
DistLog: A Distributed Logging Scheme for IoT
Forensics

Hassan N. Noura1, Ola Salman1, Ali Chehab1, and Raphaël Couturier2

1Electrical and Computer Engineering, American University of Beirut (AUB), Beirut, Lebanon
2Univ. Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute, CNRS, Belfort, France

Abstract—Digital forensics are vital in the Internet of Things
(IoT) domain. This is due to the enormous growth of cyber
attacks and their widespread use against IoT devices. While IoT
forensics do not prevent IoT attacks, they help in reducing their
occurrence by tracing their source, tracking their root causes and
designing the corresponding countermeasures. However, modern
IoT attacks use anti-forensics techniques to destroy or modify
any important digital evidence including log files. Anti-forensics
techniques complicate the task for forensic investigators in
tracking the attack source. Thus, countermeasures are required
to defend against anti-forensics techniques. In this paper, we aim
at securing the IoT log files to prevent anti-forensics techniques
that target the logs’ availability and integrity such as wiping
and injecting attacks. In the proposed solution, and at regular
intervals of time, the logs generated by IoT devices are aggre-
gated, compressed and encrypted. Afterwards, the encrypted logs
are fragmented, authenticated and distributed over n storage
nodes, based on the proposed Modified Information Dispersal
Algorithm (MIDA) that can ensure log files availability with a
degree of (n−t). For data dispersal, two cases are considered: the
case where the fog nodes are interconnected and the case where
they are not. For the former case, the n obtained fragments are
transmitted to n neighboring IoT devices (aggregation nodes).
However, for the latter one, the output is transmitted to the
corresponding fog and then, dispersed over the n neighboring fog
nodes. A set of security and performance tests were performed
showing the effectiveness and robustness of the proposed solution
in thwarting well-known security attacks.

Keywords— Protecting Log Files; Anti-Forensics; Anti-
Forensics IoT; IoT digital forensics; Log files availability;
Preserving evidence

I. INTRODUCTION

Digital forensics is a branch of forensic science that deals
with the investigation of digital crimes, which are basically
attacks on digital devices. There are many sub-categories of
digital forensics based on the targets, including computer
forensics, network forensics, mobile forensics, etc. The ability
to carry on digital investigation is directly related to the
availability of evidence, mainly within log files. These include
banks of data, which can help investigators in retrieving
information about the crime’s causes and tracing back their
sources (computer, laptop, tablet) [1]. This, consequently,
leads to the detection of the attacker’s location and/or seizure.
In the era of the Internet of Things (IoT), digital forensics
will play a key role in investigating the crimes committed
against IoT devices [2], [3]. However, modern IoT attacks
employ anti-forensics techniques to hide any evidence that

can be traced back to the attackers. One of these techniques
is to delete or modify the log files.

In this context, securing the logs of IoT devices is critical
to limit the number and effect of security attacks. To secure
these logs, many solutions have been proposed in the
literature, primarily using cryptographic solutions that consist
of encrypting the logs and saving them at the device level or
at a trusted third party. However, the majority of IoT devices
exhibit limited processing and storage capacities and thus,
securing and keeping the log files at the device level is not
practical nor effective.

Log files should be protected in a reliable and robust manner
that prevents their modification or loss. Hence, ensuring the
integrity, confidentiality, availability and authentication of
log files is essential in the IoT forensics domain (or in any
network of interconnected devices such as the case of drones
and robots).

The importance of IoT log files has been recently high-
lighted by some attacks, which also targeted the deletion or
modification of these logs to complicate the IoT forensics
investigation [4]. The aim of this work is to ensure the
confidentiality, integrity, source authentication, in addition to
the availability of these log files.

The rest of this paper is organized as follows. Section I
presents the related work to logs security. In Section III,
we give an overview about the main logs-related attacks,
secret sharing, compression and aggregation. In Section IV,
the proposed solution for securing IoT log files is presented
including the network model, and the threat model. Section V
describes the derivation process of the required cryptographic
primitives needed for the proposed scheme. In Section VI,
we present our proposed logs security scheme. Section VII
analyzes the security of the proposed scheme against the main
log-related attacks. Section VIII discusses the cryptanalysis
results including tests for randomness, uniformity and key
sensitivity. In Section IX, we evaluate the performance of
the proposed scheme in terms of storage and computation
overhead. Finally, Section X concludes this article.

II. RELATED WORK

Securing log files has always been a major goal to the area
of digital forensics. Several techniques have been proposed to
preserve the logs’ confidentiality, integrity, or availability.

A. Encryption-based

Encryption-based solutions, to preserve the logs’
confidentiality, rely on either symmetric or asymmetric
encryption. Symmetric algorithms have the advantage of
being less computationally expensive, but with the strict
requirement of securing the shared secret key. On the other
hand, the asymmetric techniques resolve the problem of key
management, but exhibit a higher complexity and require a
specialized infrastructure (Public Key Infrastructure (PKI))
for key distribution.

In [5], Bellare and Yee proposed a scheme based on
forward integrity; the Message Authentication Codes
(MAC) of the received logs are added sequentially, and the
symmetric key is updated at regular intervals. As such, if
one key is compromised, modifying past entries is not a
straightforward task. Although this scheme preserves the logs’
integrity, however, it does not ensure their confidentiality and
availability. A similar scheme was proposed by Schneier and
Kelsey in [6] to secure the logs by a chain of log MACs.
Thus, the secret key is pre-shared between the logging devices
and updated after each log entry. Waters et al. proposed
to secure logs using public key schemes in [7]. Holt et
al., in [8], proposed Logcrypt, which combines public-key
cryptography with MAC, resulting in digital signatures of the
corresponding logs.

Ma and Tsudik proposed FssAgg [9], which stands for
"Forward-Secure Sequential Aggregate", a scheme that
uses an aggregated chain of signatures to achieve public
verification and thwart malicious attacks aiming at deleting
logs. This way, any device having the public key is able
to verify the integrity of the received log. Extending
FssAgg, Yavuz et al. proposed the Blind-Aggregate-Forward
(BAF) solution [10], an efficient and publicly verifiable
cryptographic scheme. However, the verification of one log
entry requires the verification of all log entries. Additionally,
if the verification fails, it is not possible to know which
entry has been modified. Thus, the authors proposed a
variant of Fast-Immutable BAF (FI-BAF) in [11] to solve
the problem of fine-grained verification. FI-BAF saves the
aggregation of the signatures and the individual ones, leading
to a storage overhead double that of BAF. In a more recent
work [12], Yavuz et al. proposed the Log Forward-secure
and Append-only Signature (LogFAS) scheme to ensure high
level verification with storage efficiency, using the Schnorr
signature scheme. It consists of verifying the aggregation
of logs instead of verifying each log separately. Recently,
in [13], Hartung et al. showed that LogFAS [12] and two
variants of FssAgg [9] are prone to four attacks enabling

secret key recovery and log forgery.

Other than the hash-chain approaches, another work was
proposed in [14] based on Merkle trees. In [15], Crosby and
Wallach proposed a scheme based on a history tree, which
enables the verification of individual log events in an efficient
way. Tree-based schemes are storage efficient but they require
logarithmic complexity, in terms of computations, to generate
integrity proofs.

B. Secure Hardware

Another approach for securing logs is based on hardware
security, such as the introduction of security-related instruction
codes, the Software Guard Extensions (SGX). SGX-Log was
proposed by Karande et al. in [16] to secure the logs by
saving them on a single SGX node. In addition to the security
provided by cryptographic solutions, SGX ensures the
security of the keys. In this case, the logs confidentiality and
integrity are preserved but their availability is not. Nguyen
et al. proposed Cloud-based secure logger for medical
devices in [17]. The scheme consists of streaming medical
logs to an Intel SGX-based server application (enclave).
The communication of logs is secured by Transport Layer
Security (TLS). Also, a hash-chain containing a signature
of each record is computed upon the receipt of each log
record. Log hash-chains are verified by the application server
using the sealing mechanism. In [18], Sinha et al. combined
block-based hash-chains with SGX to secure the log integrity
and confidentiality.

Nguyen et al. proposed LogSafe to ensure the Confidential-
ity, Integrity and Availability (CIA) of logs pertaining to IoT
devices [19]. LogSafe consists of storing the device logs on
one or more cloud nodes running SGX. The confidentiality
is ensured by applying the Advanced Encryption Standard
(AES) encryption algorithm. The integrity is ensured by using
hash chaining. In addition, a counter-based snapshot is used
to defend against replay attacks. The availability is ensured by
performing backup on a different node at a different location
to alleviate the risk of Distributed Denial of Service (DDos)
attacks. However, the proposed solution has limited availability
protection, given that a backup is done on only one device and
presents a storage overhead given that the data is duplicated.
EmLog was proposed in [20]. The constrained nature of
IoT devices was considered for supporting Trusted Execution
Environments (TEEs). The proposed solution stores the logs
in a centralized entity based on a dynamic key approach.
C. Cloud and Blockchain Based

Another secure log storage approach was based on the
Cloud by introducing the secure storage-as-a-service. In [21],
secure logging-as-a-service was proposed by pushing the logs
to the cloud. Similarly, a cloud-based log storage scheme was
proposed in [22]. More recently, block-chain based storage
was considered for a distributed storage solution. In [23], the
authors benefit from the distributed nature of blockchains to
propose a decentralized storage and verification system for IoT

digital evidence. In the proposed solution, the meta-data and
hash are saved in Cyber Blockchain Trust (CBT). However,
the privacy of evidence is not well protected given that they are
saved in a permission-ed ledger built on top of HyperLedger
Fabric. Moreover, the computational challenge associated with
the blockchains’ proof-of-work make them inappropriate for
IoT limited devices.

As summarized in TABLE I, many of the existing solutions
exhibit a high overhead in terms of processing and storage re-
quirements, and as such, they are not designed for IoT systems.
Moreover, the scalability of these solutions is constrained
by the enormous amounts of logs generated within the IoT
domain, which makes the chain-based verification unfeasible
(e.g.blockchain). On the other hand, ensuring availability by
duplicating logs (i.e. backup) presents a high storage overhead.
In addition, storing logs on a secure hardware at the cloud
does not prevent the availability attacks. Thus, there is a
need for a lightweight and efficient scheme that protects logs’
confidentiality, integrity and availability. In this context, IDA is
a promising solution since it exhibits a small overhead in terms
of computations, communication and storage, when compared
to other secret sharing variants such as the Shamir scheme.
Moreover, IDA requires less storage overhead compared to
traditional backup solutions.

The main contributions of this paper stem from the limita-
tions of the existing work, within the IoT forensics domain,
for the protection of log files, as summarized below:
• The design of a distributed logs’ security scheme based

on a lightweight message authentication-encryption algo-
rithm, in addition to the Modified IDA to ensure all data
security services, availability, integrity, and confidential-
ity with source authentication.

• Modifying the IDA scheme to ensure logs’ availability
based on a distributed storage scheme. The logs are
encrypted and then separated into n fragments to be
stored at n IoT devices or fog nodes. This guarantees data
redundancy since only t out of n fragments are needed
to reconstruct the original logs.

• The encryption algorithm and the hash function are
lightweight, with minimal resource requirements, yet
offering a high security level. The dynamic key-based ap-
proach is adopted to generate the permutation, selection,
and update tables, in addition to the IDA matrices, which
strikes a good balance between the required performance
and security level.

III. BACKGROUND

In this section, we discuss the main attacks that might
compromise the security of the logs. Also, we briefly explain
the main concepts behind our scheme including aggregation,
compression, secret sharing and fog computing.

A. Log Files and IoT Digital Forensics

Every application includes some sensitive log files, which
are considered the primary source of information for forensics
investigations. As such, these must be secured, especially if

located within non-trustworthy devices such as the case of
IoT devices. If an attacker compromises an IoT device, the
logs should be protected from any manipulation since these
are used to identify, analyze and diagnose any occurring event
within these devices. In fact, attackers are able to discover and
scan for any design flaw, misconfiguration, software bug, or
some exploitable vulnerability to compromise these devices,
and logs can be used to track the events around the attack, to
trace it and investigate its causes.

Due to the vast adoption of IoT technology, the need for
security and forensics becomes essential. From a cyber-crime
perspective, log files (used for monitoring and accountability)
should not be destroyed nor modified to preserve important
evidence. In fact, IoT logs’ security relies on the existing
security measures of the IoT devices (authentication and
control access schemes). Any weakness in the implementation
of these security measures will lead to exposing these logs to
unauthorized alteration [24].

B. Log File Attacks

The IoT device auditing process consists of storing events
within a log file. This provides the detection capability of sus-
picious activities, along with further examination and inspec-
tion through the data gathering process. Such a process must
be performed periodically, and it can be checked and reviewed
either locally, or remotely. For this reason, logs became the
target of attackers to cover up their tracks. Attackers rely on
the following anti-forensic attacks to modify or delete logs:

1) Log Wiping Attack: Data wiping is a technique used to
overwrite the currently available data file(s) with a flow of
ones and zeros, or with random characters over all sectors
of a corresponding file(s) stored on a digital device. Suck an
attack would hinder the forensic investigation, and it can be
launched remotely, quickly, and using limited resources.

2) Log Injection Attack: This technique, based on
modifying the log files, is also used to cover the tracks and
source of any cyber attack. Obviously, this invalidates the log
files and render them useless for further investigation.

Moreover, an attacker may also inject malicious codes and
scripts by relying on steganography methods [25], or by
uploading a malicious program (from an un-trusted malicious
source) to elevate their privilege on the compromised device(s)
such as computers [26], [27] or smart-phones [28].

C. Fog Computing

This recent technology aims at pushing data services to the
user proximity. Being an extension of cloud computing, fog
computing allows processing to be performed at the network
edge, and thus, enables innovative IoT applications [29], [30],
especially those that require very low latency. On the other
hand, the edge network will handle the transmission of the
large amounts of data generated by IoT networks, while
only long-term data will be sent to the cloud. Accordingly,
fog and cloud computing will operate in a complementary
manner to enhance the overall network performance. Also, fog

Category Approach Limitations
Authentication-
Encryption Algorithm

• Symmetric Authentication-Encryption Algo-
rithm [5], [6]: This type of solutions can ensure data
confidentiality, data integrity and source authentica-
tion of log contents.
• Digital Signature (Asymmetric) + Symmetric
Encryption [7], [9], [10], [12], [13], [9], [14], [15]:
This solution can ensure non-repudiation in addition
to the previous listed security services.

However, these solutions cannot ensure log availability if end devices
are compromised.

Secure Hardware SGX based [16], [17], [18], [19], [20] Security requires specialized hardware and data availability is ensured
by saving multiple copies of the same data, which introduces high
communication and storage overhead.

Cloud based Logging-as-a-service [21] Pushing the logs to the cloud does not guarantee their availability
unless backup is done.

Blockchain-based Saving logs hash and metadata [22], [23] Handling large number of devices would result in unexpected ledger
sizes and consequently high computation and resources requirements.

TABLE I: Literature Summary

computing is supposed to play an essential role in providing
security services in the IoT domain, such as the identification
and authentication of IoT devices. Securing IoT data at the
fog level is essential when limited devices are incapable of
executing strong encryption algorithms, and the same applies
for the security of IoT logs to enable IoT forensics.

D. Aggregation

Data aggregation solutions play a major role in improving
the network effectiveness. Its primary objective is to collect
and aggregate data packets to decrease the required resources
and delay such as power consumption, congestion of traffic, in
addition to maximizing the network lifetime. A comparative
analysis of several data aggregation schemes for IoT appli-
cations was presented in [31]. The authors quantified a set
of performance metrics such as energy consumption, network
lifetime, throughput, latency and number of nodes alive. Based
on this study, they recommended the use of LEACH-C in case
of a centralized and selective clustering approach.

E. Compression

Data Compression techniques can either be lossy or loss-
less. The difference is that loss-less compression allows the
reconstruction of the original data without any degradation,
while lossy compression entails a low degradation. However,
the advantage of lossy compression is its ability to achieve
better data reduction [32], which reduces the communication
and storage overhead.

In our case, log contents should be compressed in a loss-
less manner, and their integrity should be preserved due to
their importance as evidence in digital forensics. A set of
loss-less compression techniques is listed in [33]. One of the
most efficient techniques is the zStandard (zstd) [34], which
achieves efficient compression with a very good performance.
Thus, we adopt this technique in our proposed solution.

F. Information Dispersal Algorithm

The Information Dispersal Algorithm (IDA) [35] divides
data of size d into t fragments, each of size l = |d|

t . Thus,
the data is reshaped into a matrix form, DM , with (t × l)

elements. IDA consists of multiplying an (n× t) non-singular
generator matrix (G) by DM to produce an encoded matrix
EDM with a size of (n × l). Any t rows of EDM could
be used for the reconstruction of the original data. The IDA
encoding step is defined by the following matrix equation:

EDM = G�DM (1)

Where � represents the matrix multiplication operation.

The inverse IDA process, to recover the original data, uses
matrix multiplication of the inverse matrix of Gt and that of
the t received fragments, according to the following equation:

DM = G−1t � EDMt (2)

Where Gt consists of t rows of the IDA matrix G and G−1t is
its corresponding inverse. In addition, EDMt represents any
t fragments of EDM .

Information dispersal adds redundancy compared to the
original data with minimum storage overhead ((n − t) × l)
compared to the original Shamir secret sharing [36]. Note that
it is impossible to explicitly reconstruct the original data from
a number of fragments less than t.

IV. PROPOSED IOT LOGS SECURITY SCHEME

In this section, we present the network model that we
consider for securing the logs in addition to the proposed IoT
logs’ security scheme workflow.

A. Network Model

We consider a network model, as illustrated in Fig.1, which
consists of an IoT network with n interconnected devices.
Some of these devices can serve as storage devices or aggrega-
tion nodes. Each device can be connected to one fog node (or
gateway). In addition, the IoT network might be subdivided
into multiple IoT networks, where each network is connected
to one fog node (or gateway).

The proposed solution consists of applying sequential
aggregation, loss-less compression, encryption and
authentication processes on the collected logs during a
session, then fragmenting and distributing them over n

Fig. 1: Network Model

entities. A session is defined as the interval of time during
which the device has been authenticated and communicating
with the gateway (i.e. fog node). Each time the device is
re-authenticated, a new session is defined.

In case the fog nodes are not interconnected, the logs are
distributed over n IoT aggregation nodes. In this case, an
aggregation node is assumed to be a powerful IoT device
(having sufficient computation and storage resources), and as
such, the fog node is able to send the fragmented encrypted
data to these nodes.

In the other case where the fog nodes are interconnected,
each fog node collects logs from its connected IoT devices (or
IoT network). Then, the fog node processes the collected logs
and disperses them over to the neighboring n fog nodes.
B. Logs Security Scheme Workflow

For both scenarios, only t encrypted fragments are required
to recover the original logs. Therefore, the proposed solution
for both scenarios consists of six main steps (see Fig. 2), as
listed below:

1) Logs normalization, aggregation and compression
2) Dynamic key derivation and construction of crypto-

graphic primitives; this process is performed once per
session. The session time depends on the application, the
logs type, size, and granularity level. These cryptographic
primitives (selection tables and permutation table) are
updated for each input log. The update process is based
on a permutation operation using specific permutation
update tables.

3) Encryption using a dynamic permutation cipher scheme.
For each session, this permutation table is updated using
its corresponding dynamic update permutation table.

4) Availability process using the proposed Modified Infor-

mation Dispersal Algorithm (MIDA) (described in detail
in Section VI-D); the encrypted logs are reshaped into a
matrix with t rows, each corresponding to an original
fragment. This matrix is divided into a set of sub-
matrices, where each is encoded using one of the m
produced IDA matrices.

5) Dispersion process: it is performed by selecting the stor-
age nodes in a pseudo-random manner(n nodes). Also,
the distribution of these fragments, among the nodes, is
done in a dynamic manner.

6) The choice of t and n depends on the application and the
required security level. Increasing t and/or n increases the
required execution time, but increases the security level,
especially for availability.

An outline of the proposed cryptographic solution is pre-
sented in Fig. 7. For consistency, the used notations are listed
in Table II.
All the cryptographic operations (cipher, authentication and
availability primitives) are based on a dynamic key, which
is generated for each new session, by using a master secret
key, SK, and a nonce. This dynamic key is divided into a
set of sub-keys, which are used to construct the cryptographic
primitives.

Note that the inverse of the cryptographic solution is not
detailed, given that it consists of the same operations with
minor changes, such as the use of the inverse matrices in the
multiplication operations of MIDA) and the inverse permuta-
tion table to decrypt the data. The inverse process takes place
when a security incident takes place. In this case, the authority
responsible for investigating the incident requests the logs, at
specified time intervals, from the corresponding fog node. The
latter, having the corresponding dynamic keys and a map of the
storing devices, re-assembles the corresponding t fragments

(a) (b)

Fig. 2: (a) Proposed logs preserving scheme, (b) and its corresponding inverse solution, respectively

Fig. 3: Proposed key derivation function and its corresponding cipher and update primitives generation process

to reconstruct the requested logs, and checks for integrity and
authentication compliance.

V. CONSTRUCTION OF CRYPTOGRAPHIC PRIMITIVES

In this section, we describe the derivation process of
the cryptographic primitives needed for the proposed MIDA
scheme, more specifically, the proposed dynamic key deriva-
tion scheme, the construction of the MIDA matrices, and the
permutation and selection tables.

A. Proposed key derivation scheme

The proposed solution is based on the dynamic key ap-
proach, and all cryptographic primitives are related to this
key. To reduce the computational overhead when generating
new keys for each new session, update tables are used for the
update. The proposed dynamic key and sub-keys derivation
is illustrated in Fig. 3. The process takes the following two
inputs:
• Secret key SK: This master secret key can be exchanged,

depending on the application, using several techniques
such as a Key Distribution Center (KDC) or using a
Public Key Infrastructure (PKI) [37]. The length of SK
can be equal to 128, 192, 256 or 512 bits.

• Nonce No: It can be generated using a pseudo-random
generator at the fog or aggregation node level. A new
Nonce will be generated for each new session, and it
is associated with the device logs and the corresponding
time interval at the fog node. As such, the corresponding
fog node is able to retrieve such information for the
reverse process.

The secret key, SK, and the nonce, No, are xor-ed together
and then, the result is hashed to generate the dynamic key, as
expressed below:

DK = h(SK ⊕No) (3)

where h stands for a cryptographic hash function and DK
for the obtained dynamic key. We use SHA-512 [38] since it
exhibits good cryptographic properties and it can resist the
different collision attacks. Accordingly, the output size of
the dynamic hash function is 64 bytes. Eq. (3) guarantees
that a one-bit change in the Nonce results into a completely
different dynamic key.

Next, the dynamic key is divided into seven sub-keys; each
one is used to construct either a cryptographic primitive or
an update for such a primitive. The derivation process of
the dynamic key and corresponding sub-keys is illustrated in
Fig. 3. For each new session, a new nonce is generated, which
leads to the generation of a different dynamic key. This, in
turn, results into completely different set of cipher primitives.

More specifically, DK, which consists of
512 bits, is divided into seven sub-keys
{KP , KUP , KM , KSN , KUSN , KSM , KUSM}
with the following respective sizes: 96, 96, 128, 32, 32,
64, and 64 bits. Below is a description of the role of each
sub-key:

• KP : it is used to produce a dynamic permutation table
that is used to encrypt the log contents. The data encryp-
tion process is based on permutation at the byte-level.
KP consists of the most significant 12 bytes of DK.

• KUP : it consists of the next most significant 12 bytes of
DK, and it is used to produce an update table for the
permutation sub-key.

• KM : it is used to generate the IDA Matrices. It has a size
of 128 bits and it is used as a seed for a stream cipher to
construct a key-stream of a total size of (m × n) bytes.
Then, it is divided into m blocks, each with n bytes.
Next, we eliminate zeros and repeated values within each
block. Finally, the blocks are used to generate the IDA
Vandermode matrices.

• KSN : it is used to generate a selection table when
selecting either cluster nodes or fog nodes. It consists
of the fourth set of least significant 4 bytes of DK.

• KUSN : it is used in the update process of the selection
table. It consists of the third set of least significant 4 bytes
of DK.

• KIA: it is used in the integrity and authentication process.
First, we perform the xor of KP and KUP , and the xor
KSN and KUSN , and then we concatenate the two results
as expressed by the following equation:

KIA = Kp ⊕Kup||KSN ⊕KUSN (4)

The length of KIA is 128 bits and it is sufficient to
prevent message authentication attacks.

• KSM : it is used to generate the IDA matrices selection
table, SM . It represents the next least significant 8 bytes
of DK.

• KUSM : it is used in the update process of the selection
table SM . It represents the least significant 8 bytes of
DK.

B. Construction of Cryptographic Primitives

In this section, we describe the construction techniques
of the cryptographic primitives such as the permutation and
selection tables, in addition to the IDA matrices (m).

1) Dynamic Encryption Permutation Table: In this work,
the modified KSA−RC4 algorithm, proposed in [39], is used
to produce a dynamic flexible permutation table of variable
length, len. According to [39], the obtained permutation table
π exhibits robust security properties for a key ≥ 32. Moreover,
since the produced permutation table has the bijective property,
the inverse permutation table π−1 can be computed by using
the following equation:

π−1[π(i)] = i, i = 1, 2, . . . , len (5)

where π(i) is the ith element of π and len is the length of
the produced permutation table.

2) MIDA Matrices: In contrast to the original IDA, which
uses one matrix, the proposed MIDA scheme uses m matrices.
Each IDA matrix consists of a block with n distinctive and
non zero bytes from X . Generating these matrices requires
the iteration of a stream cipher, such as RC4, to produce

TABLE II: Summary of Notations

Notation Definition

SK Secret Key
No Nonce
DK Dynamic Key that has 512 bits length
m The number of Vandermode matrices required by the proposed MIDA
KM Sub-key used to generate m IDA matrices
KSM Selection matrices sub-key used to construct the selection table SM used to select which of the IDA matrices

will be used for each input sub-matrix
KUSM Update selection table sub-key, which is used to construct the update permutation table πUSM

πUSM Permutation table used to update the selection table SM for each new input log data
KSN Selection sub-key used to construct the selection table SN (which fragment for which node)
KUSN Update selection sub-key used to construct the update selection table USN
KIA Sub-key used to ensure the message Integrity-Authentication of the produced fragments and it has 128 bits length
KP Sub-key used to construct permutation table π that it is used to encrypt of the collected log data
KUP Sub-key used to construct the update permutation table uπ that it is used to update the permutation table
π Permutation table used for the proposed encryption scheme
|M | Size of the original collected aggregated compressed log data
M Original aggregated compressed log data M
Fragment A final data fragment, which represents all columns of all the data shares (one row) . It is stored in one location

storage entity
t Number of fragments required for log recovery (threshold)
nsm Number of sub-matrices inside initial data (M)

Temp It is an initial vector of m values that repeated for d |M|
m
e , where Temp[i] = mod(i, m)

X The produced filtered keystream used to produced m IDA matrices
xi The ith block of the produced filtered keystream X (has n bytes length) and it is used to construct the G(i)

IDA Vandermode matrix
G A set of m dynamic IDA matrices
G(i) The ith dynamic IDA matrix
Gt(i) and
G−1

t (i)
Any t× t of the ith dynamic IDA matrix (G(i)) and its corresponding inverse matrix

n, n ≥ t Total number of fragments
MACi It represents the MAC of the ith fragment

a keystream. The iterations continue until each block of n
bytes of the keystream has no zeros nor repeated values. This
process leads to m blocks, Xi = xi,1, xi,2, . . . , xi,n and
i = 1, 2, . . . , m. Each block is used to construct an IDA
matrix.

Then, each element j of a block Xi (xi,j) is
used to construct a row of the Vandermonde matrix:
[1 Xi,j x

2
i,j . . . xti,j]), where j = 1, 2, . . . , n. As such,

we obtain (n × t) IDA matrix of the Vandermonde matrix
form. Similarly, m IDA matrices are constructed for the IDA
encoding process, and they are stored in memory. According
to the Vandermode matrix properties, any t rows, of any IDA
Vandermonde matrix, form an invertible (t × t) matrix Gt,
which is a necessary condition to build the inverse of the
modified IDA matrices.

Moreover, to avoid the regeneration of this set of m matrices
at each new input log, the SM table is updated using πUSM .
This results in selecting different m IDA matrices in a pseudo-
random manner. If the fog nodes are limited in terms of
computation and resources, the set of produced IDA matrices
G can be updated, by permuting the row of each IDA matrix
G(i), i = 1, 2, . . . , m, using the selection table SN , which
has values between 1 and n.

3) Dynamic Selection and Update of IDA matrices: The
KSM sub-key (see Fig. 3) is used to produce the selection
table of the IDA matrices, SM . The construction of this
selection table is based on a permutation table πSM , which
is generated by using the kSM sub-key. In this specific
case, πSM (i)th serves to select the suitable ith IDA matrix
for the ith encrypted data block. To produce the selection
table, we first construct a primary table, Temp, with nsm
elements. Each table element is equal to its index modulo m
(Temp[j] = mod(j,m)+1 with j = 1, 2, ldots, nsm). Now,
Temp has nsm elements and their values vary between 1 and
m, where m represents the number of produced IDA matrices
and m ≤ nsm. Temp is permuted by using πSM (that consists
also of nsm elements) to produce the SM selection table and
1 ≤ SM(i) ≤ m. At the decryption phase, SM serves also to
select the inverse IDA matrix Gt−1(πSM (i)), where Gt is a
square matrix (t× t) and represents a set of unique t rows of
G. In fact, SM controls the modified and its corresponding
inverse MIDA processes.

Moreover, SM is updated after each new input of log
contents by using another permutation table πUSM . πUSM
is generated through the use of kUSM sub-key.

4) Fragments Distribution Tables: Additional permutation
tables are needed for the distribution of the data fragments
over the n corresponding entities. SN is generated by using a
kSN sub-key, and it consists of n elements. It also controls the
distribution of these encrypted fragments over the n entities.

Moreover, an update table for the fragments distribution
table USN is generated using kUSN . It is used in a similar
manner to πUSM to update SN . As a result, the order, in
which the diffused fragments are distributed over the (n− 1)
neighbours, is changed for every application session.

VI. SECURING LOGS

In this section, we detail the steps of our proposed method
to preserve the security of IoT logs. These steps include: nor-
malization, aggregation, compression, encryption and MIDA
encoding.

A. Aggregation and Normalization

In this step, the logs are first normalized and then aggre-
gated. For normalization, the logs are converted into common
syntax logs, an example of which is shown in Fig. 4. In the
aggregation process, we group together the normalized logs of
the same type, as shown in the example of Fig. 5.

B. Compression

The proposed solution aggregates the collected logs and
compresses them using a lossless compression technique as
indicated in the background part. The main goal is to reduce
the input length, which in turn reduces the required computa-
tion, resources, communication and storage overhead. In this
step, the Zstandard lossless compression algorithm is used.
It combines a dictionary-matching stage (LZ77) with a large
search window, in addition to a fast entropy coding stage.
It is designed to offer compression ratios better than those
offered by the Zip and gzip lossless algorithms, which are
faster techniques.

Moreover, compressed data have better randomness and
uniformity levels compared to the original uncompressed
data. This helps in the design of a lightweight cipher scheme
that requires only one round and one operation. Permuting
and compressing logs remove any useful information about
the original data in the logs.

C. Encryption Process

The encryption process is based on a dynamic permutation
operation. First, the contents of an input log, M ,
are reshaped into a row form Ml of l bytes, where
Ml = {m1, m2, . . . , ml}. Then, The permutation is applied
to Ml using a dynamic permutation table π. The proposed
cipher scheme exhibits linear computational complexity
O(l) and consequently, low execution time and resources
overhead [40], [41]. The employed permutation table π of
dimension l can be defined as: π=[pi]1≤i≤l.
A plain-text Ml of length l is given by: Ml = [Mli]1≤i≤l .
After permutation, C = Permutation(Ml, π)) =

[Mlπi]1≤i≤α.

Note that, for each session, the dynamic permutation table
π is updated based on another permutation table, Uπ. Thus,
each new log input is permuted differently (new permutation
table π) compared to the previous or next logs.

D. The Modified IDA Process

As shown in Algorithm 1, the proposed MIDA algorithm
takes as input, an aggregated, compressed, permuted and
encrypted vector of data, D. This data vector is then frag-
mented into t fragments F1, . . . , Ft, each with a length of
nr = d |M |t e elements. Then, these fragments are encoded
into n diffused fragments DF1, . . . , DFn. The IDA encoding
process is based on a multiplication operation between a set
of t fragments (matrix form) and a chosen IDA matrix (n× t),
as illustrated in Fig. 6.

The proposed MIDA process regroups these t fragments into
nsm sub-matrices, where each sub-matrix has (t× l) elements
and Fi is the ith sub-matrix. The value of nsm = d |M |t×l e, and
padding is applied when needed.

For each SFi, i = 1, 2, . . . , nsm is multiplied by one
of the m produced IDA matrices. As per its definition, the
selection table SM has nsm elements, where each element
has a value varying between 1 and m. In fact, SM(i) is
an integer value between 1 and m and 1 ≤ i ≤ nsm.
SM(i) is used to select the dynamic encoding IDA matrix
(m different IDA matrices), given the fact that they have a
size of (n × t). Additionally, an IDA matrix can be used to
encode more than one sub-matrix. In the presented algorithm,
G = GS(SM(i)) means that SM(i) IDA matrix is used.
Next, the obtained sub-matrices are grouped into a matrix of
(n×nr). Each row represents a diffused fragment, and hence,
the output of the MIDA process includes n diffused fragments.

The values of t and n are related to the availability and
security level of the proposed MIDA. Increasing n leads to
additional communication and storage overhead. In this paper,
t is chosen to be 4. Also, t and n can be changed according
to the number of neighbouring nodes (fogs or IoT aggregation
nodes).

Algorithm 1 Proposed MIDA (sub-matrix level).
1: F = SF1 , SF2, , . . . , SFnsm
2: for i = 1→ nsm do
3: Gi = G(SM(i))
4: DFj = Gi � SF1)
5: end for
6: DF ← reshape(DF1||DF2|| . . . ||DFnsm, n, nr)

In fact, the proposed scheme preserves the homomorphic
properties of the obtained fragmented data (addition and
multiplication by scalar), since linear operations were used
during ciphering or MIDA. This allows the processing of data
without any privacy breach.

Fig. 4: Normalization Example

Fig. 5: Example of raw events aggregation

Fig. 6: Example for MIDA at the sub-matrix level for t=3 and n=5: Encoding of the t original sub-fragments (left) SFj and
j = 1, 2, . . . , t that transformed into n diffused sub-fragments DFi (right) after IDA processing and i = 1, 2, . . . , n.

E. Logs Authentication Process

In the proposed scheme, the authentication process of log
contents is put in place for source authentication and data
integrity. This can be done by using a keyed hash function
such as HMAC [42] or by employing authentication operation
mode such as CMAC [43], [44]. After obtaining the diffused
fragments (output of the encoding of the initial data), HMAC
is applied on every single fragment through the use of the KIA

sub-key. As a result, for each fragment, fi, a signature MACi
is generated, and concatenated to the fragment, before dispers-
ing the fragments over the n fog nodes or IoT aggregation
nodes.

F. Inverse Cryptographic Solution

In case of an incident requiring the recovery of the log con-
tents, for a specific time interval, a request is made to collect t
diffused fragments of the corresponding IoT devices logs from
the corresponding aggregation or fog nodes. Then, the inverse
cryptographic process is applied. First, all cryptographic prim-
itives are reproduced by using the corresponding Nonce and
DK, and their corresponding inverses are computed.

1) Any t diffused fragments are collected from t different
entities. Then, the verification of the fragments is checked
via the authentication process. The data integrity and
source authentication of each of the fragments is validated
by computing its MAC and comparing it with the sent
one. This MAC value is computed via the same authen-
tication algorithm that was applied during the protection
phase.

2) The verified fragments are concatenated in a matrix,
where each row represents (nsm × l) bytes. Then, this
matrix is divided into nsm sub-matrices, each with a di-
mension of (t× l). Next, each sub-matrix is multiplied by
its corresponding inverse IDA matrix, which is selected
based on the SM table. After de-fragmenting all the
encoded sub-matrices, we get a matrix of t× (nsm× l),
whereby the rows are reshaped to form a vector of the
permuted log contents. Then, the inverse permutation pro-
cess is applied using the inverse permutation table π−1.
Next, the original compressed log contents are recovered.
Finally, the decompression algorithm is applied to recover
the originally aggregated log contents.

VII. SECURITY ANALYSIS

An efficient cryptographic solution should protect data
against the most known types of confidentiality, integrity and
availability attacks

Typically, the diffused fragments must exhibit a high level of
randomness and uniformity to prevent attackers from disclos-
ing any useful information, or recognizing any pattern, from
the transmitted logs, by using either statistical, differential,
chosen/known plain-text, or brute-force attacks [39]. To that
end, we perform different tests to quantify the strength of the
proposed solution against data and key-related attacks [45],
[46]. In these tests, the proposed scheme is considered as a
black box. A set of initial messages are randomly chosen,

each having a size of 1024 bytes. The tests include recurrence
and correlation coefficient tests for evaluating the randomness
and independence properties. Moreover, the probability density
distributions of the obtained fragments are analyzed to assess
the uniformity property. Then, the key sensitivity and the
difference between the original and fragmented encrypted
diffused fragments are computed. These tests and the corre-
sponding results are detailed below.

A. Randomness

The encrypted fragments should achieve a high level of
randomness to preserve the confidentiality and privacy of the
logs’ contents. This can done by applying the recurrence test
and the correlation test between the original and the encrypted
fragments (i.e independence test). Note that these tests are
repeated 1, 000 times, with n = 8 and t = 4.

1) Recurrence: The recurrence test measures the temporal
variation of a sequence x = {x1, x2, . . .} at two instants
of time (t and t+ ∆t) [46]. This test consists of plotting the
values of a sequence x at instant t + ∆t in function of the
values of this sequence at instant t (x(t + ∆t) = f(x(t)). In
Fig. 8, the recurrence variation of the original and encrypted
fragments (first fragment) is shown. The results show that the
produced encrypted fragments exhibit a random recurrence.

2) Independence: The encrypted and original fragments
should be independent [39]. This can be measured by perform-
ing several statistical tests such as the correlation coefficient
and the percentage of the difference between the original and
encrypted fragments, at the bit level.

First, the correlation coefficients are calculated between the
original fragments and their corresponding encrypted ones.
Then, the correlation coefficients among the different en-
crypted fragments are computed.

Fig. 9-a) shows the results of the Probability Density
Function (PDF) of the obtained correlation coefficient matrix
between the obtained fragments and the original ones. The
results indicate that the correlation values are very close to the
desired value of (0), and the distribution has a mean equals to
2.5889e-05 and a low standard deviation equals to 0.008. This
confirms the independence of the encrypted fragments from
the original log contents.

Second, the percentage of the difference, at the bit level,
between the original fragments (a set of t encoded fragments)
and their n encrypted fragments are computed. The results,
presented in Fig. 9-b), show that the values of the percentage
differences are very close to the ideal value of (50%), and the
distribution has a mean equals to 49.99% and a low standard
deviation of 0.13.

Using a random dynamic key, we illustrate with numerical
examples, the inter-correlation and difference percentage at
the bit level between the original and obtained fragments. The
results are shown in TABLE III and TABLE IV, respectively.
Similar results among the obtained fragments are shown in
TABLE V and TABLE VI.

Fig. 7: Proposed Log Protection Cryptographic Solution

(a) (b)

Fig. 8: Recurrence of original and its corresponding encrypted fragmented one (2048 bytes length), (t=4 and n=8).

TABLE III: Correlation coefficient between the original and the encoded/encrypted fragments for a random dynamic key with
t =4 and n =8

EF1 EF2 EF3 EF4 EF5 EF6 EF7 EF8

OF1 -0.0018 -0.0014 0.0055 0.0005 -0.0244 -0.0059 0.0026 0.0004
OF2 -0.0149 0.0024 -0.0178 -0.0130 0.0139 0.0023 0.0204 0.0115
OF3 -0.0026 -0.0239 0.0261 -0.0014 0.0039 -0.0275 0.0344 0.0121
OF4 0.0062 0.0083 0.0150 -0.0190 -0.0067 0.0004 -0.0041 0.0202

B. Uniformity

To thwart statistical attacks, the uniformity property needs
to be met by the proposed scheme. In fact, the uniformity

property can be visually quantified and verified when the
distribution of the encrypted fragments is close to a uni-
form distribution. In Fig. 10, the distribution of the original

(a) (b)

Fig. 9: Correlation coefficients between original and fragmented data(a). In addition, the difference between original and
encrypted fragmented data (% of changed bits) (b) for k=4 and n=8.

TABLE IV: The percentage difference between the original and the encoded/encrypted fragments for a random dynamic key
with t =4 and n =8. Average equals to 49.97% and standard deviation is equal to 0.1219.

EF1 EF2 EF3 EF4 EF5 EF6 EF7 EF8

OF1 49.9344 50.3125 50.1812 49.7031 49.7781 50.1750 49.8250 49.7312
OF2 49.9188 50.2031 49.6781 49.7125 49.9125 50.2406 50.1844 50.1219
OF3 50.5563 49.8094 49.8844 49.7625 49.5187 49.9906 49.6656 50.0906
OF4 49.4844 50.4063 49.4875 50.3094 50.6906 49.9813 50.2188 49.8312

TABLE V: Correlation coefficient among encrypted fragmentation

EF1 EF2 EF3 EF4 EF5 EF6 EF7 EF8

EF1 -
EF2 -0.0097 -
EF3 0.0059 0.0143 -
EF4 0.0263 -0.0041 0.0196 -
EF5 -0.0124 -0.0281 0.0257 -0.0272 -
EF6 0.0044 -0.0305 0.0186 -0.0010 -0.0267 -
EF7 0.0094 -0.0246 -0.0121 0.0383 0.0019 -0.0058 -
EF8 -0.0401 0.0225 0.0331 0.0126 -0.0130 0.0225 -0.0085 -

TABLE VI: The percentage bit difference among encrypted fragmentation with t =4 and n =8

EF1 EF2 EF3 EF4 EF5 EF6 EF7 EF8

EF1 -
EF2 50.2156 -
EF3 49.9656 49.8125 -
EF4 50.3563 49.9781 49.7594 -
EF5 50.0062 50.4094 50.0594 50.4063 -
EF6 50.0031 49.9125 49.7687 49.8781 50.1219 -
EF7 49.8656 50.0375 49.8813 49.3469 49.9406 49.9437 -
EF8 50.2719 49.5625 49.9563 49.6969 50.4594 50.0125 50.1187 -

fragments, along with their corresponding encrypted ones is
presented. The distributions show that the contents of the
encrypted fragments are uniformly spread over the entire
space.

C. Sensitivity

The proposed cryptographic scheme should ensure a high
level of key sensitivity to guard against key-related attacks. In

the proposed scheme, all cryptographic primitives depend on
the generated dynamic key, DK, and as such, a small change
in the secret key would result in completely different set of
encrypted fragments.

To evaluate the dynamic key sensitivity, two dynamic se-
cret keys, DKw and DK ′w, differing by only one random
bit, are used to encrypt the same log contents, with w =
1, . . . , 1, 000. The sensitivity measure for the wth dynamic

(a) (b)

Fig. 10: The distribution of an original fragment (a) and its correspondent encrypting encoded one (t=4 and n = 8)

key (DK ‘
w) is calculated as follows:

KSw =

∑T
it=1 SDKw

⊕ SDK′
w

l
× 100% (6)

Where S represents the proposed MIDA cryptographic
solution and T is the length of the input data in bits. We run the
sensitivity test for 1,000 iterations. At each iteration, different
messages and different keys are used, with the condition
of having a single bit changed between the two considered
keys. As shown in Fig. 11, the PDF of the obtained key
sensitivity percentages indicates that the obtained values are
very close to the mean value of 50.58% and the standard
deviation is very low equals to 0.141. These results show that
the proposed scheme exhibits a high dynamic key sensitivity.
In addition, for a random key, the inter-difference percentages
among encoded fragments is shown in TABLE VII. This shows
that a high difference is also reached between any pair of
encoded fragments. Moreover, the correlation test is applied
on each pair of encoded fragments and the obtained results
confirm the independence among encoded fragments, as shown
in TABLE VIII.

VIII. CRYPTANALYSIS DISCUSSION

In the following subsections, we discuss the immunity of the
proposed scheme against different attacks, including statistical,
differential, chosen/known plain-test and brute-force attacks.
To do so, we consider the situation where k encrypted diffused
fragments of log contents were revealed to an eavesdropping
attacker. In addition, we assume that the proposed fragmenta-
tion scheme is known to the attacker.

A. Statistical Attacks:

This attack targets the encrypted fragments to reveal some
statistical properties. To prevent this kind of attacks, the
diffused encrypted data should satisfy the randomness and
uniformity properties, which was confirmed by the results in

Fig. 11: Average Key sensitivity test measuring the bit dif-
ference between two sets of encrypted diffused fragmentation
obtained for the same data but with one slightly different in
the dynamic key for 1000 iterations

Section VII, including the entropy analysis, probability density
function and correlation tests.

B. Brute-Force attack:

To prevent brute-force attacks, the size of the secret and
dynamic keys should be at least 128 bits. In the proposed
scheme, the master secret key size can be 128, 196 or 256
bits, whilst the dynamic key size is 512 bits.

C. Known & Chosen Plain/Cipher-Text Attacks:

A different set of cryptographic primitives are used at each
session for the collected log contents. Therefore, different
sets of encrypted diffused fragments will be obtained for the
same input. Consequently, this makes any known or chosen
plain/cipher text attack unfeasible.

TABLE VII: Key sensitivity test between two obtained fragmented sets obtained for the same data but with two slightly
different keys (Dk and DK ′) with t =4 and n =8

ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8

ED′1 50.08 49.64 49.89 50.25 50.07 50.14 50.14 50.68
ED′2 49.98 49.94 49.83 49.82 50.40 50.05 50.08 50.23
ED′3 50.47 49.93 49.63 50.42 49.77 50.41 49.82 50.07
ED′4 49.69 50.08 49.61 50.32 49.86 50.53 50.03 50.11
ED′5 50.52 50.34 50.50 50.04 50.53 49.67 49.72 50.0
ED′6 49.60 50.23 49.68 50.52 49.77 49.73 50.05 50.10
ED′7 49.81 50.23 50.27 50.13 50.08 50.58 49.59 50.0
ED′8 50.14 50.14 50.06 50.19 49.84 50.17 49.68 50.29

TABLE VIII: Correlation coefficient between two obtained fragmented sets obtained for the same data but with two slightly
different keys (Dk and DK ′) with t =4 and n =8

ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8

ED1 0.0088 -0.0210 -0.0157 -0.0013 -0.0094 -0.0014 -0.0245 -0.0126
ED2 0.0161 0.0242 -0.0085 0.0283 -0.0085 0.0079 -0.0079 0.0173
ED3 -0.0043 0.0021 0.0193 0.0022 -0.0100 -0.0037 0.0033 0.0166
ED4 -0.0131 0.0135 -0.0135 -0.0017 -0.0147 0.0003 0.0037 0.0100
ED5 -0.0195 0.0035 0.0036 0.0063 0.0142 -0.0195 -0.0036 0.0289
ED6 -0.0113 -0.0122 0.0041 -0.0150 0.0132 -0.0006 -0.0221 -0.0158
ED7 0.0094 -0.0072 0.0228 0.0296 -0.0428 0.0187 0.0267 -0.0014
ED8 -0.0231 -0.0107 0.0127 -0.0170 0.0144 -0.0231 -0.0080 -0.0161

D. Linear and Differential attacks

The dynamic cryptographic primitives are updated for each
new input of log contents. This eliminates any similarity
among the resulted encrypted encoded fragments. According
to Section VII-C, a high key sensitivity was achieved by the
proposed solution. Therefore, any single bit change in the
secret key or in the Nonce leads to different cryptographic
and update primitives. Moreover, the existing cryptanalysis
techniques that target static cryptographic algorithms cannot
break the proposed solution that update its corresponding
cryptographic primitives after each new input log data.

IX. PERFORMANCE ANALYSIS

In order to protect the log files, the proposed solution
introduces a cost overhead in terms of computations
(and consequently delay and resources) in addition to
communication and storage costs. All of these performance
measures are discussed and assessed in this section. The
primary objective of the proposed solution is to strike a good
balance between the system performance and security level.

A. Computational Overhead

In this section, we compute the overhead costs of the
proposed dynamic key derivation function and the generation
of cryptographic primitives, in addition to the update process
of the cryptographic primitives.

The key derivation function requires only two operations to
produce the dynamic key for each new session:

1) XOR operation between the nonce and the secret key.
2) One iteration of a secure hash function for one input block

(512 bits, if SHA-512 is used).

Then, a set of dynamic sub-keys is obtained from the
dynamic key, and these are used to generate all the required
cryptographic and update primitives.

The computational complexity of the dynamic key gener-
ation scheme CDDKG, cryptographic and update primitives
are described below.

1) Txor denotes the required "exclusive or" logical operation
time for two blocks of the same length.

2) TH denotes the required hash time for a block of h bytes.
3) TMKSA(l) denotes the required execution time of the

modified KSA of RC4 for a table with l elements. It
exhibits a low computational delay and it is used to
construct the permutation tables.

4) TCIDA denotes the required time to construct m IDA
matrices, each with a size of n× t.

CDDKG = Txor + TH + 2× TMKSA(n) + 2× TMKSA(nsm)
(7)

2× TMKSA(|M |) + TCIDA

In order to reduce the overhead associated with the dynamic
key derivation function and the construction of the cipher
primitives, the selection and permutation tables are updated in
a lightweight manner by simply using permutation operations.
The computational complexity of the update cryptographic

primitives is described by:

CDUPP = Tπ(|M |) + Tπ(|n|) + Tπ(
|M |
t

)

where Tπ(x) denotes the required permutation time for a table
of length x. Note that the permutation process exhibits linear
computational complexity O(x), which makes the overhead
of the update process lower than that of regenerating the
cryptographic primitives (Eq.7).

(a) RPI0 (b) RPI3

Fig. 12: Variation of the average execution time of cryptographic solution versus log data length (|M |) for n=8 and for different
values of t for RPI0 (a) and RPI3 (b).

The encryption scheme requires a single iteration including
one permutation operation. Moreover, a look-up table can
be used to replace the multiplication operation in the
IDA process, which reduces the computational overhead.
Accordingly, the proposed solution is lightweight and it
can be adapted according to the entity’s (fog or cluster IoT
node) limitations in terms of power, storage and computations.

Moreover, the delay overhead of the proposed solution
can be optimized if the fog entity can perform parallel
computations. Mainly, the encryption/decryption process can
be realized in parallel and separately at the fragment level.
In this case, t permutation tables (Mt elements) can be used,
where each one is used to permute a fragment. Moreover, the
proposed MIDA process can also be performed in parallel
at the sub-matrix level; each sub-matrix can be encoded
and decoded independently from the others. Similarly, the
n diffused encrypted fragments can also be authenticated in
parallel.

Therefore, the computational complexity CDproposed of the
proposed cryptographic scheme is described in the following:

CDproposed = Tπ(|M |)+n×TAuth+nsm×TIDA(t, n) (8)

where:
1) TAuth denotes the required execution time of the HMAC

algorithm, for a fragment of |M |t bytes.
2) TIDA denotes the required IDA diffusion time for a

set of t input fragments that produce n output diffused
fragments.

Note that the encryption and message authentication pro-
cesses can be performed in parallel at the fragment level.
The length of each fragment is |M |t bytes. Consequently, the
proposed solution is efficient based on the overall reduced
overhead.

B. Execution Time
The efficiency of the proposed modified IDA scheme is

also analyzed in terms of execution time. The solution is im-
plemented with an optimized Galois Field Arithmetic library
scheme. The proposed cryptographic solution was executed on
different Raspberry Pi devices (0 and 3) that can be considered
as fog nodes (called RPI0, and RPI3, respectively). RPI0 has
512MB RAM and 1GHz mono-core micro-controller (ARMv6
instructions), while RPI3 has a 1.2GHz quad-core micro-
processor (ARMv7 instructions) and 1GB RAM. RPI3 is more
powerful compared to RPI0.

In Fig. 12, the average required execution time of the
proposed cryptographic solution is presented for RPI0 and
RPI3 in function of input log data size |M |, in addition to
n and t. The results show that increasing the size of the input
leads to an increase in the execution time. Increasing n will
also increase the execution time for a fixed size of input data
log. Similarly, increasing t will lead to an increase in the
execution time for a fixed size of input data and n.

Compared to other secret sharing variants, as presented in
TABLE IX, the proposed solution exhibits a linear computa-
tional complexity; the execution time variation is linear as a
function of the message length, in contrast to the polynomial
variation as in the original Shamir secret sharing variant. This
makes the solution suitable for constrained IoT or fog devices.
In addition, the proposed MIDA outperforms the original IDA,

TABLE IX: Comparison among several secret sharing variants

Communication Overhead Key
Management

Operation Base Revoking Au-
thority
Optimized

Data
Dedupli-
cation

Security
Services

Computational
Overhead

Secret Sharing
Shamir

(n− 1)× |M | Keyless Polynomial No No DA None

IDA (n− t)× |M|
t Keyless Matrix No Yes DA and Weak DC -

AONT-RS ((n−t)× |M|
t +

|H(C)|
t) Xored with data Polynomial No No DA, DC, DI and SA Systematic IDA + En-

cryption + PRNG(1) +
Hash

IDA + Over En-
cryption

((n− t)× |M|
t) NA Polynomial Yes No DA and DC IDA + Partial Encryption

which cannot be parallelized at the sub-fragment level. Thus,
if parallel computing is possible, increasing the number of
threads will lead to further reduction of the required execution
time. Let us indicate that the proposed cryptographic solution
achieves a better performance on RPI3 since approximately
double the input log data rate can be processed compared to
RPI0.

C. Storage and Communication Overhead

The produced fragments’ size is n× |M |t bytes, which rep-
resents the storage overhead. In addition, the communication
overhead is (n+ t)× |M |t bytes, given that the reconstruction
phase exhibits a communication overhead of t× |M |t bytes. In
fact, the data redundancy, represented by the (n − t) × |M |t
bytes, is inevitable to prevent log contents loss in case of
damage or alteration. However, when the value of n is close
to t, the storage overhead and availability level decrease.
In contrast, when t is less than n, data availability degree
increases, associated with a higher communication overhead.
The choice of n depends on the required availability level
(n − t). The values of n and t must be set to reach a
good balance between data availability and communication
overhead. The communication and storage overhead ensures
logs’ availability to thwart link failure or channel errors in
case the IoT devices or fog nodes are compromised. In the
proposed scheme, (n−t) redundant encoded rows are produced
and transmitted to overcome data loss, damage and alteration.

D. Efficiency

The proposed scheme utilizes a cipher with one round and
one permutation operation, in addition to an optimized IDA
variant to protect the IoT log files. The protection is performed
at the fog node. This means that no additional operations
are required at the destination storage nodes. In addition, the
proposed message authentication step aims to validate the
integrity and authentication of the received encrypted encoded
fragment before decrypting it. Thus, the proposed solution
provides multiple security services (data confidentiality, source
authentication and data integrity in addition to data availabil-
ity) with a low computational complexity and overhead.

X. CONCLUSION

Logs are key evidence in any forensics investigation process,
especially, for IoT forensics where new security challenges
emerge, making the security of IoT devices logs critical. In this
paper, for the first time, a scheme is proposed to ensure the IoT
logs availability, confidentiality, authentication and integrity.
The proposed scheme relies on the dynamic key approach
with lightweight cryptographic functions to ensure a high
security level and low computational and storage requirements.
Modifying the standard IDA scheme, the proposed MIDA
aims at fragmenting logs into n fragments to be distributed
over n IoT devices or fog nodes. This complicates the at-
tacker’s task in compromising n devices or communication
channels. Several statistical tests were performed to confirm
the robustness of the dynamic key-based approach towards
defending against statistical attacks. In addition, the security
analysis proved that the proposed method guards well against
known attacks. Finally, the performance analysis shows that
the proposed solution requires low computational and storage
resources compared to previous works.

ACKNOWLEDGEMENT

This paper is supported with funds from the Maroun Semaan
Faculty of Engineering and Architecture at the American Uni-
versity of Beirut and by the EIPHI Graduate School (contract
"ANR-17-EURE-0002").

REFERENCES

[1] Golden G Richard III and Vassil Roussev. Next-generation digital
forensics. Communications of the ACM, 49(2):76–80, 2006.

[2] Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Arif Ahmed, SM Ahsan
Kazmi, and Choong Seon Hong. Internet of things forensics: Recent
advances, taxonomy, requirements, and open challenges. Future Gener-
ation Computer Systems, 92:265–275, 2019.

[3] M. Chernyshev, S. Zeadally, Z. Baig, and A. Woodward. Internet
of things forensics: The need, process models, and open issues. IT
Professional, 20(3):40–49, May 2018.

[4] Bernie Lantz, Rob Hall, and Jason Couraud. Locking down log files:
enhancing network security by protecting log files. Issues in Information
Systems, 7(2):43–47, 2006.

[5] Mihir Bellare. Forward integrity for secure audit logs. Technical report,
1997.

[6] Bruce Schneier and John Kelsey. Secure audit logs to support computer
forensics. ACM Transactions on Information and System Security
(TISSEC), 2(2):159–176, 1999.

[7] Brent Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters.
Building an encrypted and searchable audit log. In NDSS, 2004.

[8] Jason E Holt. Logcrypt: forward security and public verification for
secure audit logs. 2006.

[9] Di Ma and Gene Tsudik. A new approach to secure logging. Trans.
Storage, 5(1):2:1–2:21, March 2009.

[10] Attila Altay Yavuz and Peng Ning. Baf: An efficient publicly verifiable
secure audit logging scheme for distributed systems. In 2009 Annual
Computer Security Applications Conference, pages 219–228. IEEE,
2009.

[11] Attila A Yavuz, Peng Ning, and Michael K Reiter. Baf and fi-baf: Effi-
cient and publicly verifiable cryptographic schemes for secure logging
in resource-constrained systems. ACM Transactions on Information and
System Security (TISSEC), 15(2):9, 2012.

[12] Attila A Yavuz, Peng Ning, and Michael K Reiter. Efficient, compro-
mise resilient and append-only cryptographic schemes for secure audit
logging. In International Conference on Financial Cryptography and
Data Security, pages 148–163. Springer, 2012.

[13] Gunnar Hartung. Attacks on secure logging schemes. In International
Conference on Financial Cryptography and Data Security, pages 268–
284. Springer, 2017.

[14] Ralph C Merkle. A digital signature based on a conventional encryption
function. In Conference on the theory and application of cryptographic
techniques, pages 369–378. Springer, 1987.

[15] Scott A Crosby and Dan S Wallach. Efficient data structures for tamper-
evident logging.

[16] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. Sgx-
log: Securing system logs with sgx. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pages
19–30. ACM, 2017.

[17] H. Nguyen, B. Acharya, R. Ivanov, A. Haeberlen, L. T. X. Phan,
O. Sokolsky, J. Walker, J. Weimer, W. Hanson, and I. Lee. Cloud-based
secure logger for medical devices. In 2016 IEEE First International
Conference on Connected Health: Applications, Systems and Engineer-
ing Technologies (CHASE), pages 89–94, June 2016.

[18] Arunesh Sinha, Limin Jia, Paul England, and Jacob R Lorch. Continuous
tamper-proof logging using tpm 2.0. In International Conference on
Trust and Trustworthy Computing, pages 19–36. Springer, 2014.

[19] Hung Nguyen, Radoslav Ivanov, Linh TX Phan, Oleg Sokolsky, James
Weimer, and Insup Lee. Logsafe: Secure and scalable data logger for iot
devices. In 2018 IEEE/ACM Third International Conference on Internet-
of-Things Design and Implementation (IoTDI), pages 141–152. IEEE,
2018.

[20] Carlton Shepherd, Raja Naeem Akram, and Konstantinos Markanton-
akis. Emlog: Tamper-resistant system logging for constrained devices
with tees. CoRR, abs/1712.03943, 2017.

[21] Shams Zawoad, Amit Kumar Dutta, and Ragib Hasan. Seclaas: Secure
logging-as-a-service for cloud forensics. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, pages 219–230, New York, NY, USA, 2013.
ACM.

[22] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram. Secure
logging as a service—delegating log management to the cloud. IEEE
Systems Journal, 7(2):323–334, June 2013.

[23] Alessandro Bellini, Emanuele Bellini, Monica Gherardelli, and Franco
Pirri. Enhancing iot data dependability through a blockchain mirror
model. Future Internet, 11(5):117, 2019.

[24] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges
in log analysis. Communications of the ACM, 55(2):55–61, 2012.

[25] Vidyasagar M Potdar, Muhammad A Khan, Elizabeth Chang, Mihaela
Ulieru, and Paul R Worthington. e-forensics steganography system
for secret information retrieval. Advanced Engineering Informatics,
19(3):235–241, 2005.

[26] Ken Chiang and Levi Lloyd. A case study of the rustock rootkit and
spam bot. HotBots, 7:10–10, 2007.

[27] Russell Smith. Least Privilege Security for Windows 7, Vista and XP.
Packt Publishing Ltd, 2010.

[28] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang.
Upgrading your android, elevating my malware: Privilege escalation
through mobile os updating. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 393–408. IEEE, 2014.

[29] Ola Salman, Imad Elhajj, Ayman Kayssi, and Ali Chehab. Edge
computing enabling the internet of things. In 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), pages 603–608. IEEE, 2015.

[30] Ola Salman, Imad Elhajji, Ali Chehab, and Ayman Kayssi. Iot survey:
An sdn and fog computing perspective. Computer Networks, 2018.

[31] H. Rahman, N. Ahmed, and I. Hussain. Comparison of data aggregation
techniques in internet of things (iot). In 2016 International Conference
on Wireless Communications, Signal Processing and Networking (WiSP-
NET), pages 1296–1300, March 2016.

[32] Joseph Azar, Abdallah Makhoul, Mahmoud Barhamgi, and Raphaël
Couturier. An energy efficient iot data compression approach for edge
machine learning. Future Generation Computer Systems, 96:168 – 175,
2019.

[33] J Uthayakumar, T Vengattaraman, and P Dhavachelvan. A survey on data
compression techniques: From the perspective of data quality, coding
schemes, data type and applications. Journal of King Saud University-
Computer and Information Sciences, 2018.

[34] Robert A. McLeod, Ricardo Diogo Righetto, Andy Stewart, and Henning
Stahlberg. Mrcz – a file format for cryo-tem data with fast compression.
Journal of Structural Biology, 201(3):252 – 257, 2018.

[35] Michael O. Rabin. Efficient dispersal of information for security, load
balancing, and fault tolerance. J. ACM, 36(2):335–348, April 1989.

[36] Rasmus W Lauritsen. Backups with computational secret sharing.
University of Aarhus, 9, 2008.

[37] William Stallings. Cryptography and network security: principles and
practice. Pearson Upper Saddle River, 2017.

[38] PUB FIPS. 180-1. secure hash standard. National Institute of Standards
and Technology, 17:45, 1995.

[39] Hassan Noura, Ali Chehab, Lama Sleem, Mohamad Noura, Raphaël
Couturier, and Mohammad M Mansour. One round cipher algo-
rithm for multimedia iot devices. Multimedia tools and applications,
77(14):18383–18413, 2018.

[40] Hassan Noura and Damien Couroussé. Lightweight, dynamic, and flex-
ible cipher scheme for wireless and mobile networks. In International
Conference on Ad Hoc Networks, pages 225–236. Springer, 2015.

[41] Peng Zhang, Yixin Jiang, Chuang Lin, Yanfei Fan, and Xuemin Shen.
P-coding: secure network coding against eavesdropping attacks. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[42] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Rfc 2104: Hmac:
Keyed-hashing for message authentication. Internet Engineering Task
Force, 252, 1997.

[43] Stefan Marksteiner, Víctor Juan Expósito Jiménez, Heribert Valiant, and
Herwig Zeiner. An overview of wireless iot protocol security in the smart
home domain. In 2017 Internet of Things Business Models, Users, and
Networks, pages 1–8. IEEE, 2017.

[44] William Stallings. Nist block cipher modes of operation for authen-
tication and combined confidentiality and authentication. Cryptologia,
34(3):225–235, 2010.

[45] Hassan Noura, Ali Chehab, Mohamad Noura, Raphaël Couturier, and
Mohammad M Mansour. Lightweight, dynamic and efficient image
encryption scheme. Multimedia Tools and Applications, pages 1–35,
2018.

[46] Hassan Noura, Steven Martin, Khaldoun Al Agha, and Khaled Chahine.
Erss-rlnc: Efficient and robust secure scheme for random linear network
coding. Computer Networks, 75, Part A:99 – 112, 2014.

