
Noname manuscript No.
(will be inserted by the editor)

ESSENCE: GPU-Based and Dynamic Key-
Dependent Efficient Stream Cipher for Multimedia
Contents

Raphaël Couturier∗ · Hassan N. Noura · Ali
Chehab

Received: date / Accepted: date

Abstract Data Confidentiality (DC) is considered one of the most important
security services. Currently, a set of existing cipher algorithms is being used
to ensure DC. However, researchers constantly investigate the design and im-
plementation of more efficient cipher schemes. To this end, different versions
of AES have been implemented efficiently on GPUs to increase the efficiency
over big data. However, AES implementation on GPU exhibits limitations in
terms of latency and hence, it might not be a suitable solution for high data
rates in modern systems and applications. This often leads to a trade-off be-
tween system performance and security level. To address these challenges, we
propose "ESSENCE", a lightweight stream cipher scheme, which combines
two different Pseudo-Random Number Generators (PRNG), and based on a
dynamic key approach. The scheme achieves a high level of security with min-
imal latency and required resources when compared to existing cipher stan-
dards such as AES. Moreover, the implementation of the proposed dynamic
key-dependent cipher scheme on GPU is more efficient compared to all ex-
isting AES implementations on GPUs. Experimental results indicate that the
proposed cipher is highly efficient with a throughput more than 115 GB/s
on a Titan X GPU, and more than 372 GB/s on a Titan V100 GPU. Thus,
ESSENCE can be considered as a promising stream cipher candidate with high
randomness degree (BigCrush of TestU01), periodicity, and key sensitivity.

Keywords Lightweight GPU Stream cipher solution; Security and Perfor-
mance Analysis; parallel computing; Dynamic Key dependent cryptographic
primitives; Cryptanalysis

Raphaël Couturier
Univ. Bourgogne Franche-Comté (UBFC), CNRS, FEMTO-ST Institute, France
E-mail: raphael.couturier@univ-fcomte.fr

Hassan N. Noura and Ali Chehab
American University of Beirut
Department of Electrical and Computer Engineering, Beirut, Lebanon.
E-mail: {hn49,chehab}@aub.edu.lb

2 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

1 Introduction

Security has become the most important armor responsible for protecting all
kinds of resources and data from various types of threats targeting security ser-
vices such as data confidentiality, integrity, and source authentication. These
security services are typically ensured by resorting to cryptographic solutions,
which are essential to overcome and limit such threats. Existing attacks can
be either active or passive, where passive attacks can seriously impair the
Data Confidentiality (DC) and privacy of the system, while active attacks can
compromise its authentication (source, user, device), integrity, and availabil-
ity. Moreover, the nature of passive attacks makes them very difficult to de-
tect compared to active ones. An active attacker may insert, delete or modify
data contents. Encrypting communicated or stored data can solve all prob-
lems related to passive attacks. However, this requires a distributed scheme
and a robust key exchange mechanism. Typically, symmetric-key schemes are
used for data encryption, especially since they are more efficient in terms
of memory and computational complexity compared to asymmetric-key ones.
Furthermore, conventional symmetric key ciphers are either block-based or
stream-based. Several standardized cipher algorithms that ensure DC already
exist, including the stream cipher RC4 [1], and the block cipher AES [2].

In general, a block cipher [3] uses a round function that can either be
based on a Feistel Network (FN) such as DES, or on Substitution-Permutation
Networks (SPN) such as AES. SPN lends itself to parallel implementation and
requires a lower number of rounds compared to FN and hence, SPN exhibits
lower latency and requires fewer resources than FN.

1.1 Related Work

AES [4] is a block cipher that processes data in blocks of size 128 bits (16
bytes), and it uses keys of size 128, 192 and 256 bits. The design of AES
depends on the SPN principle. It includes a round function, which consists of
diffusion and substitution operations, and it is iterated r times, depending on
the size of the secret key. The number of rounds, r, is equal to 10, 12, and 14
for a secret key of size 128, 192, and 256 bits, respectively.
Each round, except for the last, includes four operations:

– RoundKeyAddition: it mixes the plain input block with the specific round
key.

– ByteSubstitution: the operation employs a substitution table, S-Box, to en-
sure the confusion property.

– ShiftRows and MixColumn operations are used to ensure the diffusion prop-
erty. Note that the MixColumn operation is eliminated in the last round.

Title Suppressed Due to Excessive Length 3

1.2 Problem Formulation

The security level of existing symmetric ciphers, against analytic attacks, de-
pends on the number of rounds r, which leads to a trade-off between the se-
curity level and the required latency and resources. Ciphers that are based on
a static structure have proven their resistance against analytic cryptanalysis.
However, the static structure of the round function represents the main secu-
rity issue. Moreover, since the cipher primitives are static, the required number
of rounds r is high, where different substitution and diffusion operations are
performed within each round [5, 6, 7].

Fixed cipher structures lend themselves to future potential attacks [8, 9],
which would benefit from the fixed structure (substitution and diffusion prim-
itives) to recover the secret key [10]. Examples of such attacks include imple-
mentation attacks such as side-channel attacks and fault attacks [10]. Hence,
countermeasures against implementation attacks are required, which would
increase the latency and required resources. This, in turn, reduces their per-
formance and makes them not suitable for some of the future systems and
applications [11].

1.3 Motivation

To overcome these limitations, our approach uses the dynamic key-dependent
structure as in [5, 6] to reduce the required number of rounds and operations.
This leads to a good balance between efficiency and security level, as well as
offering a simple solution to prevent certain implementation attacks.

To reduce the execution time of the existing cryptographic algorithms,
GPU (Graphic Processing Unit) implementations are being adopted. A GPU
is useful for cryptographic algorithms, which can benefit from the hundreds and
even thousands of cores in a GPU. Researchers use GPUs to generate pseudo-
random numbers such as in [12, 13]. Also, standard cryptographic algorithms
have been implemented on GPUs such as AES [14, 15, 16], which resulted in
an impressive speed-up [17] compared to the CPU implementation. It is worth
noting that the efficient implementation of an algorithm on a GPU requires
the expertise to optimize the use of the GPU architecture in terms of shared
memory, registers, and warp [18].

Recently, an optimized and efficient implementation of AES on GPU was
presented in [16]. It achieved an excellent performance and the authors made
various optimization compared to the previous related works. Accordingly,
this implementation is selected as the reference for comparison against the pro-
posed cipher solution. There is another recent implementation of AES on GPU,
PHAST, which was described in [19]. This implementation is more generic and
it resulted in about 10% decrease in performance as compared to [16].

4 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

1.4 Contributions

The proposed cipher solution follows the recent dynamic key-dependent ap-
proach of [5, 7, 20]. In contrast to these related solutions, no integer diffusion
operation is used in the proposed dynamic key-dependent stream cipher. This
operation is eliminated without weakening the cipher security level since the
cryptographic primitives are updated for each new input data. Moreover, the
proposed solution does not require the avalanche effect, but it is based on high
key sensitivity.

The proposed cipher scheme uses an efficient and simple key-stream gen-
eration algorithm that uses dynamic permutation and substitution tables in
addition to two different PRNGs with a large number of seeds. To the best
of our knowledge, the proposed solution is the first dynamic key-dependent
stream cipher algorithm with dynamic seeds and substitution/permutation
tables.

Next, we list the technical contribution of this paper as compared to the
existing cipher solutions:

– The proposed cipher is based on a dynamic key-dependent approach, and
it is based on a simple key derivation function that uses a variable session
key and a Nonce, which change for each new input message, making it
highly resistant against attacks.

– The permutation table is used as a perturbation technique to modify the
internal state, which increases the periodicity of the employed PRNGs.

– The proposed solution uses a dynamic substitution process to increase the
nonlinear degree of the generated key-stream and to achieve higher key
sensitivity.

– The proposed cipher exhibits a high level of randomness, which was veri-
fied using the "BigCrush" of "TestU01" [21] statistical suite tests on the
generated key-stream.

– The proposed cipher scheme uses lightweight PRNGs and simple opera-
tions, which minimizes the latency and required resources, and leads to a
simple software implementation.

In summary, The proposed cipher satisfies the desirable cryptographic char-
acteristics such as long periodicity, high level of key sensitivity, and high level
of randomness and thus, higher resistance against attacks, with low latency
and overhead.

1.5 Organization

The remainder of the paper is organized as follows. Section 2 describes and
analyzes existing GPU cipher implementation. In Section 3, the proposed dy-
namic key derivation is presented. While in Section 4, the employed cipher
primitives construction techniques are described. Then, in Section 5, we intro-
duce and describe in details the proposed stream cipher algorithm, along with

Title Suppressed Due to Excessive Length 5

the functionality of each operation. In Sections 6 and 7, we respectively assess
the robustness of the proposed cipher scheme and its performance. Finally, in
Section 8, a conclusion and future directions are presented.

2 Existing GPU Cipher Algorithms and Their Corresponding
Implementations

A GPU (Graphic Processing Unit) is a commonly used architecture to ac-
celerate computations. GPUs are used in many computing applications and
systems ranging from smart-phones, embedded computing, to supercomput-
ers. The architecture of a GPU is quite different from that of a CPU. In a
GPU, the architecture is optimized to maximize the execution throughput of
many simultaneous threads. The number of computing cores inside a GPU
ranges from hundreds to even thousands. The hardware is designed to execute
many threads, even if the bottleneck is the memory access itself. To benefit
from the GPUs computing power, users need to use a number of threads that
exceeds the number of cores. Hence, while some threads are waiting for their
data, other threads are capable of executing. Typically, there are many kinds
of memory in a GPU: global memory which is the slowest one, cache memory,
texture memory, shared memory, local memory, and a limited set of registers
having the fastest access. Consequently, memory management is critical within
GPUs.

GPUs are composed of streaming multiprocessors (SMs), and their number
varies for different GPU types. Typically, SMs are composed of 32 cores that
can execute only a single instruction at a time. So, if two threads are executed
on the same SM, one instruction will be executed, while the second one would
have to wait. This is called thread divergence. Consequently, "IF" instructions
and "WHILE" conditions must be avoided, whenever possible. Threads are
scheduled by groups of 32 on an SM, and they are referred to as warps. In
practice, threads are organized into blocks; depending on the GPU architec-
ture, the maximum thread number per block is limited to 1024. Hence, it is
important to keep in mind that GPUs technical details are constantly changing
with every new generation.

3 Dynamic Key Derivation Function

In this section, the proposed dynamic key generation function and the corre-
sponding sub-keys generation schemes are presented and illustrated in Fig. 1.
The cipher primitives (seeds and permutation boxes) are dynamic and they
change based on this set of sub-keys. The specific secret key, SK, is mixed
with a NONCE No (unique for each new input) to produce a dynamic secret,
O. Then, the new dynamic key (DK) is obtained by hashing O using a secure
cryptographic hash function. To ensure that a different DK is produced for
each different input message or session, the SHA-512 hash function is chosen

6 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

Fig. 1: The proposed Key derivation function and its corresponding construc-
tion of cipher primitives.

and it is known for its high resistance degree against collisions. The dynamic-
ity introduces robustness against powerful attacks. The dynamic key, DK, is
used to generate the required sub-keys as explained next.

– Master Secret Key K: It is shared between both legal entities to provide
enhanced security. It allows the symmetric secret key to be renewed after
each periodic interval, depending on the application itself. For example,
Elliptic Curve Diffie Hellman (ECDH) protocols can be selected for this
specific task.

– Nonce No: Each Nonce will be used only once; it is updated for every input
image or session. Two possible Nonce generation techniques can be adopted
i) generated by the sender and transmitted to the receiver in an encrypted
form, by either employing a secret key or by employing the receiver public
key; ii) producing the Nonce at the sender and receiver in a synchronized
manner, through the use of a deterministic pseudo-random generator.

– Dynamic Key DK: The master secret key K is XORed with N0, and the
output is hashed using SHA-512. This generates the dynamic key, DK,
which represents the MAC value with a size of 512 bits. Then, DK is
divided into 4 main sub-keys {KP , KS Kg1, Kg2} each with a size of 16
bytes (128 bits).

4 Construction of Dynamic Cipher primitives

The sub-keys are used to generate the required cipher primitives, as described
below.

Title Suppressed Due to Excessive Length 7

– Permutation sub-key KP : it consists of the most significant 16 bytes of
DK, and it is used to produce a set of permutation tables (32 P − boxes)
that can be employed during the selection process. In this solution, any
key-dependent permutation generation algorithm can be employed such as
the ones in [7, 22]. The selection of the Modified Key Setup Algorithm
(MKSA) of [22] is used to construct the required dynamic key-dependent
permutation tables. In fact, MKSA is selected due to its simple hardware
and software implementations. To ensure that a P-box has a good crypto-
graphic performance, MKSA should be always iterated with a different key
in order to produce different P-boxes. Therefore, KP is used as a seed for
the RC4 just to generate a set of permutation sub-keys, and each sub-key is
used as a seed for the MKSA to produce a different permutation table. On
the other hand, the weaknesses of RC4, as reported in [23, 24, 25] do not
affect the proposed solution, which is based on a dynamic key-dependent
structure.

RC4 will be iterated to generate a byte vector of length equals to Np× lp.
Then, the output is reshaped to form a matrix with a size of Np×lp, where
each row represents one of the dynamic permutation keys with a length of
Qp = lp× 8 bits, to be used as a permutation table.

Note that RC4 is iterated with a dynamic sub-key to avoid any weakness
and to achieve a high level of security.

– Substitution sub-key KS : it represents the second set of the 16 most
significant bytes, and it is used to produce a set of substitution sub-keys,
where each sub-key is used to produce a dynamic substitution table (S-
box). Any key-dependent algorithm could be used for the generation of
the substitution tables. We adopt the simple technique used in [22], which
is based on the Key Setup Algorithm (KSA) of RC4. The output of the
original KSA, for any input key, is a substitution table that is used as a
dynamic S-box. RC4 is iterated to form a byte vector of length equals to
Ns × ls. Then, the output is reshaped to form a matrix of size Ns × ls;
each row represents one of the dynamic substitution keys, with a size of
Qs = ls× 8 bits, and used as a key-dependent substitution table.

– First PRNG seed Kg1: it represents the third most significant 16 bytes
of DK and it is used to produce a set of seeds of length lg1, one of which is
selected for each thread. Also, in this step, RC4 is selected and it is iterated
for lg1×Qg1

8 times to generate different N seeds, where N represents the
possible number of threads, and Qg1 represents the precision of the first
generator, which can be equal to 32, 64 or 128. The output key-stream is
reshaped to form a byte matrix of size N × Qg1

8 . Each row of this matrix
represents one of the seeds, and it has a length equals to Qg1 bits. Any
repeated row (seed) is eliminated from this list and RC4 is re-iterated to
produce a new seed.

8 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

– Second PRNG seed Kg2: It represents the fourth most significant 16
bytes of DK and it is used to produce a set of seeds of length N , one of
which is selected for each thread. Similarly, RC4 is selected and it is iterated
for N×Qg2

8 times to generate different N seeds. Besides, Qg2 represents the
precision of the second generator. The output key-stream is reshaped to
form a byte matrix of size N × Qg2

8 . Each row has a size of Qg2 bits, and
represents one of the seeds. Any repeated row (seed) is also eliminated from
this list, and RC4 is re-iterated to produce a new seed.

All notations are shown in Table 1. These steps guarantee a high level
of sensitivity, where any tiny change in the dynamic key would result into a
completely different cipher primitive in the generation process; such a change
was proven in Section 6.2. The parameters’ derivation is illustrated in Fig. 1.

Table 1: Table of notations

Notation Definition
K Secret key
No Nonce
DK Dynamic Key
KP Permutation sub-key
KS Substitution sub-key
Kg1 First PRNG sub-key
Kg2 Substitution sub-key
P − box A dynamic produced permutation box
S − box A dynamic produced substitution table
Seed1 A dynamic set of seed for the first generator
Seed2 A dynamic set of seed for the second generator
Seed1,i The ith seed for the first generator
Seed2,i The ith seed for the second generator
N Number of possible threads
Qg1 Precision of the first generator that can be 32, 64 or 128.
Qg2 Precision of the second generator that can be 32, 64 or 128.
l Number of bytes of the input message
nb Number of blocks in an input message.
Mi The ith block of plain message
Ci The ith block of encrypted message

5 Proposed Stream Cipher Algorithm

This section describes the proposed stream cipher, "ESSENCE", which is de-
signed with a single round to outperform AES. The main properties of the
proposed solution are: high-security level, reduced computational complexity,
and simple and parallel hardware and software implementations.

Title Suppressed Due to Excessive Length 9

5.1 Basic Concepts

The proposed scheme is based on 3 main concepts:

– Parallel Computing: This algorithm is designed to run in parallel. All
the threads are independent of each other and they could be all executed
in parallel (see Fig. 2), even if it is not possible to schedule all of them at
the same time.
Multi-streaming multiprocessors (SM) contain each 32 syn-chrome threads
and shared memory and hence, the same operation is applied on these syn-
chrome threads but with different inputs. In the proposed scheme, every
32 threads are iterated to perform the same function. For example, the
first PRNG with different seeds is iterated to produce 32 outputs, each
represented by 32 bits.

Fig. 2: Scheme of the proposed lightweight stream cipher algorithm for the ith
thread.

– Flexible Structure: The structure of the proposed stream cipher allows
for any pair of outputs of the efficient PRNGs to be used [26]. There-
fore, any PRNG that exhibits very good performance and satisfies the
randomness properties could be used. For example, in this paper, we use
"xoroshiro128plus" and "xorshift", which were selected due to their sim-
plicity and efficiency. The proposed solution uses both PRNGs since TestU01
can detect the link between all the threads, if only one PRNG is used.

10 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

– Efficient & Lightweight Combination of both PRNGs The selected
pairs of PRNGs are combined in an efficient manner (diffusion operation)
to produce a key-stream with high periodicity, and a stable randomness
degree. The proposed technique benefits from the shared memory of GPU,
whereby the output of the first PRNG is stored in the shared memory.
Then, the output of the second PRNG is mixed with two different outputs
of the first PRNG.

– Dynamic Selection of Shared Memories. These shared memories (O0,
and O1) are selected according to dynamic permutation tables (32 different
P-boxes).

In the following, we describe a set of possible pseudo-random generators
that can be used in the proposed stream cipher.

5.2 xoroshiro128+ (XOR/rotate/shift/rotate)

It is a successor to Xorshift (implementation at xorshift128+). It uses a care-
fully handcrafted shift/rotate-based linear transformation, as shown in Algo-
rithm 1. This PRNG ensures a significant reduction in latency and the corre-
sponding resources. Also, this PRNG reaches a high level of randomness. It
has a repetition period of (2128-1), which is not long enough for cryptographic
algorithms. Therefore, the proposed stream cipher scheme uses a higher num-
ber of threads and for each thread, a xoroshiro128+ PRNG is used. Also, a
diffusion operation is applied to the output of three different xoroshiro128+
PRNGs (different for each iteration) to increase the periodicity of the proposed
key-stream. The xorshift64 algorithm is presented in Algorithm 2.

Algorithm 1 xoroshiro128plus code

__device__ i n l i n e
ulong xoro sh i r o128p lu s (ulong2 ∗ rng) {

const ulong s0 = rng−>x ;
ulong s1 = rng−>y ;
const ulong r e s u l t = rng−>x + rng−>y ;
s1 ^= s0 ;
rng−>x = r o t l (s0 , 24) ^ s1 ^ (s1 << 16) ;
rng−>y = r o t l (s1 , 3 7) ;
r e turn r e s u l t ;

}

5.3 Xorshift

Xorshift belongs to a class of PRNGs that is based on linear-feedback shift
registers (LFSRs), which is described in Algorithm-2. Xorshift allows for an

Title Suppressed Due to Excessive Length 11

Algorithm 2 xorshift64 code

__device__ i n l i n e
ulong xo r s h i f t 6 4 (ulong t)
{

ulong x = t ;
x ^= x >> 12 ;
x ^= x << 25 ;
x ^= x >> 27 ;
re turn x ;

}

efficient implementation without the need of excessively using sparse polyno-
mials. This makes them extremely fast on any modern computer architecture.
Similar to LFSRs, the available parameters must be chosen with extreme cau-
tion in order to achieve a long period [27]. However, xorshift generators do
not have non-linear steps. This makes them fail some statistical tests [27].
However, Xorshift generators do have numerous advantages including low ex-
ecution time as well as a simple implementation.

5.4 Proposed Encryption Algorithm

Below, we describe the various steps of the proposed algorithm, as illustrated
in Algorithm-3:

Note that the input data is stored in the d_input table, and the encrypted
data (output) is stored in the d_output table. As the input is not changed, the
keyword __restrict__ allows the compiler to optimize the variable’s access,
which reduces the memory access time. Other unchanged variables also have
this keyword during the execution of the algorithm.

The variable d_xoro is used to store the required internal values for the
"xoroshiro128plus" PRNG [28]. Each thread has a different value. To improve
the performance, in many GPU algorithms, one is advised not to compute more
than a single value per thread. Consequently, in our algorithm, the variable
nb represents the number of elements that each thread is responsible for. The
use of the loop is essential to reduce the number of threads used in the code
to maximize the GPU’s occupancy. Without the loop, the performance would
be diminished.

In the main loop, the xoro variable is used to select 2 permutation tables
from the 32 generated ones. Note that we could have chosen bigger permuta-
tion tables. However, in this case, we would need to use the __syncthreads()
instruction to synchronize threads on different warps. However, such an in-
struction reduces the performance significantly. These permutation tables are
obtained using 32 P-boxes generated with the initial key provided to the pro-
posed ESSENSE PRNG. So, the variable d_pbox contains 32 random per-
mutations tables of size 32. Variable shmem is the shared memory that allows
threads to exchange their values. It should be noted that each thread will have

12 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

Algorithm 3 ESSENCE kernel

__global__
void es sence_kerne l (ulong2 ∗d_xoro , uchar ∗ __restrict__ d_pbox ,
uchar ∗ __restrict__ d_sbox , ulong ∗d_output ,
const ulong ∗ __restrict__ d_input , i n t nb_ele , i n t nb) {

u int i = blockIdx . x∗blockDim . x + threadIdx . x ;
i f (i<nb_ele) {

ulong res , res2 , r e s3 ;
uchar ∗ r e s c ;
ulong2 xoro=d_xoro [i] ;
unsigned o f f s e t=threadIdx . x & 31 ;
unsigned base=threadIdx . x−o f f s e t ;
f o r (i n t j =0; j<nb ; j++) {

i n t o0=base+d_pbox [32∗ (xoro . x&15)+ o f f s e t] ;
i n t o1=base+d_pbox[32∗(16+ xoro . y&15)+ o f f s e t] ;
r e s=xoro sh i r o128p lu s (&xoro) ;
shmem [threadIdx . x]= r e s ;
r e s2=xo r s h i f t 6 4 (r e s) ;
r e s2=re s2^shmem [o0]^shmem [o1] ;
r e s3=r e s^re s2 ;
r e s c=(uchar∗)& re s3 ;
r e s c [0]=d_sbox [r e s c [0]] ;
r e s c [1]=d_sbox [r e s c [1]] ;
r e s c [2]=d_sbox [r e s c [2]] ;
r e s c [3]=d_sbox [r e s c [3]] ;
r e s c [4]=d_sbox [r e s c [4]] ;
r e s c [5]=d_sbox [r e s c [5]] ;
r e s c [6]=d_sbox [r e s c [6]] ;
r e s c [7]=d_sbox [r e s c [7]] ;
d_output [i+j ∗nb_ele]=d_input [i+j ∗nb_ele]^ r e s3 ;

}
d_xoro [i]=xoro ;

}
}

values coming from different permutation tables. For example, thread 0 will
xor its result with threads 2 and 10, while thread 1 will xor its result with
threads 3 and 8, and thread 2 will xor its results with threads 31 and 9, and
so on. Moreover, at each iteration of the loop, the values of o0 and o1 change.

Then, the algorithm calls the xoroshiro128plus function, which changes the
variable xoro, and puts the result into the variable res. Then, the shared mem-
ory is used to save this variable before xoring it with 2 other numbers gener-
ated by 2 other threads (according to the two permutation tables, as previously
mentioned). The variable res is used as input to the second PRNG (xorshift64),
and the result is saved in res2. Then, res2 is xor-ed with two other values com-
ing from two other threads (in the same warp). Next, res and res2 are also
xor-ed in order to obtain res3. Finally, a substitution table d_sbox is used
to substitute 4 or 8 different bytes of res3 for an output of 32 or 64 bits, re-
spectively. Note that the output is converted to an unsigned char table before
applying the substitution operation on each element of the table. At the end

Title Suppressed Due to Excessive Length 13

of the loop, the internal value of xoro is saved for the next call of the function.
Finally, it should be noted that nbele is the total number of threads, which
depends on the size of the data to encrypt.

5.5 Proposed Decryption Algorithm

A legitimate receiver will use the same steps for decryption as the ones for
encryption, and the same secret and Nonce to produce the specific dynamic
key. This allows for the generation of the required cipher primitives. Then,
the decryption algorithm proceeds in a similar manner to the encryption al-
gorithm.

(a) Original Lenna image
0 50 100 150 200 250

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b) Original Lenna PDF (c) Encrypted Lenna,
0 50 100 150 200 250

×10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

(d) Encrypted Lenna PDF

(e) Original Pepper image
0 50 100 150 200 250

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(f) Original Pepper PDF (g) Encrypted Pepper
0 50 100 150 200 250

×10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

(h) Encrypted Pepper PDF

Fig. 3: (a) and (e) show original images; (b) and (f) show their corresponding
PDF; (c) and (g) show their corresponding encrypted images; (d) and (h) show
the PDF of encrypyed images. In (b), (f), (d) and (h), the x-axis and y-axis
represent the symbol values and their corresponding probability values.

14 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

6 Security Analysis

An efficient encryption algorithm should be able to resist the most known types
of attacks such as statistical, differential, chosen/known plain-text, and brute-
force attacks [7, 22]. Extensive experiments are performed in this section to
demonstrate the efficiency and security level of the proposed scheme against
such attacks. Note that the proposed solution can be used for any kind of
data (structured or unstructured), but the following results are provided for
multimedia image contents.

6.1 Statistical Analysis

To guard against statistical attacks, a cipher must exhibit a high degree of
randomness and uniformity [29]. To test the randomness degree, the following
statistical security tests were carried out, (a) Probability Density Function
(PDF) analysis, (b) Entropy analysis and (c) Correlation between plain and
encrypted images.

6.1.1 Uniformity Analysis

The most important test is the probability density function(PDF) of the en-
crypted image, which must be uniform; every symbol has a probability occur-
rence close to 1

n , where n is the number of symbols. The PDFs of two original
plain-images and their corresponding cipher images are shown in Figure 3. It
can be seen that the PDFs of the encrypted images are close to a uniform
distribution, with a value close to 0.039 that is 1

256 = 3.9× 10−3.

6.1.2 Information Entropy Analysis

The information entropy, of a given image M , is a parameter that measures
the uncertainty level in a random variable [30], and it is defined by:

H(m) = −
h2∑
i=1

p(mi) log2
1

p(mi)
(1)

The entropy is expressed in bits, and p(mi) indicates the occurrence prob-
ability of symbol mi, and NS the total number of symbols. If the entropy of
the encrypted data is either equal to or close to log2(NS), it can be considered
as a true random source with a uniform distribution.

The Entropy analysis of the encrypted Lenna image, at the sub-matrix level
with a dimension of 16× 16, and by using a random dynamic key, is shown in
Fig. 4. The results indicate that the encrypted images have an entropy similar
to the desired value of 8. As such, the proposed cipher is sufficiently secure
against any given entropy attack.

Title Suppressed Due to Excessive Length 15

6.1.3 Independence

Removing any correlation between the sequence of elements is highly essential
to ensure the robustness of the proposed cipher scheme [22]. Having a corre-
lation coefficient close to zero means that the cipher scheme exhibits a high
randomness degree. The correlation test is performed by randomly taking ad-
jacent pixels from an original image and its corresponding encrypted image.
This correlation can be done in horizontal, vertical and diagonal directions.
The correlation coefficient rxy is calculated using the following equation:

rxy =
cov(x, y)√
D(x)×D(y)

(2)

where :

cov(x, y) =
1

N
×

N∑
i=1

(xi − E(x))(yi − E(y))

Ex =
1

N
×

N∑
i=1

xi

Dx =
1

N
×

N∑
i=1

(xi − E(x))2

The correlation results of the original and encrypted images, and for (2,000
pairs of adjacent pixels), are shown in Fig. 5 and Fig. 6, for one random key,
and for 1,000 random keys, respectively. The results clearly show that the
adjacent pixels of the plain image have a high correlation, close to 1. However,
the coefficient correlation of the encrypted images tends is very low, close to
0, confirming the randomness property of the proposed cipher.

6.1.4 Plain Data vs. Encrypted Data

The encrypted data should be very different from the original one, with a
difference of at least 50%, at the bit level. According to the obtained result in
Fig. 7-a), the proposed cipher scheme satisfies the desirable difference results,
with a percentage of at least 50% between the plain and the encrypted Lenna
images.

6.2 Sensitivity Tests

Differential attacks are based on studying the relation between two encrypted
messages resulting from a slight change, such as a one-bit difference, between
two original messages. The sensitivity tests must confirm that a small change
in the plain-image or in the key affect the cipher image and generate a different
one. The higher the difference, the better is the sensitivity of the encryption
algorithm.

16 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

6.2.1 Key Sensitivity test

This is one of the most important tests, and it quantifies the sensitivity against
a slight change in the secret key. The proposed key derivation function is
based on a secret key and a Nonce. To further study the key sensitivity, two
dynamic keys are used,DK1 andDK2, which differ by a single random bit. The
two plain-images are then encrypted separately, and the Hamming distance of
the corresponding encrypted images, C1 and C2, is computed and illustrated
in Fig. 7-(b) against 1,000 random dynamic keys. We can see that the majority
of values are close to the optimal one (50 %). This confirms the high key
sensitivity of the proposed cipher algorithm. Additionally, the obtained results
of 49.9970 are acceptable when compared to the reported ones of AES.

Number of Iterations
0 200 400 600 800 1000

7.171

7.172

7.173

7.174

7.175

7.176

7.177

7.178

7.179

Mean of Entropy=7.1750

Fig. 4: Entropy analysis of encrypted Lenna versus 1,000 random secret keys
at the sub-matrix level. Encrypted image is divided into a set of sub-matrices
of size 16× 16 and NS = 256 bytes (mean equal to 7.175).

6.2.2 Plain-text Sensitivity

Since a different dynamic key is being used for each input image, the algorithm
produces a completely different cipher image for the same plain image. Hence,
the proposed cipher successfully satisfies the avalanche criteria.

6.3 Visual Degradation

This test is restricted to image and video contents, and it quantifies the visual
degradation associated with the output of a cipher scheme. Two popular pa-

Title Suppressed Due to Excessive Length 17

0 50 100 150 200 250

0

50

100

150

200

250

ρ =0.98844553

(a)
0 50 100 150 200 250

0

50

100

150

200

250

ρ =0.98813697

(b)
0 50 100 150 200 250

0

50

100

150

200

250

ρ =0.97645010

(c)

0 50 100 150 200 250

0

50

100

150

200

250

ρ =0.01399486

(d)
0 50 100 150 200 250

0

50

100

150

200

250

ρ =0.00711558

(e)
0 50 100 150 200 250

0

50

100

150

200

250

ρ =0.00038948

(f)

Fig. 5: Correlation distribution in adjacent pixels (2,000 pairs) in original Lena:
(a) horizontally, (b) vertically and (c) diagonally.
Correlation in adjacent pixels in ciphered Lena:(d) horizontally, (e) vertically
and (f) diagonally.

rameters are assessed to measure the visual quality: the Structural SIMilarity
index (SSIM) [31], and the Peak Signal-to-Noise Ratio (PSNR) [32].

The PSNR is derived from the Mean Squared Error (MSE), which repre-
sents the cumulative squared error between the encrypted and original images.
A low PSNR value indicates a high difference between the cipher and original
images. On the other hand, SSIM lies in the [0,1] interval, where 0 means
the absence of correlation between original and cipher images, while a value
close to 1 indicates a high correlation between the original and cipher images.
We measured PSNR and SSIM between the original and encrypted Lenna
images for 1, 000 random keys. The results are presented in Fig. 8-(a) and
(b), respectively. It can be seen that the value of the PSNR is 9.23 dB, which
is a low value and confirming the high difference between the original and
encrypted images. Also, the SSIM values are always close to zero, which con-
firms that a high and hard visual distortion is achieved by the proposed cipher
algorithm.

18 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

Number of Iterations

0 200 400 600 800 1000

V
e
r
t
ic
a
l
ρ

-0.04

-0.02

0

0.02

0.04

0.06

Mean of Vertical ρ=0.0007

(a)
Number of Iterations

0 200 400 600 800 1000

H
o
r
iz
o
n
t
a
l
ρ

-0.04

-0.02

0

0.02

0.04

0.06

Mean of Horizontal ρ=0.0004

(b)
Number of Iterations

0 200 400 600 800 1000

D
ia
g
o
n
a
l
ρ

-0.04

-0.02

0

0.02

0.04

0.06

Mean of Diagonal ρ=-0.0007

(c)

Fig. 6: The variation of the correlation coefficient for adjacent pixels in ciphered
Lenna image versus 1000 random keys: (a) horizontally, (b) vertically and (c)
diagonally.

Number of Iterations

0 200 400 600 800 1000

D
if
(%

)

49.92

49.94

49.96

49.98

50

50.02

50.04

50.06

Mean of Dif=49.9998

(a)
Number of Iterations

0 200 400 600 800 1000

K
e
y
S
e
n
si
ti
v
it
y
(K

S
)%

49.92

49.94

49.96

49.98

50

50.02

50.04

50.06

Mean of KS=50.0010

(b)

Fig. 7: (a) The different variation between plain and ciphered Lenna image
(percentage of the Hamming distance) and (b) key sensitivity against 1,000
random keys.

6.4 Cryptanalysis: Resistance Against Well-known Types of Attacks

In contrast to the majority of existing cipher solutions, our scheme is based
on a dynamic key approach, with dynamic substitution, permutation and dif-
fusion layers for each input data. Previous statistical tests (entropy analysis,

Title Suppressed Due to Excessive Length 19

Number of Iterations

0 200 400 600 800 1000

P
S
N
R

8.655

8.66

8.665

8.67

8.675

8.68

8.685

8.69

8.695

8.7

8.705

Mean of PSNR=8.6783

(a)
Number of Iterations

0 200 400 600 800 1000

S
tr
u
c
tu

ra
l
S
im

il
a
ri
ty

In
d
e
x
(S

S
I
M

)
0.031

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

Mean of SSIM=0.0353

(b)

Fig. 8: Variation of PSNR and SSIM between the original and encrypted
Lenna image versus 1, 000 random keys.

probability density function, correlation tests) have confirmed the robustness
of the proposed cipher scheme and its high resistance against statistical at-
tacks. Moreover, the key sensitivity analysis demonstrated a high sensitivity
against key-related attacks. These results are sufficient to infer that no use-
ful information can be inferred from the encrypted data. On the other hand,
the resistance against chosen/known plain-text attacks is verified due to the
dynamic key approach, which drastically complicates the attacker’s task. As
such, the problems of a single message failure and accidental key disclosure
are avoided. Furthermore, differential and linear attacks are ineffective since
any change in the dynamic key leads to a significant difference in the produced
cipher primitive and in the encrypted message as well. Also, the key space of
the secret key is of the order of 2128, 2192 or 2256, which is sufficiently large to
make brute-force attacks unfeasible. The same is true for the key space of the
dynamic key, which is 2512. Note that a large secret key and a large dynamic
key are being used since the difficulty of cipher-text-only attack is equivalent
to one of the brute force attacks, making it impossible for a cipher-text-only
attack to retrieve useful information from the cipher image.

6.5 Statistical tests with TestU01

As previously explained, ESSENCE has been tested with more than 100 seeds
via TestU01 [21], and it successfully passed all the tests. In practice, a mes-
sage of size 512*512 is typically used with all elements set to zero, and the
key is initialized only once, at the beginning. All the other variables are also

20 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

initialized once. Since TestU01 uses many pseudo-random numbers, the same
message is used repeatedly over a very large number of iterations, with a single
difference between iterations, the different numbers generated by the PRNGs.

7 Performance Analysis

In this section, the cipher latency is quantified to assess the performance of
the proposed cipher.

7.1 Experiments

To measure the performance of the proposed cipher, ESSENCE is evaluated
on a Titan X GPU, which has the following characteristics:

– Compute capability: 5.2
– Global memory: 12,207 MB
– GPU frequency: 1.25 GHz
– Memory frequency: 3,505 MHz
– Number of CUDA cores: 3,072

and on a Tesla V100 with the following characteristics:

– Compute capability: 7.0
– Global memory: 16,152 MB
– GPU frequency: 1.53 GHz
– Memory frequency: 877 MHz
– Number of CUDA cores: 5,120

To compare the performance against the best AES implementation, we
selected the implementation of [16], which uses the ECB operation mode, and
we shall refer to it as AES-ECB. The performance tests are based on different
8-bit color images. Note that the throughput of AES-ECB is very close to the
result in [19], 570.72 Gbps, which corresponds to 71.3 GBps.

Table 2: Throughput of ESSENCE and AES-ECB on a Titan X GPU

Image size ESSENCE AES-ECB
Throughput (in GB/s) Throughput (in GB/s)

512x512x3 35.1 20.3
1024x1024x3 71.5 36.6
2048x2048x3 105.7 52.1
4096x4096x3 115.7 58.3
8192x8192x3 108.6 65.8

16384x16384x3 110.6 70.2

The execution time of the encryption algorithm is the same as the one of
the decryption algorithm (stream cipher). Note that our implementation is

Title Suppressed Due to Excessive Length 21

Table 3: Throughput of ESSENCE and AES-ECB on a Volta V100 GPU

Image size ESSENCE AES-ECB
Throughput (in GB/s) Throughput (in GB/s)

512x512x3 53.5 22.9
1024x1024x3 150.5 54.1
2048x2048x3 261.1 91.0
4096x4096x3 354.4 120.0
8192x8192x3 358.8 136.9

16384x16384x3 372.8 146.1

highly optimized, and the kernel operations of reading and writing an image
take approximately the same time. The speed-up of ESSENCE compared to
AES-ECB is shown in Tables 2 and 3, and in Fig 9.

The obtained results indicate that the proposed cipher scheme is faster
compared to AES-ECB, and the ratio varies between 1.4 and 2 depending on
the message length on the Titan X, and between 2.4 and 2.9 for the Tesla
V100. Therefore, the proposed cipher scheme is more suitable for real-time
applications.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 512 1024 2048 4096 8192 16384

S
p

e
e
d
-u

p

size of images

ESSENCE/AES-ECB on Titan X
ESSENCE/AES-ECB on Volta V100

Fig. 9: Speed-up (execution time ratio) of ESSENCE compared to AES-ECB
on a Titan X GPU and on Tesla V100

8 Conclusion

In this paper, we presented ESSENCE, a new dynamic, key-dependent, one-
round stream cipher scheme with an efficient, parallel, and dynamic key-
dependent structure, and which was designed targeting a GPU implemen-
tation. ESSENCE outperformed the most optimized implementation of AES

22 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

on GPU, which makes it preferable for real-time applications. Moreover, the
proposed cipher scheme offers a high degree of randomness, which was vali-
dated by quantifying the produced key-stream, which successfully passed the
statistical tests of TestU01. Also, ESSENCE has a high periodicity since it
combines the threads’ results of two PRNGs, which are then dynamically xor-
ed based on 32 permutation tables, which are also generated and related to
the dynamic key. Moreover, the implementation of ESSENCE is very simple
compared to other existing cipher schemes. Equally important, the robust-
ness of ESSENCE has been assessed and confirmed via cryptanalysis along
with different benchmark tests. Note that other existing cryptanalysis tech-
niques are designed to target static structures, which is not the case of the
proposed scheme. In future work, the design of an efficient parallel dynamic
key-dependent hash function for GPU will be investigated.

Acknowledgement

This paper is partially funded by the Maroun Semaan Faculty of Engineer-
ing and Architecture at the American University of Beirut and by the EIPHI
Graduate School (contract "ANR-17-EURE-0002"). We also thank the super-
computer facilities of the Mésocentre de calcul de Franche-Comté.

References

1. Goutam Paul and Subhamoy Maitra. RC4 Stream Cipher and Its Variants.
CRC Press, 2011.

2. Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced
Encryption Standard. Alpha Press, 2009.

3. Christof Paar and Jan Pelzl. Understanding Cryptography: a Textbook for
Students and Practitioners. Springer Science & Business Media, 2009.

4. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES-the
Advanced Encryption Standard. Springer Science & Business Media, 2013.

5. Hassan N Noura, Mohamad Noura, Ali Chehab, Mohammad M Mansour,
and Raphaël Couturier. Efficient and Secure Cipher Scheme for Multime-
dia Contents. Multimedia Tools and Applications, pages 1–30, 2018.

6. Hassan Noura, Ali Chehab, Mohamad Noura, Raphaël Couturier, and Mo-
hammad M Mansour. Lightweight, Dynamic and Efficient Image Encryp-
tion Scheme. Multimedia Tools and Applications, pages 1–35, 2018.

7. Hassan Noura, Lama Sleem, Mohamad Noura, Mohammad M Man-
sour, Ali Chehab, and Raphaël Couturier. A New Efficient Lightweight
and Secure Image Cipher Scheme. Multimedia Tools and Applications,
77(12):15457–15484, 2018.

8. Like Chen and Runtong Zhang. A Key-dependent Cipher DSDP. In Elec-
tronic Commerce and Security, 2008 International Symposium on, pages
310–313. IEEE, 2008.

Title Suppressed Due to Excessive Length 23

9. Runtong Zhang and Like Chen. A Block Cipher using Key-dependent
S-box and P-boxes. In Industrial Electronics, 2008. ISIE 2008. IEEE
International Symposium on, pages 1463–1468. IEEE, 2008.

10. William Stallings. Cryptography and Network Security: Principles and
Practice. Pearson Upper Saddle River, NJ, 2017.

11. Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason
Smith, and Louis Wingers. The simon and speck lightweight block ciphers.
In 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2015.

12. Jacques Bahi, Raphaël Couturier, Christophe Guyeux, and Pierre-Cyrille
Héam. Efficient and Cryptographically Secure Generation of Chaotic
Pseudorandom Numbers on GPU. The Journal of Supercomputing,
71(10):3877–3903, 2015.

13. Wai-Kong Lee, Hon-Sang Cheong, Raphael C-W Phan, and Bok-Min Goi.
Fast Implementation of Block Ciphers and PRNGs in Maxwell GPU Ar-
chitecture. Cluster Computing, 19(1):335–347, 2016.

14. Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei, and Xiaowen
Chu. Implementation and Analysis of AES Encryption on GPU. In High
Performance Computing and Communication & 2012 IEEE 9th Interna-
tional Conference on Embedded Software and Systems (HPCC-ICESS),
pages 843–848. IEEE, 2012.

15. Guang-liang Guo, Quan Qian, and Rui Zhang. Different Implementa-
tions of AES Cryptographic Algorithm. In High Performance Computing
and Communications (HPCC), IEEE 7th International Symposium on Cy-
berspace Safety and Security (CSS), pages 1848–1853. IEEE, 2015.

16. Rone Kwei Lim, Linda Ruth Petzold, and Çetin Kaya Koç. Bitsliced
High-performance AES-ECB on GPUs. In The New Codebreakers, pages
125–133. Springer, 2016.

17. Raphaël Couturier. Designing Scientific Applications on GPUs. Numerical
Analysis & Scientific Computating. Chapman & Hall/CRC, 2013.

18. Nvidia, CUDA. A C Programming Guide, version 9.0. https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html.

19. Biagio Peccerillo, Sandro Bartolini, and Çetin Kaya Koç. Parallel Bit-
sliced AES through PHAST: a Single-Source High-Performance Library
for Multi-Cores and GPUs. Journal of Cryptographic Engineering, pages
1–13, 2017.

20. Zeinab Fawaz, Hassan Noura, and Ahmed Mostefaoui. An Efficient and
Secure Cipher Scheme for Images Confidentiality Preservation. Signal
Processing: Image Communication, 42:90–108, 2016.

21. Pierre L’Ecuyer and Richard J. Simard. TestU01: A C Library for Empir-
ical Testing of Random Number Generators. ACM Trans. Math. Softw,
33(4), 2007.

22. Hassan Noura, Ali Chehab, Lama Sleem, Mohamad Noura, Raphaël Cou-
turier, and Mohammad M Mansour. One Round Cipher Algorithm for
Multimedia IoT Devices. Multimedia Tools and Applications, pages 1–31,
2018.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

24 Raphaël Couturier∗, Hassan N. Noura, Ali Chehab

23. Andreas Klein. Attacks on the rc4 stream cipher. Designs, codes and
cryptography, 48(3):269–286, 2008.

24. Scott Fluhrer, Itsik Mantin, Adi Shamir, et al. Weaknesses in the Key
Scheduling Algorithm of RC4. Springer.

25. Itsik Mantin and Adi Shamir. A practical attack on broadcast rc4. In In-
ternational workshop on fast software encryption, pages 152–164. Springer,
2001.

26. Chris Wellons. Finding the Best 64-bit Simulation PRNG « null program.
https://nullprogram.com/blog/21/09/2017, September 2017.

27. François Panneton and Pierre L’ecuyer. On the xorshift Random Number
Generators. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 15(4):346–361, 2005.

28. David Blackman and Sebastiano Vigna. Scrambled Linear Pseudorandom
Number Generators. CoRR, abs/1805.01407, 2018.

29. Shujiang Xu, Yinglong Wang, Jizhi Wang, and Min Tian. Cryptanalysis of
Two Chaotic Image Encryption Schemes Based on Permutation and XOR
Operations. In Computational Intelligence and Security, 2008. CIS’08.
International Conference on, volume 2, pages 433–437. IEEE, 2008.

30. Guoji Zhang and Qing Liu. A Novel Image Encryption Method Based
on Total Shuffling Scheme. Optics Communications, 284(12):2775–2780,
2011.

31. Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
Quality Assessment: from Error Visibility to Structural Similarity. Image
Processing, IEEE Transactions on, 13(4):600–612, 2004.

32. Quan Huynh-Thu and Mohammed Ghanbari. Scope of Validity of PSNR
in Image/Video Quality Assessment. Electronics letters, 44(13):800–801,
2008.

https://nullprogram.com/blog/21/09/2017

	Introduction
	Existing GPU Cipher Algorithms and Their Corresponding Implementations
	Dynamic Key Derivation Function
	Construction of Dynamic Cipher primitives
	Proposed Stream Cipher Algorithm
	Security Analysis
	Performance Analysis
	Conclusion

