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Abstract

Internet of Things (IoT) and wearable systems are very resource limited in terms

of power, memory, bandwidth and processor performance. Sensor time series

compression can be regarded as a direct way to use memory and bandwidth re-

sources efficiently. On the other hand, the time series classification has recently

attracted great attention and has found numerous potential uses in areas such

as finance, industry and healthcare. This paper investigates the effect of lossy

compression techniques on the time series classification task using deep neural

networks. Furthermore, this paper proposes an efficient compression approach

for univariate and multivariate time series that combines the lifting implementa-

tion of the discrete wavelet transform with an error-bound compressor, namely

Squeeze (SZ), to attain an optimal trade-off between data compression and data

quality.

Keywords: IoT applications, Energy efficiency, Lossy compression, Data

reduction, Time series classification, Deep neural networks, Discrete wavelet

transform, lifting scheme

∗Corresponding author
Email addresses: joseph.azar@univ-fcomte.fr (Joseph Azar),

abdallah.makhoul@univ-fcomte.fr (Abdallah Makhoul),
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1. Introduction

The world is becoming increasingly connected and intelligent through the

Internet of Things (IoT), which can be defined as a wireless network of smart

sensing devices connected to the Internet, ready to collect and transmit data

supported by embedded devices or sensor networks. IoT devices are generally

composed of five main components: 1) sensors, 2) processor, 3) memory, 4)

communication module, and 5) battery. Many of these devices are connected by

a gateway functionality that is capable of communicating with the sensors and

providing storage and processing capabilities. This gateway could be located in

the cloud or at the edge.

Time series data collected from IoT devices such as sensors, machines, and

wearables, are becoming the most widespread. These data are generated with

high velocity from different real-world applications such as healthcare, manu-

facturing, agriculture, and urban infrastructure [1] [2], and transmitted to cloud

or edge processing.

One of the main issues with IoT applications is the huge volume of col-

lected data. The on-board signal processing and compression algorithms could

be used to avoid this problem and therefore avoid the transmission and storage

of large amounts of data. Generally, radio communication dominates energy

consumption. Therefore, data compression can significantly decrease communi-

cation energy costs by reducing the number of bits to be transmitted and thus

increase the lifetime of the device [3]. Consequently, this directly affects the

energy consumption and battery life of the devices in addition to the storage

requirements of the transmitted data, enabling much less data to be managed.

Data compression algorithms can be divided into two types: lossless and

lossy compression. Lossless compression does not involve data loss, while lossy

compression leads to data loss. However, the maximum level of compression that

can be achieved without loss is limited. This limited compression ratio is un-

fortunately a big drawback in the context of IoT data and resource constrained

devices covered by this paper. On the other hand, lossy techniques cannot re-
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construct the original data from the compressed data. This does not mean,

however, that reconstructed data are of low quality. A good lossy compressor

maintains the critical information while dropping, for example, the relatively

useless data such as noise.

While on-board lossy compression techniques can increase the lifetime of

IoT devices and enormously reduce the amount of data sent to the gateway,

the impact of compression ratios on data analysis can not be neglected. The

time series collected from IoT applications are transferred to the edge or cloud

for processing. Time Series Classification (TSC) is a major and challenging

problem for mining received data. TSC research have found a large number of

potential applications in areas such as finance, health care, and industry. Deep

Neural Networks (DNNs) are among the promising techniques used recently for

TSC [4]. The main advantage of end-to-end DNN models over state-of-the-art

approaches is their lack of heavy preprocessing on raw data.

In an IoT Big Data architecture, time series data pass through different

phases. An example of IoT Big Data architecture can be composed of four layers

as shown in Figure 1 [5]. In the first layer, time series data are generated from

different IoT sources and then collected and compressed prior to transmission.

The second layer provides communication between IoT devices and gateways

using different communication technologies. The third layer is the main layer of

the entire analytical system that processes the data using tools such as Apache

Storm and Spark. In this layer, the classification of time series data takes place.

The fourth layer is responsible for the interpretation and use of the generated

results. In real world applications, time series data are highly compressed in

layer 1 before their processing in layer 3.

Most of the proposed compression techniques for IoT in the state-of-the-art

focus on compression ratio, distortion level, and energy consumption in the first

layer and ignore classifier performance in the third layer. This paper focuses on

time series compression and classification tasks, and studies the impact of the

compression task on classification task in IoT applications. The stated problem

in this work can be formulated as follow: How does the use of time series lossy
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Figure 1: Example of IoT Big Data architecture

compressors on IoT nodes affect the classification performance of deep learning

models?

Given the severe resource constraints of IoT nodes, the following metrics

must be considered by a compression technique targeting IoT application char-

acteristics: (1) Transmission saved energy must be higher than the energy con-

sumed for processing. (2) Limited on-chip memories are used by embedded

processors on IoT nodes. (3) The compression algorithm can be adapted to any

application, sensor or activity. (4) Suitable for near real-time applications. (5)

Easy to deploy and adapt to various nodes. (6) High compression ratio capabil-

ity while maintaining data quality. (7) Ability to handle multi-sensor readings

on one device.

One of the main contributions in this paper is the comparison of three well-

used lossy compression techniques in the literature, namely compressed sensing,

discrete wavelet transform, and error-bounded compression in terms of com-

pression ratio and classification performance impact.

On the basis of this comparison, this paper proposes a new approach that

combines advantageous properties of the discrete wavelet transform with the

Squeeze (SZ) compressor, taking into account all the above-mentioned metrics

and requirements.

The remainder of this paper is as follows. Related work in time series com-

pression and classification are reported in section 2. Deep learning algorithms
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used for time series classification are summarized in section 3. The compression

techniques used in this paper are presented in section 4. Section 5 details the

proposed compression scheme. Experimental results are detailed in section 6

and discussed in section 7, and the conclusion is presented in section 8.

2. Related work

Different data reduction techniques are proposed in the literature to resolve

energy constraints [3][6]. In a recent work, Blalock et al. [7] presented an efficient

high-ratio lossless compression technique for multivariate integer time series,

namely Sprintz, with a significantly lower memory and latency than state of the

art methods. Compared to different compressors, like SIMD-BP128 [8], FastP-

FOR [8], Zstandard (Zstd) [9] and Zlib [10], the proposed algorithm achieved

strong compression ratio, speed and memory requirements. The authors in [11]

proposed a dynamic lossy compression approach to extract valuable information

from IoT data with constant adaptation and information loss. The proposed

technique is based on the lossy Chebyshev compression and yields a compres-

sion ratio of up to 3:1. Various compression algorithms have been proposed

that take advantage of the temporal correlation in the data. A new principle for

delta compression was developed by the authors in [12], which allows the com-

pression of tempo-related data and results in a higher compression ratio and a

lower memory capacity than standard delta coding. Dictionary-based compres-

sors have been proposed to benefit from repetitive patterns in the data. In [13],

the authors proposed a lossless data compression technique called Differential-

Lempel-Ziv-Welch (D-LZW), which consists in finding the difference between

two successive data samples before placing the data in the LZW algorithm. The

authors compared their approach to bzip2 and gzip, showing better results in

compressing electrocardiogram (ECG) data.

With regard to the problem stated in this work, the influence of data reduc-

tion on classification performance was investigated in previous studies. In [14],

the authors examined the effect of compressed sensing and reconstruction algo-
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rithms like Basis Pursuit and Orthogonal Matching Pursuit on ECG arrhythmia

detection using Support Vector Machine (SVM) classifier. The results show that

the classification performance remains stable until a compression ratio of 7:1,

after which Basis Pursuit outperforms Orthogonal Matching Pursuit on ECG ar-

rhythmia detection. In a similar work [15], the authors proposed the compressed

sensing of time series for the recognition of human activities. The results show

that the use of compressed sensing on the original time series increased the

accuracy of classification using Hidden Markov Model from 77% to 95%. The

explanation for this increase in classification accuracy is that the compressed

sensing has some kind of advantageous dimensionality reduction, which facili-

tates pattern recognition. In web page classification, the authors in [16] used

the idea of data reduction to make both summarized and pure data available

as inputs for the classifier. Their study showed that human or machine sum-

maries help improve the performance of the web page classification. In [17], the

authors used a lossy error-bounded compressor to reduce the amount of data

transmitted to the edge node. Their results showed that the compression ratio

did not affect the classification accuracy of medical data, thus increasing the

lifetime of IoT devices and maintaining data quality.

In the following sections, the influence of three compression techniques,

namely Compressed Sensing (CS), Discrete Wavelet Transform (DWT), and

Squeeze (SZ) proposed in [18], on time series classification is studied. Moreover,

the proposed data compression approach is presented.

3. TSC using deep learning

Because time series data have to be properly classified, researchers have

proposed numerous approaches based on deep learning models to solve this task.

An empirical study of the latest DNN architectures for TSC was conducted in

[19], which examines the current state of the art of deep learning algorithms

for TSC. Although many kinds of DNNs exist, two principal DNN architectures

used for TSC have been used in this paper: Convolutional Neural Network
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(CNN), and Recurrent Neural Network (RNN).

3.1. Convolutional Neural Network

CNNs [20] are prevalent to image processing activities, reducing the number

of parameters that need to be learned when the number of neuron connections

in the hidden layer is limited to just certain input neurons (i.e. the local area in

the image input). In many practical applications, CNNs have achieved positive

results, particularly in the field of computer vision. In case of TSC problems, it

is possible for CNNs to learn or automatically extract features from raw input

data. A sequence of observations can be processed as a one-dimensional image,

that can be read and distilled in the most salient elements by a CNN model.

This paper considers two convolutional network architectures: Fully Con-

volutional Networks (FCN), and Residual Network (ResNet). Both of these

architectures have been tested in [21] and attained premium performance to the

state-of-the-art TSC approaches.
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(a) FCN (b) ResNet

Figure 2: The network structure of FCN and ResNet tested in [21]

For semantic segmentation on images, FCN [24] has demonstrated impressive
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Figure 3: The network structure of LSTM-FCN and GRU-FCN proposed in [22] and [23]

respectively

quality and efficiency. The FCN used for TSC is constructed by stacking three

blocks, each of which consists of a convolutional layer with f filters, followed by

a batch normalization layer and a ReLU activation layer as shown in Figure 2-a.

The features are fed into the global average pooling layer after the first three

convolutional blocks, largely reducing the number of weights and the final result

comes from the softmax layer.

ResNet is a deep CNN that uses shortcut connections between successive

convolutional layers for training. The architecture used for TSC consists of 9

convolutional layers, followed by a general average pooling layer as shown in

Figure 2-b.

3.2. Recurrent Neural Network

RNN is a network that has loops. The Long Short-Term Memory, or LSTM,

is a type of RNN. In the context of deep learning, LSTM has recently been widely

used as it is free from the problem of vanishing gradients and offers excellent
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performances and results. LSTM based networks are suitable for classifying

time sequences and replacing many conventional approaches to deep learning.

LSTM-FCN architecture has been proposed in [22]. The authors improved

the previously discussed FCN’s performance by transferring the time-series into

a shuffle layer and subsequently passing it into a LSTM block as shown in

Figure 3-a. The output of the LSTM block is concatenated with the output

of the global pooling layer and the final results are obtained from the softmax

layer.

Similarly, the authors in [23] proposed the GRU-FCN architecture, shown

in Figure 3-b. The proposed architecture has replaced the LSTM with a Gated

Recurrent Unit (GRU), which produces higher classification accuracy.

4. IoT Time Series Compression

In order to study the impact of data compression on the performance of

DNNs for univariate TSC, three compression techniques were considered in this

paper: Compressed Sensing (CS), Discrete Wavelet Transform (DWT), and

an error-bounded lossy compressor, namely SZ. This section describes these

compression techniques.

4.1. Compressed sensing

Compressed sensing is a digital signal processing technique capable of effec-

tively acquiring and rebuilding a signal from a smaller number of measurements.

CS can capture and display sparse signals at a rate that is considerably lower

than the one normally used in the Shannon sampling theorem.

The basic measurement model for compressed sensing is defined as in Equa-

tion 1:

[Y ]M,1 = [φ]M,N [X]N,1, (1)

where X is the original sparse signal of length N , Y is the compressed signal

of length M(M << N), and φ ∈ RM×N is the sensing matrix that enables the

reconstruction of the signal.
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Most signals generally have a low sparsity in the time-domain representation.

The representations of these signals are therefore sparse in the frequency domain

or under a certain basis. In that case, X can be represented using ψ as a sparse

vector as shown in Equation 2:

[X]N,1 = [ψ]N,N [z]N,1, (2)

where z is the frequency/spectral domain representation of the original signal

X, and ψ is the matrix that converts the signal to the temporal-domain from

the spectral-domain. The reconstruction of the signal allows z to be calculated

from Y by combining Equation 1 and Equation 2 as follows:

[Y ]M,1 = [φ]M,N [ψ]N,N [z]N,1. (3)

Note that in this paper, ψ is calculated by applying the inverse Discrete Cosine

Transform upon the columns of the identity matrix. Additionally, the l1-norm

minimization [25], also known as Basis Pursuit, has been employed to recover

the original signal X.

This paper assumes that the data collected are time series of floating point

numbers, so the compressed vector Y contains floating point data. In that

case, to encode the resulting Y vector, an additional lossless entropy coder is

required. This paper utilizes the lossless FPZIP compressor proposed in [26] for

the encoding step.

4.2. Discrete Wavelet Transform

DWT has many advantageous properties that are valuable for time series

data mining [27]. It transforms and analyzes a time series at multiple resolutions

using the so-called wavelets.

The DWT allows a time-frequency representation of a signal. It splits the sig-

nal into low-frequency components (approximations) and high-frequency compo-

nents (details) through the use of filters. The motivation for exploiting the DWT

lies in the transformation of redundant samples in the temporal domain to decor-

related coefficients in the time-frequency domain, which allows the compaction
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of the original samples and their representation with fewer coefficients. Hence,

this process facilitates the study of certain features of the original dataset. The

application cases of the DWT for time series analysis are excessively various,

for example, compression and noise filtering [28][29].

In this paper, the DWT is used for compression by maintaining only a sig-

nal’s approximation data. These approximations are floating point values that

need to be encoded, similar to the compressed sensing method, the FPZIP was

considered.

4.3. Error-bounded lossy compression

The third compression technique used in this article is a fast error-bounded

lossy compressor namely SZ, proposed in [18] for High Performance Computing

(HPC) applications. This compression scheme is intended to handle the huge

quantities of data generated during the implementation of HPC applications.

The SZ technique is based on a prediction method, which corresponds to

the curve fitting designed specifically to comply with error limitations specified

by the user. The SZ compression requires three main steps: linearization of the

input array, adaptive curve fitting and compression of unpredictable data. Three

prediction models are used in the curve fitting step, based on the neighbouring

data values: constant, linear and quadratic. These three models differ by the

number of data points needed to fit the original value. The accepted model is

that which provides the closest approximation. When no model complies with

the predetermined error bound, the data point is denoted as unpredictable and

then encoded by binary representation analysis. The Huffman tree is also used

to encode the data fitted in the curve fitting step, which are converted into

integer quantization factors.

5. Proposed compression approach

In this section, a compression scheme that enables a high compression ratio,

denoises input data, and controls compression/decompression error is presented.

11



It begins by presenting the lifting scheme implementation of the DWT and its

capacity to compress and denoise the input signal, and then details the proposed

compression scheme.

5.1. Faster implementation of the DWT

The conventional method of wavelet transform needs complicated mathe-

matical calculations, making it unfit for resource-constraining devices. Sweldens

had proposed the lifting scheme in [30], a more efficient algorithm for calculating

wavelet transforms and building bi-orthogonal wavelets.

The lifting scheme forward transform consists of three operations: split,

predict, and update. The split operation divides the signal into even and odd

samples. This step is also known as the lazy wavelet transform. In view of

the locally correlated structure of the signal, even and odd samples are strongly

correlated. The predict step predicts odd samples from even samples. Finally,

The update step guarantees that the smoothed approximation signal has the

same average as the initial signal. For a detailed explanation of the lifting

procedure, refer to [29].

There are many benefits of applying the lifting scheme to IoT devices: (1) It

enables a faster implementation of the wavelet transform and is very appealing

for real time applications with low energy. (2) It is memory efficient and enables

a fully in-place calculation. (3) Very easy to understand, implement, deploy and

adapt to various nodes.

5.2. The lifting scheme for noise filtering

The data collected from real world applications are usually noisy. Data

reduction is the primary reason to implement the DWT. Equally important,

eliminating the large variations of data mixed in the collected signal before

transmission can be a crucial step in real-time applications as this step is no

longer required at the edge of the network. Thus, taking less time to process

and classify the transmitted data at the edge/sink.
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Figure 4: Example of two level decomposition of a noisy ECG signal

Figure 4 shows an example of two level decomposition of an ECG signal.

In the first decomposition, the initial signal is divided into approximations and

details. The approximations maintain the information of the initial signal, and

the details contain the fast varying changes that may be regarded as noise. The

second decomposition reapplies the lifting forward transform on the approxi-

mations resulting in level two approximations with fewer data points and less

noise.

This paper proposes to apply the classification methods on the approxima-

tions of the original data. This is driven by the reality that approximations

are smaller in size than the original raw data, leading in quicker implementa-

tion of the algorithms and reducing data access time. In addition, the DWT’s

noise filtering capacity isolates important features from the original signal. The

meaningful data is thus fed to the deep learning model.

5.3. Proposed compression scheme

The data collected from sensors in IoT applications are generally multivariate

time series. An M-dimensional multivariate time series, X = [X1, X2, ..., XM ]

comprises of M different univariate time series. In our compression scheme, the
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Figure 5: Proposed compression scheme for IoT time series classification

first step is to transform each univariate time series into approximation and de-

tail sets using the lifting scheme. This step is referred to as column-lifting. Then

the details are removed, maintaining only an M-dimensional set of approxima-

tions A = [A1, A2, ..., AM ]. Note that the lifting scheme was implemented based

on the Haar wavelet due to its simplicity. Multiple levels of transformation can

be done by reapplying the wavelet function on the approximation coefficients.

The number of levels can be defined by the user depending on the application

and the collected data.

Next, the SZ algorithm processes the approximations array. The motive be-

hind the combination of SZ and the lifting scheme is that SZ is a prediction

method, and how smooth or jagged the time series affects its output. The bene-

fit of the lifting scheme transformation is that it results in a smoother version of

the initial time series that allows the SZ’s bestfit curve-fitting to better predict

the data in the user-required error. When the data reaches the edge/sink, the

time series reconstruction method consists of using the SZ algorithm to decom-

press the compressed approximation coefficients. Then the wavelet-transform

data is introduced into a deep learning model without the need to apply the

inverse wavelet transform and recover the original data. This process is illus-
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trated in Figure 5 and Algorithm 1. The input multidimensional array is firstly

processed by the forward lifting transform. Based on the provided number of

decomposition levels L, the three operations (split, predict, and update) are re-

peated L times. The results of this operation are one matrix of approximation

coefficients A and a set of L matrices of detail coefficients D {d1, ..., dL}. The

proposed approach consists of discarding the set D, considered as noise, and

keeping the approximations only. Then the approximations are converted to

1-D array, SZ’s bestfit curve-fitting is applied and finally the unpredictable data

points are represented using the IEEE 754 binary representation. The output

is a binary array ready to be transmitted to the sink/edge.

Algorithm 1 Proposed compression approach

Require: input (N-D array), E (error bound), L (decomposition levels),

M (num rows), N (num columns)

Ensure: output (binary array)

1: output ← [ ]

2: //forward lifting transform

3: for 1 to L do

4: split(input)

5: predict(input)

6: update(input)

7: end for

8: //get the approximations only

9: A ← approx(input)

10: // SZ compression

11: linearization(A)

12: Bestfit Curve-Fitting Compression(A, output)

13: Compressing Unpredictable Data(A,output)
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5.4. Time complexity and compression performance

The time complexity of the DWT lifting scheme is Θ(N logN), and the time

complexity of the SZ algorithm is Θ(N). Figure 6 shows the execution time in

seconds of the DWT, SZ, and DWT+SZ methods written in C on a Polar M600

watch for different numbers of floating-point data. The results show that the

execution time of the SZ technique is low, and the proposed technique needs

around 0.02 Seconds to process 2000 data points, 0.04 Seconds to process 8200

data points, and around 0.13 Seconds to process 33000 data points.
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Figure 6: Execution time in seconds of the SZ, DWT, and the proposed compression scheme

In order to test how the use of the DWT can help increasing the compression

ratio, 3-axis accelerometer data have been collected over 80 periods (1 period

= 30 seconds). The user was at rest for the first 40 periods (sitting on a chair)

and walking for the last 40 periods. Figure 7 shows the number of transmitted

bytes after the compression of 36864 bytes of accelerometer data using SZ and

DWT+SZ methods. The results show that the averages of the transmitted bytes

per period are 742 bytes at rest and 1062 bytes at walking using SZ, and 446

bytes at rest and 718 bytes at walking using the proposed approach.
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6. Experimental Results and Analysis

The discussed compression techniques and classification models were tested

on 8 UCR univariate time series datasets [31], 1 UCI multivariate time series

dataset [32] and 3 UEA multivariate time series datasets [33]. Table 1 describes

these time series and shows their source (ECG, Motion, Sensor, etc.), the size of

the training and testing sets, the number of classification classes, the length of

the time series and their type (U: univariate, M: multivariate), and the number

of multivariate time series features. The results acquired on univariate and

multivariate time series are presented in the followings of this section.

6.1. Selection of decomposition levels and error-bound

This section discusses the SZ error-bound value selection and the number

of decomposition levels for the lifting scheme. The main goal of this paper’s

study is to come out with an approach that considers the trade-off between the

compression ratio and the classification performance. To answer this question,
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Dataset Type # Classes Length Train size Test size # Features Type

ECG5000 ECG 5 140 500 4500 1 U

Adiac Sinusoidal 37 176 390 391 1 U

NonInvECGTh1 ECG 42 750 1800 1965 1 U

NonInvECGTh2 ECG 42 750 1800 1965 1 U

StarLightCurves Sensor 3 1024 1000 8236 1 U

UWaveX Motion 8 315 896 3582 1 U

UWaveY Motion 8 315 896 3582 1 U

UWaveZ Motion 8 315 896 3582 1 U

HAR [32] Motion 6 128 7352 2947 9 M

ECG [33] ECG 2 152 100 100 2 M

UWave [33] Motion 8 315 200 4278 3 M

Wafer [33] Motion 2 198 298 896 6 M

Table 1: The descriptions of the utilized datasets based on [32], [33], and [31]

an empirical approach was taken, recording the model’s classification accuracy

trained on each dataset with different SZ error-bound and DWT decomposition

level.

Figure 8 shows the outcome of the experiment on two datasets, namely Adiac

and NonInvasiveFatalECG Thorax1. For the SZ algorithm, the results show

that the classification accuracy for an error bound of 10−3 remains very similar

to that of the model trained on the original dataset, but the compression ratio is

low compared to other compression settings. The highest compression ratio was

achieved for an error bound of 10−1, but the classification performance dropped

significantly. Using a 10−2 error bound resulted in a good balance between clas-

sification accuracy and compression ratio. As for the number of decomposition

levels, it can be seen that doing more than two wavelet decompositions greatly

reduces classification accuracy while one level decomposition keeps the accuracy

similar to the one of the original model and two levels decomposition helps to

improve the compression ratio at the cost of slightly sacrificing the classification

performance.

In this paper the proposed approach is to combine the lifting scheme with

SZ. Two combinations were considered in the followings according to the above
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Figure 8: Accuracy vs compression ratio for different SZ error-bound values and DWT decom-

position levels. The graphs correspond to Adiac and NonInvasiveFatalECG Thorax1 datasets

experiment: DWT L1+SZ E-2 and DWT L2+SZ E-2.

6.2. Univariate time series

The first studies were conducted on univariate time series. Two metrics were

considered: compression ratio and classification performance.

6.2.1. Compression ratio

The following compares the compression ratios of the techniques discussed

in sections 4 and 5. Different variations of these techniques with different com-

pression ratios were considered as follows:

• SZ E-1: SZ with an absolute error bound of 10−1 (the decompressed value

should be within the range [V − 10−1, V + 10−1])
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• SZ E-2: SZ with an absolute error bound of 10−2

• SZ E-3: SZ with an absolute error bound of 10−3

• CS20: Compressed sensing with M = N×20
100

• CS40: Compressed sensing with M = N×40
100

• DWT L2: Two level DWT decomposition using Haar wavelet

• DWT L1: One level DWT decomposition using Haar wavelet

• DWT L1 + SZ E-2: One level DWT decomposition using the lifting scheme

based Haar transform followed by SZ with an absolute error bound of 10−2

• DWT L2 + SZ E-2: Two levels DWT decomposition using the lifting

scheme based Haar transform followed by SZ with an absolute error bound

of 10−2

To compare the performance of the aforementioned techniques, the compres-

sion ratio (CR) is calculated as follows:

CR =
original data

compressed data
(4)

ECG5000 Adiac
NonInv-

ECGTh1

NonInv-

ECGTh2

StarLight-

Curves
UWaveX UWaveY UWaveZ

SZ E-1 14.73 34.37 36.73 37.91 69.82 32.97 35.07 33.97

SZ E-2 5.83 10.18 10.33 10.77 29.34 10.48 11.40 10.91

SZ E-3 3.07 4.58 4.81 4.90 10.85 5.61 6.12 5.63

CS40 3.12 3.2 3.43 3.46 3.73 4.11 4.34 4

CS20 6 6.12 6.62 6.68 7.14 7.57 7.97 7.54

DWT L2 4.8 4.9 5.28 5.33 5.71 5.31 5.39 5.31

DWT L1 2.52 2.58 2.74 2.77 2.99 2.92 2.98 2.91

DWT L1 + SZ E-2 9.06 13.09 13.95 14.48 29.89 13.23 13.93 13.40

DWT L2 + SZ E-2 12.3 18.8 21.2 21.7 32.7 19 19.7 19.1

Table 2: Compression ratios achieved by the different data compression techniques on the

UCR univariate time series [31]

20



The obtained results are shown in Table 2. Table 2 shows the compression

ratio of the different compression techniques. It can be seen that the best results

are achieved by the SZ method. The closer the absolute error bound value is

to zero, the higher the compression ratio is. As for the compressed sensing, the

compression ratio depends on M , and on the number of decomposition levels in

the case of DWT. Note that CS and DWT outputs are encoded using FPZIP.

As for the proposed approach, it can be seen that combining the SZ method with

an appropriate error-bound and the DWT helps to achieve a higher compression

ratio. For instance, SZ with an absolute error of 10−2 achieves a compression

ratio of 5:1 on the ECG5000 dataset, while the compression ratio has been

increased to 9:1 and 12:1 when combining SZ with DWT with one level de-

composition and two levels decomposition respectively. The reason behind the

improvement in the performance resides in the fact that each decomposition

level of the DWT results in a more smoothed and correlated approximation co-

efficients. As a result, the SZ computes the approximation coefficients instead of

all the data points in a time series. Furthermore, the DWT removes the noises

from a time series, allowing the SZ method to perform better and to produce

better results.

6.2.2. Classification performance

This section compares the four DNN models’ classification performances on

the compressed univariate time series. The considered experimental adjustments

for these models are shown in Table 3.

In this paper, the datasets used contain periodic and non-periodic time se-

ries. Periodic time series are like ECG and sinusoidal data, and non-periodic

time series are like motion data. Each of the four DNN models was applied 5

times on the different compressed versions of the time series and the average

accuracy was recorded. Figures 9 and 10 represent each time series in a radar

chart showing the accuracy metric obtained by each of the four NN models

implemented with Keras on the compressed variants of the time series. Note

that Figure 9 shows the periodic univariate time series and Figure 10 shows the
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Resnet LSTM FCN GRU FCN FCN

Epochs Batch Epochs Batch Epochs Batch Epochs Batch

ECG5000 200 16 400 128 400 128 200 128

Adiac 1500 16 4500 128 4500 128 1500 128

NonInvECGTh1 1500 16 4500 128 4500 128 1500 128

NonInvECGTh2 1500 16 4500 128 4500 128 1500 128

StarLightCurves 500 16 1000 128 1000 128 500 128

UWaveX 750 16 2000 128 2000 128 750 16

UWaveY 750 16 2000 128 2000 128 750 16

UWaveZ 750 16 2000 128 2000 128 750 16

Table 3: Experimental adjustments used in the implementation of the four DNN models

non-periodic univariate time series.

It can be seen from these figures that the SZ method with an absolute

error of 10−1 does not maintain the quality of the time series. Although it has

the highest compression ratio, the classification accuracy of most datasets has

been greatly affected. For example, the maximum classification accuracy values

obtained on the uncompressed Adiac dataset and the compressed Adiac dataset

with SZ E-1 ( Figure 9 ) are 0.83 and 0.64 respectively. This can show the effect

of data compression on the classification task. The SZ with absolute errors of

10−2 and 10−3 slightly affected the performance of the DNN models.

As for the CS method, the reconstruction quality of the compressed data

was not satisfactory. In spite of the fact that the CS method is known to re-

construct a signal perfectly, the signal must be S-sparse, meaning noise-free, in

order to be perfectly reconstructed, which is not the case for the time series

used and the most real life data collected from IoT devices. This explains the

performance decrease of the classifiers when working on reconstructed time se-

ries using CS. It can be noticed that the classification performance of the DNN

models is highly affected by parameter M . For example, on the uncompressed

Adiac dataset, the maximum accuracy achieved is 0.84 versus 0.66 on the re-

constructed dataset from 40% of the original data points (CS 40) and 0.4 on

the reconstructed dataset from 20% of the original data points (CS 20). On the

other hand, the classification performance of the models was slightly affected
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Figure 9: Accuracy metrics achieved by the four DNN models on the compressed periodic

univariate time series

by the DWT method, which was able to maintain the quality of the data. This

can be explained by the denoising ability of the DWT method. The results

also show that the classification accuracy values of the time series compressed

with the proposed approach (DWT L1 + SZ E-2 and DWT L2 + SZ E-2) re-

mained very close to those of the uncompressed time series. Taking into account

the trade-off between compression ratio and classification performance, the pro-

posed approach has yielded the best results on the univariate time series. It

is important to note that the performance of the Resnet model was the most

robust against compression in the experiments conducted. This can be seen in

Figures 9 and 10, where data is compressed with SZ E-1 and CS 20, Resnet has

produced the best accuracy compared to other models.
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Figure 10: Accuracy metrics achieved by the four DNN models on the compressed non-periodic

univariate time series

6.3. Multivariate time series

The compression approach presented can handle both univariate time se-

ries and multivariate time series. The followings address the effectiveness of

the proposed approach when dealing with multivariate time series in terms of

compression ratio, classification performance, and energy efficiency.

6.3.1. Compression ratio

The compression ratio of the different compression techniques achieved on

the 3 UEA multivariate time series datasets in addition to the reconstruction

time in seconds are shown in Table 4. Compared to the results obtained on

the univariate time series, SZ with 10−1 error-bound and the two combinations

of DWT and SZ achieved the highest compression ratio. However, in the case

of multivariate time series, DWT L2+SZ E-2 outperformed SZ E-1 for UWave
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and Wafer datasets, and the compression performance of DWT L1+SZ E-2 be-

came closer to that of SZ E-1. As for the reconstruction time, for the compressed

sensing technique, the time needed to reconstruct the compressed data increases

with the number of features in a dataset. This can be explained by the fact that

CS uses a method of optimization to recover the data, and the more features a

dataset has, the greater the process of minimizing the l1-norm. The SZ method’s

reconstruction time ranged from 0.02 to 0.05 seconds, making it very suitable

for applications requiring quick decision-making. As for the DWT, the recon-

struction time was not calculated since this paper’s proposed solution is to use

the approximation coefficients directly for classification without reconstruction

of the original data.

ECG UWave Wafer

CR
rec time

(sec)
CR

rec time

(sec)
CR

rec time

(sec)

SZ E-1 27 0.02 6.46 0.04 12.9 0.05

SZ E-2 5.4 0.02 3.36 0.03 4.4 0.05

SZ E-3 2.5 0.02 2 0.03 2.66 0.05

CS 40 2.8 15.4 2.7 255 2.64 280.2

CS 20 5.35 27.4 5.42 300.6 5.29 308.7

DWT L1 4.6 - 5.37 - 5.4 -

DWT L2 2.4 - 3 - 2.9 -

DWT L1+SZ E-2 12.6 0.02 6 0.03 8.37 0.05

DWT L2+SZ E-2 19.6 0.02 11.2 0.03 15.2 0.05

Table 4: Compression ratios and reconstruction time (seconds) achieved by the different data

compression techniques on the UEA multivariate time series [33]

Another experiment was carried out in which 300 batches of 1000 feature

vectors were taken from the HAR [32] dataset, each containing 9 features, and

deployed on a Polar M600 wearable. We considered that each batch corresponds

to a period of time. The techniques described in the previous section compress

the corresponding batch for each period and the resulting number of bytes is

recorded. After 300 periods, the average number of output bytes for each com-
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pression method is calculated with the standard deviation. The obtained results

are shown in Figure 11
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Figure 11: Compression of [1000× 9] batches of the HAR [32] dataset over 300 periods. Next

to each compression technique is shown the average number of bytes per period alongside the

standard deviation (shown in parenthesis).

Figure 11 indicates two main things: (1) the combination of DWT and

SZ improved the compression performance, (2) the standard deviation of the

number of bytes after compression at each period is high for SZ relative to CS

and DWT. The latter can be explained by the fact that the compressed data are

motion data (accelerometer and gyroscope), and these time series are generally

jagged and vary rapidly between different activities (sitting, walking, running,

etc). Since SZ is based on a prediction mechanism, its performance depends

heavily on the characteristics and variability of the data. For the same reason,
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using DWT increased the performance of SZ due to each level of decomposition

resulting in a smoother version of the data.

6.3.2. Classification performance

The FCN model was used to evaluate the effectiveness of our compression

approach on the multivariate datasets. The data processed by the model are

tensors with the dimensions (samples, seq len, n channels), where samples is the

number of training examples, seq len is the number of steps in the time series,

and n channels is the number of columns (features) in the data.

The FCN model was trained on three variants of the data. In the first

one, the model processes the original data. In the second and third variants,

the model processes the approximations resulting from one level decomposition

(seq len = length
2 ) and two levels decomposition (seq len = length

4 ) using the

column lifting. Note that the length of each dataset is shown in Table 1.

Dataset Input data Length Accuracy

ECG

original 152 0.87

level 1 approximations 76 0.86

level 2 approximations 38 0.72

UWave

original 315 0.93

level 1 approximations 157 0.93

level 2 approximations 78 0.80

Wafer

original 198 0.98

level 1 approximations 99 0.98

level 2 approximations 49 0.89

HAR

original 128 0.93

level 1 approximations 64 0.93

level 2 approximations 32 0.92

Table 5: Classification accuracy achieved by the FCN model on the multivariate time series

datasets

Table 5 shows the classification accuracy achieved by the FCN on the four

datasets with different input data. The results show that the model was able

27



to learn from compressed data. The results also show that training on level-

2 approximations decreased classification performance compared to training on

level-1 approximations for ECG, UWave, and Wafer datasets. The model, on the

other hand, learned well from the HAR dataset’s level-2 approximations. The

amount of training data will explain this discrepancy. The training size of the

ECG, UWave, and Wafer datasets ranges from 100 to 300, while the training

size of the HAR dataset is 7352, as shown in Table 1. The small amount of

training data did not help the model to learn from level-2 approximations the

necessary structure.

6.3.3. Energy efficiency

The proposed compression scheme was implemented on a Polar M600 wear-

able using Android NDK toolset in order to test the impact of data compression

on energy conservation. The collected data are multivariate time series consist-

ing of 3-axis accelerometer. These time series are transmitted to a local PC

using Android (Bluetooth Low Energy) BLE after each period. Figure 12 shows

the wearable battery level change over 120 periods (1 period = 1 min) for four

distinct situations:

• Yellow line: the wearable device is in the idle state

• Red line: the wearable device is continuously collecting data (motion sen-

sors are turned on)

• Green line: The wearable device is continuously collecting data and com-

presses and transmits data after each period

• Blue line: the wearable device is continuously collecting data, and trans-

mits data after each period (no compression)

The results show that the battery level decreased to 76% when continuously

collecting data, to 72% when performing sensing, compression, and transmis-

sion, and to 56% when performing sensing and transmission. Note that we set

the sensing frequency for testing purposes to the maximum in this experiment,
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Figure 12: Polar M600 battery level over 120 periods for the four situations: Idle, Sensing,

Sensing+compression+transmission, and sensing+transmission

generally gathering data with the default sensing frequency does not consume

so much energy. From these outcomes, it can be seen that by implementing

the proposed compression scheme, the device’s lifetime can be improved by 16%

after 2 hours.

7. Discussion

Various insights can be taken on the basis of the experiments conducted in

this study. Recall that the main goal is to propose a compression approach that

will help maximize an IoT device’s lifetime. It operates on multivariate time

series and floating point data efficiently. It can be tailored to any application,

sensor or activity and suitable for near real-time applications.

The compressed sensing method with a low value of M showed a good com-

pression ratio but after reconstruction did not maintain the required data fea-

tures, thus decreasing the quality of the classification. Another weak point for
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compressed sensing is the reconstruction time, which is highly dependent on

the data size and the number of features. Note that compressed sensing works

perfectly when the sparsity of the data is high in the time/frequency domain,

which is not always the case in IoT applications. On the other hand, the SZ

method yielded a high compression ratio and the classification performance re-

mained intact with the appropriate error-bound. One concern about SZ is that

its performance depends on the stationarity of the time series as shown in Fig-

ure 11.

The proposed approach of using the discrete wavelet transform as a denois-

ing and smoothing step prior to SZ can be useful for applications where the

time series collected are jagged, such as recognition of human activity where

high variations can be found between consecutive data points. The proposed

approach helped to increase the compression ratio and maintain classification

performance when using DWT with one level decomposition. Training a neural

network with two levels decomposition approximations decreased the classifica-

tion accuracy by up to 13% for some datasets. Two things can be recommended

to solve this problem: (1) Increasing the size of the training set or testing this

approach on datasets such as HAR [31] which contain a good amount of training

data enabling the model to learn from the compressed time series the necessary

features. (2) Test this approach with wavelets that are more complex than the

Haar wavelet. The selection of the corresponding wavelet family is considered

for future work.

8. Conclusion

Considering that IoT devices are generally limited in calculation, storage

and energy, data compression can be seen as an effective way to increase the

lifetime of these devices. An empirical study has been conducted in this paper to

identify appropriate compression ratios, which maintain important information

from different time series. Different variations of compression techniques were

considered based on an error-bound lossy compressor, namely SZ, the Discrete
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Wavelet Transform (DWT), and the Compressed Sensing (CS). Additionally, a

new compression approach that combines the DWT lifting scheme and SZ has

been proposed. The proposed method can manage univariate and multivari-

ate time series effectively, attain a high compression ratio, and can be easily

implemented and tailored to various applications.

In order to study the impact of time series compression on the classification

task, four newly proposed deep neural networks for time series classification

(TSC) were implemented. The experimental results showed that using DWT as

a transformation step followed by SZ helps to denoise input data and enables

SZ to compress more smooth approximation coefficients resulting in a higher

compression ratio.

In addition, this paper suggested to use the frequency-domain coefficients as

an entry to the classification models, showing that deep learning models can still

learn features from compressed data and attain good classification accuracy.

Acknowledgment

This work is partially funded with support from the Hubert Curien CE-

DRE programme n40283YK and the EIPHI Graduate School (contract “ANR-

17-EURE-0002”). Computations have been performed on the supercomputer

facilities of the ”Mésocentre de calcul de Franche-Comté”.
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