (RW1, for short) consists in leaving all the disjunctions un-
changed. This rewriting satisfies the Decision Coverage (DC, for short), and
Statement Coverage (SC) criterion. Rewriting 2 (RW2, for short) consists in
creating a choice between the two predicates. Thus, the first branch and the sec-
ond branch independently have to succeed when being evaluated. This rewriting
satisfies the Decision/Condition Coverage criterion (D/CC) since it satisfies the
DC and the Condition Coverage (CC) criteria. Rewriting 3 (RW3, for short)
consists in creating an exclusive choice between the two predicates. Only one
of the sub-predicates of the disjunction is checked at one time. This rewriting
satisfies the Full Predicate Coverage (FPC) [11] criterion. Rewriting 4 (RW4,
for short) consists in testing all the possible values for the two sub-predicates to
satisfy the disjunction. This rewriting satisfies the Multiple Condition Coverage
(MCC) criterion.

The decomposition of operation SELECT FILE from the example into RW1-
behaviors is given by Table 2.

Data Coverage. The data coverage consists in performing a boundary anal-
ysis of the data that are involved in the behaviors, depending on their types.
A boundary analysis consists in selecting a data value at its extremum (either
minimum or maximum) of its domain within the context of the behavior acti-
vation. The extremum is chosen depending on the data types; basically, atoms
are enumerated, integers are selected at their bounds, sets are selected as their

Instantiation of Parameterized Data Structures for Model-Based Testing 101

Table 2. RW1-Behaviors extracted from the example

Behavior Activation Condition
b1 ff ∈ FILES ∧ ff ∈ MF ∪ DF ∧ ((cd = mf ∧ ff ∈ DF)∨

(cd = dg ∧ ff = dt) ∨ (cd = dt ∧ ff = dg)∨
(cd ∈ DF ∧ ff = mf) ∨ (ff = cd) ∨ (ff = mf))

b2 ff ∈ FILES ∧ ff ∈ MF ∪ DF ∧ (cd �= mf ∨ ff �∈ DF)∧
(cd �= dg ∨ ff �= dt) ∧ (cd �= dt ∨ ff �= dg)
(cd �∈ DF ∨ ff �= mf) ∧ (ff �= cd) ∧ (ff �= mf)

b3 ff ∈ FILES ∧ ff �∈ MF ∪ DF ∧ ((ff ∈ EM ∧ cd = mf)∨
(ff ∈ ED ∧ cd ∈ DF ∧ FA(ff) = cd) ∨ ff ∈ cf)

b4 ff ∈ FILES ∧ ff �∈ MF ∪ DF ∧ (ff �∈ EM ∨ cd �= mf)∧
(ff �∈ ED ∨ cd �∈ DF ∨ FA(ff) �= cd) ∧ ff �∈ cf

minimal and maximal cardinality. This data selection is recursively performed
on the elements of pairs.

It is important to notice that this step requires finite data structures so that
a bound for data can be selected.

3.2 The CLPS-BZ Constraint Solver

Originally designed to animate B machines, the CLPS-BZ constraint solver [3]
is a set-theoretic solver combined with a finite domain solver on integers. It
allows the acquisition and the evaluation of constraints written using B-like
basic operators.

CLPS-BZ uses an arc-consistency algorithm, whose worst-case complexity is
O(ek3) where e is the number of constraints and k is the cardinality of the
largest data domain, for checking the satisfiability of the constraint system.
Such an algorithm checks only the consistency between the adjacent edges within
the constraint graph. As a consequence, the consistency of the whole constraint
system can only be ensured by the enumeration of the solutions, performed using
a forward-checking labeling algorithm, whose complexity is O(ek2).

3.3 Behavior Consistency Condition

Each test case targets one behavior, extracted from the machine operations.
Thus, a test case is relevant only if the target behavior is activable, i.e. its
activation condition is consistent. The following definition formalizes this notion
of behavior consistency, in the context of the machine properties and invariant.

Definition 2 (Behavior Consistency). A behavior bi is consistent iff the
formula

P ∧ B ∧ (∃ X . I ∧ ai) (1)

is satisfiable, where P (resp. I) is the predicate of the PROPERTIES (resp.
INVARIANT) clause, X is the tuple of the machine state variables, ai is the
activation condition corresponding to the behavior bi and B is the formula

102 F. Bouquet et al.

∧

E

1�j<k�l∧

ej ,ek∈E

ej �= ek

precising that the elements of the set E are pairwise distinct, for each set E =
{e1, . . . , el} enumerated in the SETS clause.

/* Part coming from the PROPERTIES clause P */
MF ⊆ FILES ∧ DF ⊆ FILES ∧ EM ⊆ FILES ∧ ED ⊆ FILES ∧
MF ∩ DF = ∅ ∧ MF ∩ EM = ∅ ∧ MF ∩ ED = ∅ ∧ DF ∩ EM = ∅ ∧
DF ∩ ED = ∅ ∧ EM ∩ ED = ∅ ∧ FILES = MF ∪ DF ∪ EM ∪ ED ∧
FA ∈ ED −→ DF ∧ mf ∈ FILES ∧ dg ∈ FILES ∧ dt ∈ FILES ∧
MF = {mf} ∧ DF = {dg, dt} ∧ ei ∈ EM ∧
∃ cd, cf . /* Part coming from the INVARIANT clause I */

cd ∈ (MF ∪ DF) ∧ cf ⊆ (EM ∪ ED) ∧ card(cf) ≤ 1 ∧(
cf = ∅ ∨ (cf �= ∅ ∧ cf ⊆ ED ∧ cd ∈ DF) ∨
(cf �= ∅ ∧ cf ⊆ EM ∧ cd = mf)

)
∧

∃ ff . /* Activation condition of behavior b4 */
ff ∈ FILES ∧ ff �∈ MF ∪ DF ∧ (ff �∈ EM ∨ cd �= mf) ∧

(ff �∈ ED ∨ cd �∈ DF ∨ FA(ff) �= cd) ∧ ff �∈ cf

(2)

Fig. 3. b4 consistency proof obligation

For instance, Fig. 3 shows the consistency condition of the fourth RW1-
behavior extracted from our example, provided the FILES set is enumerated.

Up to now, all the sets were enumerated and the existential quantifications
in (1) were expanded in disjunctions. This consistency was checked by the CLPS-
BZ solver and the inconsistent behaviors were used to eliminate test cases.

However, the detection of many inconsistent behaviors could be a sign of
weakness of the formal model with respect to the testing methodology, namely
a too narrow instantiation of its data structures. Our purpose is to improve the
testing methodology by adding a tool that guesses a “good” instantiation. We
therefore formalize in the next section a notion of most general instantiation for
a B model, that makes all its behaviors activable.

4 Most General Instantiation

Intuitively, we are looking for an instantiation of a B machine that makes each
of its behaviors activable from at least one of the reachable machine states.

Under the assumption that the reachable states are characterized by the IN-
VARIANT clause, this condition can be formalized by the following definition,
where F (Xi) denotes the formula obtained from formula F by replacing the tuple
of state variables X with Xi .

Definition 3 (Activation Condition). All the behaviors of a B machine are
activable if

P ∧ B ∧
∧

{i|bi is a machine behavior}
∃Xi . I (Xi) ∧ ai(Xi) (3)

Instantiation of Parameterized Data Structures for Model-Based Testing 103

is satisfiable for each behavior bi , where P, B and ai have the same meaning as
in Sect. 3.3 and Xi is a distinct tuple of state variables for each behavior bi .

The tuple of state variables in (3) is distinct for each behavior, because each
behavior may be activable from a different reachable state.

Now, a model of (3) is an instantiation with enumerated sets of all the B
machine parameters and abstract sets. We suggest to call it the most general
instantiation , since it makes the instantiated machine as general as the pa-
rameterized one, for a given testing coverage criterion. Another feature of this
instantiation is that it minimizes the sum of the cardinalities of the instantiating
sets.

In practice, the method to compute this most general instantiation is twofold.
First of all, the behaviors that are not activable for any instantiation are detected
by checking the satisfiability of (1) without enumerating the parametric sets.
The specifier is informed that his/her specification contains some dead code
whatever the parameter values are. Then, the inconsistent behaviors are ignored
and a constraint solver is combined with an instantiation procedure to find an
instantiation that make all the remaining consistent behaviors activable in a
reachable state.

The next sections detail the techniques involved in this method.

5 Checking the Consistency

Finding a model for (3) may take benefit of any satisfiability decision procedure:
a negative answer suggests that the specifier should modify the model whereas a
positive one ensures the existence of a general instantiation and is therefore an
intermediate step before computing it. This satisfiability can be checked either
with a suitable prover or with a constraint solver, provided the data structures
are first made finite.

In the proof-based approach, we exploit the existing bam2rv3 tool that trans-
lates set-theoretic formulas into first order equational formulas ready to be dis-
charged in the haRVey prover [6]. The choice of this tool is motivated by its
compliance with set-theoretic formulas and its scalability [5].

Before applying the constraint-based approach, each machine parameter is
constrained to be equal to (or included in) an arbitrary enumerated superset.
For instance, the set S = {a01, a02, a03, . . . , a30} can be used as a superset
of FILES, since the informal specification [8] allows a maximum of 30 files to
exist on the card. The resulting constraints are then discharged into the CLPS-
BZ solver, already used in the model-based testing methodology presented in
Sect. 3.

In practice, for efficiency reasons, we first check whether each behavior is
consistent, and then check the satisfiability of (3) restricted to the consistent
behaviors. Table 3 summarizes the experimental results4 obtained with each tool
3 http://lifc.univ-fcomte.fr/∼giorgett/Rech/Software/bam2rv/index.html
4 Run on a P4 2.4 GHz with 640Mb RAM.

http://lifc.univ-fcomte.fr/~giorgett/Rech/Software/bam2rv/index.html

104 F. Bouquet et al.

applied to the RW1-behaviors from Table 2. The third (resp. fourth) column gives
the time consumed to check the satisfiability with the constraint FILES ⊆ S
(resp. FILES = S). The fifth column gives the first instantiation found by CLPS-
BZ. The last column gives the time consumed by the proof-based approach with
haRVey.

Table 3. Consistency results for the RW1-behaviors

Behavior Satisfiable? CLPS⊆ CLPS= Instance haRVey
b1 yes 0.4 s 0.3 s FILES = {dg, dt,mf},ff = dg, 0.4 s

DF = {dg, dt}, MF = {mf},
ED = ∅,EM = {ei},FA = ∅

b2 no 0.3 s 0.3 s 0.4 s
b3 yes 0.4 s 0.3 s FILES = {dg, dt,mf, ei}, ff = ei , 0.5 s

DF = {dg, dt}, MF = {mf},
ED = ∅,EM = {ei},FA = ∅

b4 yes > 1 h 0.5 s 0.3 s

Globally, an interesting result is that proving a consistency for any value of
FILES with the haRVey prover is not much more time consuming than checking
it with CLPS-BZ for a unique enumeration of FILES, with 30 elements.

A second result is that all the methods answer that the behavior b2 is not
activable. As announced in Sect. 2, the corresponding behavior extracted from
the larger model gsm2.mch is proved to be activable by haRVey (or by CLPS-BZ
after enumerating FILES with 30 elements) in less than one second.

Finally, the main result concerns b4. For that behavior the enumeration strat-
egy of CLPS-BZ takes too much time (more than one hour) when FILES is con-
strained to be included in S . It is so because the detection by arc-consistency
is not sufficient and CLPS-BZ continues by instantiating from the initial FILES
enumeration, which is too large. The next section will address this problem.
For the moment, since haRVey gives a result, the combination of both tools is
satisfactory.

The next step of the method, checking the satisfiability of (3), presents the
same difficulty as the former one, since (3) is just a generalization of (1) to many
behaviors. Hence, in (3), a coarse choice of the superset size would again make
the solver diverge. The next section presents a method that aims at avoiding
such a combinatorial explosion by restricting the size of the superset S .

6 Sort-Based Instantiation

The previous section ends with the idea that coarsely bounding the size of the
machine parameter may make the instantiation process diverge. In order to re-
duce this problem, this section puts a bridge between the investigated challenge
of guessing a “good” instantiation and classical methods from automated rea-
soning in first order many-sorted logics.

Instantiation of Parameterized Data Structures for Model-Based Testing 105

The underlying idea is that the sets we want to instantiate often come from a
partitioning of more global sets, hence are pairwise disjoint. Consequently, they
can be seen as sorts and the consistency and activation conditions can be seen
as formulas to satisfy in a first order many-sorted logic. In such a logic, the
choice of an Herbrand universe for each sort corresponds to the instantiation
of the associated set. Another use of a many-sorted version of the Herbrand
interpretation to verify software can be found for instance in [9].

Let us now detail the instantiation method derived from this simple idea and
illustrate it on the consistency condition of behavior b4.

A static analysis of the CONSTANTS and PROPERTIES clauses can detect
that some abstract sets partition larger abstract sets. This analysis starts with
the abstract sets declared as machine parameters (or in the SETS clause). They
are considered as primary sorts. Then, the analysis iterates the following two
steps: firstly, it considers that any set inclusion whose right member is a sort
defines its left member as a sort too; secondly, it checks whether the sorts in-
troduced so are pairwise disjoint. In our example, it is obvious that the primary
sort is FILES and that the other sorts are MF, DF, EM and ED. The predicates
defining the sorts are then removed from the formula. In (2), the first three lines
of predicates are removed so.

It is now possible to assign one sort or more to each variable. We consider the
non obvious case where a variable may have many sorts i.e. when it belongs to
(or is included into) a union of sets. For instance the predicate cd ∈ MF ∪ DF is
interpreted by cd is either of sort MF or of sort DF. Similarly, the elements of
cf are either of sort EM or of sort ED.

Each set-theoretic predicate (cardinality, inclusion, equality) is firstly trans-
lated into a formula where the sole predicates are equality and membership. The
set equality is decomposed into two inclusions. Each union (resp. intersection)
is subsequently translated into a disjunction (resp. conjunction). For instance

cf ⊆ (EM ∪ ED) ∧ card(cf) � 1 (4)

is translated into

∀ x . (x ∈ cf ⇒ (x ∈ EM ∨ x ∈ ED)) ∧ ∀ x , y . (x ∈ cf ∧ y ∈ cf) ⇒ x = y (5)

where x and y are fresh variables whose sort comes from cf, i.e. is either EM or
ED.

We are left with deciding the satisfiability of the formula in a many-sorted first
order logic with equality and membership. We classically begin with considering
a Skolem form of the formula. For instance, the quantifications on cd, cf and ff
in (2) are removed and these variables are replaced with the fresh constants cd,
cf and ff.

A formula of a first order many-sorted logic is satisfiable if and only if it has a
many-sorted Herbrand model [9]. We compute then the graph of sort dependency
whose nodes are labelled with the sorts and whose oriented edges encode the
dependency between sorts: a sort s depends of the sorts s1, . . . , sn if there is a
functional symbol whose signature is s1, . . . , sn → s . These functional symbols

106 F. Bouquet et al.

are either already present in the quantified formula or are introduced by the
skolemization step. For instance, Figure 4 shows the graph resulting from the
skolemization of (2). It contains only one edge, which goes from the sort ED to
the sort DF since the sole non constant functional symbol in the skolemization
of (2) is FA.

EM ED DF MF
FA

Fig. 4. Graph of sort dependency of (2)

We compute then the Herbrand universe by firstly considering the constants
of each sort and secondly building new terms with the functional symbols in the
formula in accordance with the sorts. The computation (and thus the resulting
Herbrand universe) is finite if and only if the graph of sort dependency is acyclic,
which is the case for our example.

An interesting point in this procedure is the treatment of terms that may have
many sorts, like cd with the sorts MF and DF in our example. This corresponds
to a disjunction that a thinner notion of behavior could decompose. We suggest
in this case to add a distinct fresh constant for each sort. For instance, for the
behavior b4, cd4a and cd4b are respectively added in the sorts MF and DF.

This choice has the advantage that it is meaningful for the specifier: each new
constant corresponds to a distinct execution case in a behavior. Moreover, the
constant name can encode this case (like a and b in our example), thus offering
a complete traceability of the origin of each constant. The result is obviously an
upper approximation of the desired instantiation, but it reflects the degree of
precision of the coverage criterion that has produced these behaviors.

One may think that this procedure could be refined by interpreting each
enumerated set on its set of constants (for instance MF interpreted on {mf}
and DF on {dg, dt}). However, such an optimization would require equating
two constants and propagating this information through terms and sorts. Since
this propagation is already developed in the CLPS-BZ solver, we suggest not to
implement this optimization, but let the solver do the remaining work.

For the behavior b4 of the running example, the sort-based instantiation is
MF ⊆ {mf, cd4a , ff4a}, DF ⊆ {dg, dt, cd4b ,ff4b ,FA(ff4d)}, EM ⊆ {ei ,ff4c} and
ED ⊆ {ff4d}. Then, starting from this result, CLPS-BZ finds the following most
general instantiation, MF = {mf}, DF = {dg, dt}, EM = {ei}, ED = {ff4d}, later
called mgi1, in less than one second.

Finally, the sort-based instantiation found for the conjunction of the three
consistent behaviors b1, b3 and b4 is MF ⊆ {mf, cd1a ,ff1a , cd3a ,ff3a , cd4a , ff4a},
DF ⊆ {dg, dt, cd1b ,ff1b ,FA(ff1d), cd3b , ff3b ,FA(ff3d), cd4b ,ff4b ,FA(ff4d)}, EM ⊆
{ei ,ff1c , ff3c ,ff4c} and ED ⊆ {ff1d , ff3d ,ff4d}. Again in less than one second,
CLPS-BZ finds a most general instantiation that appears to be mgi1 again.

Instantiation of Parameterized Data Structures for Model-Based Testing 107

7 Conclusion and Future Work

The global aim of the present work was to unburden the specifier from instan-
tiating the parameters of his/her formal model, when this model is designed to
guide the automated generation of tests. When this formal model is a B machine,
it proposed a way to assist the instantiation phase, by guessing an enumeration
that is sufficient to be employed within the test generation process. The result-
ing enumeration is general enough for activating all the consistent behaviors
extracted from the B machine operations. If it exists, then this enumeration
serves to initialize the SUT. Otherwise, it means that no data is suitable for
testing the wholeness of the SUT. The specifier is then invited to cut his/her
model in separate parts, in a way that remains to be defined.

This approach is related to test data generation with tools such as Korat [4].
Korat aims at producing complex Java structures (such as balanced trees, etc.)
from a boolean method describing the properties of the structure and a bound
on the size of the structure. This approach aims at providing test data as inputs
for Java unit tests. Basically, one may think that our approach is similar, since
we both rely on constraint solving for instantiating the data structures. Never-
theless, the bound used by Korat is user-defined, whereas our approach proposes
to automatically compute it.

For conciseness, this work has been restricted to the RW1 decision coverage, but
it is directly extensible to the RW2, RW3 and RW4 ones. Furthermore, the sort-
based instantiation is presented for one level of sorts, but holds for many levels
too. Since the key is an acyclic graph of sorts, the method is suitable for many
data structures like arrays, trees of bounded depth (as seen in the gsm2.mch) . . .

It is important to notice that although our approach has been presented in
the context of model-based testing, it can be employed for other purposes such
as model-checking using ProB [10]. Indeed, the ProB model-checker also requires
finite data domains. Such an instantiation phase could be performed as a prepro-
cess, that would allow all the operations to be activable, improving the results
of a model verification.

References

1. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. BZ-TT: A Tool-Set for Test Generation from Z and B
using Contraint Logic Programming. In Formal Approaches to Testing of Software,
FATES 2002 workshop of CONCUR’02, pages 105–120, 2002.

2. E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generation of test sequences
from formal specifications: GSM 11-11 standard case study. International Journal
of Software Practice and Experience, 34(10):915–948, 2004.

3. F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A constraint solver to animate
a B specification. International Journal on Software Tools for Technology Transfer,
STTT, 6(2):143–157, 2004.

4. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on
java predicates. In ISSTA’02: Proceedings of the ACM SIGSOFT international
symposium on Software testing and analysis, pages 123–133. ACM Press, 2002.

108 F. Bouquet et al.

5. J.-F. Couchot, D. Déharbe, A. Giorgetti, and S. Ranise. Scalable automated prov-
ing and debugging of set-based specifications. Journal of the Brazilian Computer
Society (JBCS), 9(2):17–36, 2003. ISSN 0104-6500.

6. D. Déharbe and S. Ranise. Applying light-weight theorem proving to debugging
and verifying pointer programs. In ENTCS, volume 86. Elsevier, 2003.

7. I.K. El-Far and J.A. Whittaker. Model-based software testing. Encyclopedia of
Software Engineering, 1:825–837, 2002.

8. European Telecommunications Standards Institute. GSM Technical Specification,
1995. http://www.ttfn.net/techno/smartcards/gsm11-11.pdf.

9. Pascal Fontaine and E. Pascal Gribomont. Decidability of invariant validation for
parameterized systems. In Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 2619 of LNCS, pages 97–112. Springer, 2003.

10. M. Leuschel and M. Butler. ProB: A model checker for B. In FME 2003: Formal
Methods, volume 2805 of LNCS, pages 855–874. Springer, 2003.

11. A. Jefferson Offutt, Yiwei Xiong, and Shaoying Liu. Criteria for generating
specification-based tests. In 5th International Conference on Engineering of Com-
plex Computer Systems (ICECCS ’99), pages 119–. IEEE Computer Society, 1999.

http://www.ttfn.net/techno/smartcards/gsm11-11.pdf

	Introduction
	Running Example
	Informal and Formal Specifications
	A Previous Experience

	Principles of Model-Based Testing from B Machines
	Definition of the Test Targets
	The CLPS-BZ Constraint Solver
	Behavior Consistency Condition

	Most General Instantiation
	Checking the Consistency
	Sort-Based Instantiation
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

