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Abstract. This paper discusses the jointly quay crane and yard truck scheduling
problems (QCYTSP) with unloading and loading containers from/to vessel(s) in
the same time. Yard trucks transport the containers to/from yard locations with
all containers that are homogeneous. We propose a mixed integer linear program-
ming model to solve the scheduling problem. We consider in this study, the quay
crane interference, containers precedence and safety margin. The main objective
is to minimize the total completion time of the vessels.
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1 Introduction and literature review

The general process in a container terminal can be described as a sequence of opera-
tions from the arrival to the departure of the container’s vessels. The container vessel
is dedicated to transport containers from a maritime port to another. The container is
a parallelepiped metal box designed for the transport of goods by different modes of
transport. The quay crane is used to load containers into or unload containers from the
vessel. Yard trucks are used for transporting containers from the station of quay cranes
to the storage location or vice versa. In the storage location, there is a type of crane
called reach-stacked crane, it can be used to load containers into or unload contain-
ers from the yard trucks. In this study, we have two container vessels, the first one is
dedicated for the containers to be unloaded and transported to the storage location (U-
containers), and the second one is dedicated to the containers to be unloaded from the
storage location and loaded into the vessel (L-containers). There are two separated stor-
age locations, one for the U-containers and one for the L-containers. More precisely,
the unloading process includes the following steps:

1. A quay crane unloads the U-container from the vessel and loads it into a yard truck.
2. A yard truck transports the U-container to the storage location.
3. A reach-stacker crane unloads the U-container from the yard truck and loads it in

the storage location.

After this process, the yard truck continues its way to the storage location dedicated for
the L-containers. The loading process includes the following steps:
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1. A reach-stacker crane collects a L-container from storage location and loads it into
the yard truck coming from the storage location for the U-containers.

2. A yard truck transports the L-container to the quay crane station.
3. A quay crane unloads the L-container from the yard truck and loads it into the

vessel.

Figure 1 describes the full unloading and loading operations.

Fig. 1. U-container unloading and L-container loading processes

In our previous studies, [10] Skaf et al. (2018) proposed a mixed-integer linear
programming model and a dynamic programming algorithm to solve the quay crane
scheduling problem at port of Tripoli-Lebanon. Later, [12] Skaf et al. (2019) proposed
a new genetic algorithm to solve the problem, due to the inability to provide results
from the two previous exact methods.
After that, [13] Skaf et al. (2019) proposed a mixed-integer linear programming model
and a dynamic programming algorithm to solve the scheduling problem for single quay
crane and multiple yard trucks at port of Tripoli-Lebanon.
This study is considered new to the literature, but we addressed some researchers who
solved the scheduling problem for the quay cranes, the yard trucks or for both of them.
[1] Daganzo (1989) studied the quay crane scheduling problem for multiple vessels. He
considered that each vessel is divided into many bays, and each bay contains a number
of containers. His objective is to reduce the cost of delay using an approximate and an
exact method. Furthermore, [2] Peterkofsky and Daganzo (1990) proposed a branch and
bound method for the quay crane scheduling problem in the case of quay cranes cross-
ing. After that, [3] Kim and Park (2004) explored the quay crane scheduling problem
with non-crossing constraints, and they considered that only one quay crane can work
into the vessel. Their objective was to minimize the total completion time.
[5] Lim et al. (2004) considered that each vessel is a job and each quay crane is as-
signed to this job. They developed a dynamic programming algorithm with a taboo
search method to solve the problem. [4] Steeken and Stahlbock (2004) also studied the
quay crane scheduling problem and they classified and described the logistic processes
and present a new survey for their optimization. [6] Homayouni et al. (2013) proposed a
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genetic algorithm to schedule the quay cranes with integration of automated guided ve-
hicles (AGV). Moreover, [7] Diabat and Theodorou (2014) proposed a formulation for
the scheduling problem and all assignments for the quay cranes such as quay crane’s
position. They developed a genetic algorithm to solve this problem. Furthermore, [8]
Kaveshgar et al. (2014) proposed a mixed integer programming model for quay cranes
and yard trucks scheduling. They also developed a genetic algorithm with a greedy
search method. After that, [9] Al-Dhaheri and Diabat (2015) defined the sequence for
the unloading operations by fixing a number of quay cranes to perform it. They pro-
posed a mixed-integer programming (MIP) formulation for this problem. Finally, [11]
Vahdani et al. (2018) aimed to combine the quay cranes and yard truck assignments
among them. For this problem, they proposed a bi-objective optimization model.
This study proposes a mixed-integer programming model solved by CPLEX for jointly
quay crane and yard truck scheduling problem where both loading and unloading opera-
tions are considered. After that, we generated results and tested our model for small and
large instances, and a comparasion with real results from the port of Tripoli-Lebanon.
In section 2 we propose a mixed-integer linear programming model. In section 3, we
provide the results of the proposed model. Finally, in section 4, we give a conclusion
and a step for future works.

2 Mathematical Formulation

2.1 Assumptions

– The required times for loading and unloading the containers by quay cranes and
reach-stacker cranes are known, so as the required times to transport containers and
the positions of the containers in the vessels.

– Each quay crane can operate in a single container ship at a time.
– Each vessel can be handled by one or more quay cranes at a time.
– The priority of the containers is taken into account and there maybe a time it waits

for quay cranes and yard trucks (they both expect one another).
– Each truck can transport only one container at a time.
– Each reach-stacker crane can unload/load only one container at a time.
– Each container can be transported by only one yard truck at a time.
– Each container can be unloaded/loaded by only one quay crane at a time.
– All containers are homogeneous (same size).
– We do not consider the number of reach-stacker cranes.

2.2 Notations

– Q Set of quay cranes that will unload containers from the vessel.
– Q

′
Set of quay cranes that will load containers to the vessel.

– T Set of yard trucks.
– C Set of containers to be unloaded from the vessel, c is the number of containers.
– C

′
Set of containers to be loaded to the vessel, c′ is the number of containers.

– pi Position of container i in the vessel 1, ∀i ∈C.
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– p′i Position of container i in the vessel 2, ∀i ∈C
′
.

– v Yard truck time from vessel 2 to vessel 1.
– v′i Yard truck time from vessel 1 to the yard location for unloaded containers which

exists container i, ∀i ∈C.
– v′′i Yard truck time from yard location for unloaded containers which exists con-

tainer i to the vessel 1, not loaded by any container ∀i ∈C.
– v′′′i Yard truck time from yard location for containers to be loaded which exists

container i to the vessel 2, ∀i ∈C
′
.

– λi j Yard truck time from yard location for unloaded containers which exists con-
tainer i to yard location for containers to be loaded which exists container j, ∀i ∈C
and ∀ j ∈C

′
.

– di Quay crane unloading time of container i, ∀i ∈C.
– d′i Quay crane loading time of container i, ∀i ∈C

′
.

– rs Unloading time of a container by RS.
– rs′ Loading time of a container by RS.
– s0 Distance between quay cranes for safety reason.
– Ω1 Set of precedence containers to be unloaded.
– Ω2 Set of precedence containers to be loaded.
– u One unit moving time for the quay crane.
– M Big integer.

2.3 Decision variables

Boolean variables

– Xi jq

{
= 1 if quay crane q unloads U-container i before U-container j
= 0 otherwise,∀i ∈ {0, ...,c},∀ j ∈ {1, ...,c+1},∀q ∈ Q

– Yi jq

{
= 1 if quay crane q loads L-container i before U-container j
= 0 otherwise,∀i ∈ {0, ...,c′},∀ j ∈ {1, ...,c′+1},∀q ∈ Q′

– Hii′

{
= 1 if U-container i is matched with L-container i

′

= 0 otherwise,∀i ∈C,∀i′ ∈C′

– Zi jt

{
= 1 if yard truck t transport U-container i before U-container j
= 0 otherwise,∀i ∈ {0, ...,c},∀ j ∈ {1, ...,c+1},∀t ∈ T

– Wi j

= 1 if round operation time of U-container i finishes before the starts of
round operation of U-container j by the quay crane

= 0 otherwise,∀i ∈C,∀ j ∈C

– W
′
i j


= 1 if round operation time of L-container i finishes before the starts of

round operation of L-container j by the quay
crane

= 0 otherwise,∀i ∈C′,∀ j ∈C′
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Float variables

– Ei The time when the process of U-container i ends, ∀i ∈C
– E ′i The time when the process of L-container i ends, ∀i ∈C′

– HA′i Time when U-container i is ready to be transported by the yard truck, ∀i ∈C
– HA′′i Time when L-container i is ready to be transported by the yard truck, ∀i ∈C′

– HA′′′i Time when L-container, which is matched with U-container i, is ready to be
transported by the yard truck, ∀i ∈C

– Cmax Makespan for both vessels loading and unloading

2.4 Modeling

The following is a mixed-integer linear programming model that we propose for the
quay crane and yard truck scheduling :

Objective
minimize Cmax (1)

Equation (1) is the objective function which aims to minimize the completion time.

Subject to
c+1

∑
j=1

X0 jq = 1 ∀q ∈ Q (2)

c′+1

∑
j=1

Y0 jq = 1 ∀q ∈ Q′ (3)

c

∑
i=0

Xi(c+1)q = 1 ∀q ∈ Q (4)

c′

∑
i=0

Yi(c′+1)q = 1 ∀q ∈ Q′ (5)

∑
q∈Q

c+1

∑
j=1

Xi jq = 1 ∀i ∈C (6)

∑
q∈Q′

c′+1

∑
j=1

Yi jq = 1 ∀i ∈C′ (7)

c+1

∑
j=1

Xi jq =
c

∑
j=0

X jiq ∀i ∈C,∀q ∈ Q (8)

c′+1

∑
j=1

Yi jq =
c′

∑
j=0

Yjiq ∀i ∈C′,∀q ∈ Q′ (9)
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Constraints (2), (4), (6) and (8) define the sequence of unloading for U-containers by
quay cranes (which ensures that the 1st U-container must be unloaded from the vessel
as well as the last U-container, and ensures that all quay crane-container assignments
for unloading are made). Constraints (3), (5), (7) and (9) define the sequence of load-
ing for L-containers by quay cranes (which ensures that the 1st L-container must be
loaded in the vessel as well as the last L-container, and ensures that all crane-container
assignments for loading are made).

c+1

∑
i=1

Z0it = 1 ∀t ∈ T (10)

c

∑
i=0

Zi(c+1)t = 1 ∀t ∈ T (11)

∑
t∈T

c+1

∑
j=1

Zi jt = 1 ∀i ∈C (12)

c+1

∑
j=1

Zi jt =
c

∑
j=0

Z jit ∀i ∈C,∀t ∈ T (13)

Constraints (10), (11), (12) and (13) provide the transport sequence of the U-containers
from the vessel by the yard trucks.

∑
i′∈C′

Hii′ = 1 ∀i ∈C (14)

∑
i∈C

Hii′ = 1 ∀i′ ∈C′ (15)

Constraints (14), (15) give all the unique assignment for the pairs of U-containers and
L-containers which correspond to each other.

Ei >= di−M ∗ (1− ∑
q∈Q

X0iq) ∀i ∈C (16)

Ei >= E j−M ∗ (1− ∑
q∈Q

X jiq)+(pi− p j)∗u+di ∀i ∈C,∀ j ∈C (17)

Constraints (16), (17) provide the completion time for unloading the U-containers by
the quay cranes from the vessel.

E ′i >= E ′j−M ∗ (1− ∑
q∈Q′

X jiq)+(p′i− p′j)∗u+d′i ∀i ∈C′,∀ j ∈C′ (18)

E ′i >= HA′′i +d′i ∀i ∈C′ (19)

Constraints (18), (19) provide the completion time for loading L-containers by quay
cranes into the vessel.



MILP for the simultaneous unloading/loading processes in a maritime port 7

HA′i >= Ei + v′i + rs ∀i ∈C (20)

HA′i >= HA′′′j −M ∗ (1−∑
t∈T

Z jit)+ v′i + rs ∀i ∈C,∀ j ∈C (21)

Constraints (20), (21) provide the completion time for transporting the U-containers by
the yard trucks.

HA′′i′ >= HA′i−M ∗ (1−Hii′)+λii′ + rs′+ v′′′i′ + v ∀i ∈C,∀i′ ∈C′ (22)

Constraint (22) provides the completion time for transporting L-containers by yard
trucks.

HA′′′i >= HA′′i′ −M ∗ (1−Hii′) ∀i ∈C,∀i′ ∈C′ (23)

Constraint (23) provides the completion time to transport the L-container which is
matched with the U-container, by the yard truck.

E j−d j >= Ei ∀(i, j) ∈Ω1 (24)

Constraint (24) ensures that the operation of each U-container must be completed before
another U-container that follows it, if they belong to Ω1.

E ′j−d′j >= E ′i ∀(i, j) ∈Ω2 (25)

Constraint (25) ensures that the operation of each L-container must be completed before
another L-container that follows it, if they belong to Ω2.

M ∗ (1−Wi j)>= Ei− (E j−d j) ∀i ∈C,∀ j ∈C (26)

M ∗ (1−W ′i j)>= E ′i − (E ′j−d′j) ∀i ∈C′,∀ j ∈C′ (27)

E j−d j−Ei <= M ∗Wi j ∀i ∈C,∀ j ∈C (28)

E ′j−d′j−E ′i <= M ∗W ′i j ∀i ∈C′,∀ j ∈C′ (29)

(pi− p j)∗ (i− j)+M ∗ (Wi j +Wji)>= (i− j)∗ s0 ∀i ∈C,∀ j ∈C, i 6= j (30)

(p′i− p′j)∗ (i− j)+M ∗ (W ′i j +W ′ji)>= (i− j)∗ s0 ∀i ∈C′,∀ j ∈C′, i 6= j (31)

Constraints (26), (27), (28), (29), (30) and (31) guarantee the non-crossing and the
safety margin between the quay cranes.

Cmax >= E ′i ∀i ∈C′ (32)

Constraint (32) indicates the completion time of the vessel who contains the U-containers.

In the previous model, we suppose that the number of U-containers is equal to the
number of L-containers. Nevertheless, the numbers of U-containers and L-containers
are different. For the case where the number of U-containers is bigger than the number
of L-containers, there are no L-containers that matched with the U-containers and the
yard truck will return empty from the storage location. So for this reason we will add
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c− c′ fictive L-containers.
For this case, we propose a model extension and it is formulated as follows:

Objective
minimize Cmax (33)

Subject to

constraints (2)→ (14), (16)→ (21), (23)→ (31)

∑
i∈C

Hii′ = 1 ∀i′ ∈ {1, ...,c′, ...,c} (34)

Constraint (34) provides all the unique assignments for the pairs including the fictive
L-containers.

HA′′i′ >= HA′i−M ∗ (1−Hii′)+ v′′i

∀i ∈C ∀i′ ∈ {c′+1, ...,c′} (35)

Constraint (35) presents the completion time of the U-containers with the empty move-
ments.

Cmax >= HA′′′i ∀i ∈C (36)

Constraint (36) defines the makespan of all arriving vessels.
In another way, we swapped the constraint (15) by (34), the constraint (22) by (35) and
the constraint (32) by (36).

3 Experimental results

The model is solved using the CPLEX 12.6 solver, and the tests are run on MacBook
Pro 2.7 GHz Intel Core i5 with 8GB RAM 1867 MHz DDR3 under OSX 10.11.6.
In this section, we are presenting the results generation and the results obtained for real
cases in the port of Tripoli-Lebanon. The makespan is measured in time units (u.t).

3.1 Results for randomly generated instances

Table 1 shows the results of the calculation tests when the numbers of U-containers and
L-containers are the same, and when the number of U-containers is greater than the L-
containers. For example in instance 24 in Table 1, for 30 U-containers, 25 L-containers,
7 quay cranes (jointly for unloading and loading) and 10 yard trucks, CPLEX cannot
provide any result after 3 hours of execution, then we interrupt the execution (N.A. =
Interrupt execution (No results)). In this table, we notice that the proposed MILP works
for small and medium instances and does not work so well for large instances. So in
our next work, we will propose a new exact or metaheuristic methods to improve the
execution time and obtain near optimal solutions.
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Table 1. Experimental results

Instance |C| |C′| |Q| |Q′| |T | CPLEX
1 6 6 1 1 1 1115
2 6 4 1 1 2 492
3 8 8 1 1 2 748
4 8 6 2 2 3 433
5 10 10 2 2 4 467
6 10 6 2 2 3 527
7 10 8 2 2 4 450
8 12 8 2 2 4 445
9 12 10 2 2 4 545

10 12 12 2 2 5 452
11 12 10 2 2 5 351
12 14 12 2 2 5 382
13 14 12 3 2 6 270

Instance |C| |C′| |Q| |Q′| |T | CPLEX
14 15 15 2 2 4 562
15 16 12 3 2 6 312
16 16 14 3 2 6 433
17 16 14 3 2 7 327
18 18 14 4 3 8 340
19 18 16 4 3 10 337
20 18 16 4 3 8 229
21 20 20 2 3 6 476
22 25 20 4 3 10 229
23 26 24 4 3 10 225
24 30 25 4 3 10 N.A
25 30 30 2 2 6 N.A

3.2 Results for real instances from port of Tripoli-Lebanon

Table 2 compares some results from the port of Tripoli-Lebanon, with the obtained
results by this model . We emphasize that all port’s results are considered in the same
values and conditions of the port of Tripoli-Lebanon. As shown in Table 2, our model
succeded in improving the completion time of containers, for all the tested instances,
by an average 20%. GAP(%) = ((port result - CPLEX result)/port result)*100.

Table 2. Comparison with the real results in port of Tripoli-Lebanon

Instance |C| |C′| |T| Port results CPLEX resuts GAP
(s) (s) (%)

P1 2 2 1 783 629 19.67
P2 5 4 2 965 782 18.96
P3 6 6 2 1129 912 19.22
P4 7 4 2 1046 835 20.17
P5 8 7 2 1393 1076 22.76

4 Conclusion

This model investigates the scheduling problem for the quay cranes with yard trucks in
an integrated way. We use the dual strategies to reduce the empty movements for the
yard trucks. We proposed a mixed-integer linear programming model to minimze the
completion time of all containers in the vessels, and thus reducing the docking time of
all vessels. From the numerical results, we can see that the proposed model is feasible.
For small instances, CPLEX provides results with an acceptable execution time. But
for larger instances, CPLEX cannot provide any result. So, in our future studies, we
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will develop exact or metaheuristic algorithms to compare operational results and thus
obtain results for large instances.
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