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The elastic properties of three-dimensional (3D) crystalline mechanical metamaterials, unlike
those of amorphous structures, are generally strongly anisotropic – even in the long-wavelength
limit and for highly symmetric crystals. Aiming at isotropic linear elastic wave propagation, we
therefore study 3D periodic approximants of 3D icosahedral quasi-crystalline mechanical metama-
terials consisting of uniaxial chiral meta-rods. Considering increasing order of the approximants,
we approach nearly isotropic effective speeds of sound and isotropic acoustical activity. The lat-
ter is directly connected to circularly polarized 3D metamaterial chiral acoustic phonons – for all
propagation directions in three dimensions.

In aiming at effective-medium properties that go be-
yond those of their ingredient materials, disordered and
crystalline rationally designed composites called meta-
materials have been investigated extensively throughout
recent years [1], including optical [2–6], transport [1], and
mechanical properties [7–14]. Often, three-dimensional
isotropic effective material properties are desirable in ap-
plications. For instance, cubic crystal symmetry guar-
antees isotropic behavior for electric conduction, particle
diffusion, thermal conduction, thermal expansion, and
the long-wavelength limit of optics [15]. This statement
is not valid though for transverse elastic waves in me-
chanics, for which cubic and other crystal symmetries
generally lead to very highly anisotropic effective prop-
erties, even in the strict long-wavelength limit [15–19].

Concerning isotropic elastic properties, this situation
leaves one with the possibilities of disordered, extraordi-
nary crystalline, and quasi-crystalline architectures. So
far, certain isotropic elastic properties have been real-
ized in achiral disordered foams [20], which are effectively
isotropic on average, and in achiral extraordinary crystals
designed by topology optimization [21]. Following the
discovery of atomic 3D quasi-crystals [22–28], isotropic
achiral elastic properties have also been obtained in 3D
quasi-crystals [23, 29]. However, isotropic elastic prop-
erties related to chirality have not been demonstrated in
any system by any means so far.

Chiral mechanical metamaterials have emerged re-
cently, but their properties have been highly anisotropic
[18, 30, 31]. Acoustical activity [32–34] — the mechani-
cal counterpart of the well-known phenomenon of optical
activity [35] — is a paradigm. Here, chiral phonons in-
stead of the textbook linearly polarized transverse acous-
tic (TA) phonons are the eigenstates. An incident linear
phonon polarization hence rotates during phonon propa-
gation. Therefore, an application of acoustical activity is
polarization mode conversion from one transverse linear
polarization to another transverse one, e.g., to the or-
thogonal transverse one. However, in cubic metamaterial

crystals, acoustical activity has been restricted to special
propagation directions deviating from the principal cu-
bic axes by no more than just a few degrees [19, 36], and
yet smaller solid angles around the cubic space diagonals.
The underlying reason is fundamental: Acoustical activ-
ity is directly connected to circular eigenpolarizations of
the two lowest-frequency acoustic-phonon branches, that
is, to chiral phonons. To obtain circular polarization,
the axis of the phonon wave vector must at least exhibit
three-fold rotational symmetry [37] — locally, or at least
on average. Furthermore, as the effects of chirality gen-
erally tend to zero in the strict limit of large samples
(“bulk”) and long wavelengths [19, 36], one must depart
from the strict long-wavelength limit to obtain apprecia-
ble effects of acoustical activity in the bulk.

In this Letter, we investigate the possibility of obtain-
ing isotropic effective elastic behavior related to chirality
by introducing 3D quasi-crystalline mechanical metama-
terials.

Our rational design strategy starts with the cut-and-
project method [25, 27, 38] applied to a 6D simple-cubic
lattice of points with lattice constant a6D. The projection
matrix

M =
1√

1 + τ20


τ1 τ1 0 −1 0 1
0 0 1 τ1 1 τ1
1 −1 −τ1 0 τ1 0
τ2 −τ2 1 0 −1 0
−1 −1 0 −τ2 0 τ2
0 0 τ2 −1 τ2 −1

 (1)

acts onto a six-dimensional coordinate vector. The re-
sulting first three components represent the lattice points
in 3D physical space, while the other three components
represent a fictitious vector in internal space. Accord-
ing to the cut-and-project method for quasi-crystals [27]
and periodic approximants [25] (see Fig. S1 [41]), not
all of the resulting points in 3D physical space are ac-
cepted as lattice points of the 3D quasi-crystal lattice.
Rather, only the points for which the internal vectors
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lie in a certain acceptance domain are used (cf. upper
row of Fig. S2 [41]). The projection of the Wigner-Seitz
cell of the 6D simple-cubic lattice onto the internal space
defines this acceptance domain. We also include those
lattice points that lie exactly on the surface of the ac-
ceptance domain, which, following [25], lie inside of the
acceptance domain if the acceptance domain is shifted
by an infinitesimal amount along the body diagonal di-
rection. If the nonzero entries of the matrix in Eq. (1)
are chosen to be τ1 = τ2 = τ0, with the golden ratio
τ0 = (1+

√
5)/2, we obtain a 3D icosahedral quasi-crystal.

If, instead, we set τ1 = τ0 and τ2 to be a rational approxi-
mation of the golden ratio, τ2 = q/p = Fn+1/Fn with the
elements of the Fibonacci series Fn = 1, 1, 2, 3, 5, 8, . . . ,
we obtain a 3D crystal. Its three simple-cubic lattice vec-
tors are (aq/p, 0, 0), (0, aq/p, 0) and (0, 0, aq/p), with the

lattice constant aq/p = 2 a6D(qτ0+p)/
√

1 + τ20 . For frac-
tions q/p approaching τ0, the 3D periodic cell becomes
increasingly large and the corresponding 3D crystal ap-
proaches a 3D icosahedral quasi-crystal. Considering the
crystalline approximants is important here because it al-
lows to apply Floquet-Bloch’s theorem for the calculation
of the phonon band structures. Alternatively, one can
possibly solve the eigenvalue problem of an exact quasi-
crystal lattice by applying Floquet-Bloch’s theorem in a
higher dimension, and then obtain the band structure
through a similar cut-and-project method [26]. Below,
we will use q/p = 1/1, 2/1, 3/2, and 5/3. The corre-
sponding architectures are illustrated in Fig. S2 [41].

To arrive at a practical physical structure, we connect
the fictitious points derived from the previous paragraph
by ordinary elastic (that is, achiral) homogeneous cylin-
drical rods in such a way that we obtain nearly isotropic
phonon dispersion relations and a negligibly small rel-
ative frequency splitting between the lowest two bands
in the extended zone scheme for all phonon wave vec-
tors. This aspect is crucial because the frequency split-
ting between left- and right-handed circularly polarized
transverse modes induced by chirality competes with any
unwanted effective anisotropy for the achiral case that
also lifts the degeneracy between the two orthogonally
polarized TA branches. We apply two rules. First, two
lattice points are connected if the corresponding 6D lat-
tice points have been nearest neighbors. The result-
ing architecture can be seen as being composed of two
types of rhombohedra, a thinner and a thicker one (see
zoom-in in Fig. 1(a)). This 3D arrangement of touching
rhombohedra is analogous to the 2D aperiodic Penrose
tilings [39]. All edges of the rhombohedra have same
length (red in the inset of the Fig. 1(a)). Second, we
additionally introduce segments along the face diagonals
(blue dotted) of both types of rhombohedra and along
the shortest body diagonal (dashed gray; only one such
segment occurs in the inset of Fig. 1(a)) for the thinner
rhombohedra. By increasing the local coordination num-

FIG. 1. (a) Illustration of the q/p = 3/2 approximant of
a 3D icosahedral quasi-crystalline metamaterial. The black
points result from the cut-and-project method. The zoom-
in highlights three types of segments between these points,
i.e., the edges (red), the face diagonals (blue dotted) of the
two types of rhombohedra, and the shortest body diagonals
(gray dashed) of the thinner rhombohedra. An animated ver-
sion of the 3/2 approximant is shown in Supplemental Video
1. If we replace each segment by either an achiral homo-
geneous cylindrical rod or by a homogeneous uniaxial chiral
rod, we approach an achiral or a chiral 3D quasi-crystal in
the limit of large approximant order, respectively. (b) Next,
we approximate a homogeneous uniaxial chiral rod with full
rotational symmetry by the depicted chiral “meta-rod” with
three-fold rotational symmetry. The meta-rod is composed of
ordinary achiral elastic rods. This approximation is justified
for wavelengths large compared to the length L. (c) Resulting
chiral architecture corresponding to the zoomed-in region in
(a). Throughout this Letter, we consider the following nor-
malized parameters: d/L = 0.3, R/L = 0.2, h/L = 0.035,
r/a6D = 0.01 (leading to the same rod radius for all rods in
the architecture for fixed a6D), and fixed a6D = 100µm, which
is amenable to state-of-the-art 3D laser printing of polymers
[18]. Therefore, we use typical polymer parameters for all
rods: Young’s modulus E = 4.18 GPa, Poisson’s ratio ν = 0.4,
and mass density ρ = 1.15× 103 kg/m3.

ber, the face-diagonal segments play an important role
in decreasing the anisotropy-induced splitting between
the two transverse bands along the principal cubic direc-
tions. Likewise, the mentioned body diagonals are criti-
cal to decrease the anisotropy-induced splitting for wave
vectors along the face diagonals of the 3D simple-cubic
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translational lattice. Without these two additional types
of segments, the properties of the metamaterial converge
more slowly towards the isotropic case with increasing
approximant order. The mentioned three types of links
are highlighted by the red, dashed blue, and dashed gray
segments in Fig. 1(a). Their respective lengths are a6D,
a6D2/

√
1 + τ20 , and a6D

√
6− 3τ0/

√
1 + τ20 . Finally, each

segment is replaced by a cylindrical rod composed of an
ordinary achiral elastic material. Calculated band struc-
tures and contours for these achiral approximants of 3D
quasi-crystals with rod radius r/a6D = 0.01 are depicted
in Fig. S3 and Fig. S4 [41], respectively. The discussed
procedure leads to isotropic achiral properties for increas-
ing approximant order.

To achieve chiral metamaterial architectures support-
ing isotropic chiral phonons, we can conceptually replace
each segment of the previous section (i.e., the red, dot-
ted blue, and dashed gray segments in Fig. 1(a)) by a
homogeneous uniaxial chiral rod to again obtain an ap-
proximant of a true 3D quasi-crystal. Unfortunately,
rods made of a homogeneous ordinary material with chi-
ral properties do not exist in reality. Therefore, we ap-
proximate and replace each rod by the chiral “meta-rod”
shown in Fig. 1(b). This meta-rod is composed of ordi-
nary homogeneous achiral elastic rods. Its length, L, is
scaled according to the segment length. In the limit of
vanishing R, the meta-rod becomes achiral. In the limit
of large R, neighboring meta-rods overlap. Our choice is
a trade-off. By virtue of the three-fold rotational sym-
metry of the meta-rod, and independent on its randomly
chosen azimuthal angle (see [41]), its effective properties
in the limit that the wavelength is large compared to
L are those of a homogeneous uniaxial chiral rod, sup-
porting chiral phonons propagating along the rod axis.
Purely geometrically speaking, the truss lattice itself (cf.
Fig. 1(c)) does not converge to a 3D quasi-crystal.

For the q/p = 1/1, 2/1, 3/2, and 5/3 approximants
considered below, this procedure leads to 32, 136, 576,
and 2240 points within one periodic cell, respectively,
and to 228, 920, 3398, and 16768 chiral meta-rods within
one periodic cell, respectively. To deal with periodic
cells containing so many rods, we treat all rods by using
Timoshenko-beam theory and COMSOL Multiphysics R©

(MUMPS solver) [40]. This approximation is justified
because the rods are very slender (r/a6D = 0.01 in
Fig. 1(b)). For the meta-rod shown in Fig. 1(b), a di-
rect comparison to continuum mechanics is provided in
Fig. S5 [41].

In Figs. 2(a)–(d), we plot the calculated phonon dis-
persion relations along cubic face diagonals and princi-
pal cubic directions for the q/p = 1/1, 2/1, 3/2, and
5/3 approximants. The lowest two transverse phonon
branches and their back-folded parts are colored in
red. The other, less important, bands are colored in
gray. A frequency splitting between the two red trans-
verse bands is clearly visible for both propagation di-

FIG. 2. Calculated phonon dispersion relations for approx-
imant architectures as illustrated in Fig. 1 for propagation
along a cubic face diagonal (ΓK direction, left) and a princi-
pal cubic direction (ΓM direction, right). (a) q/p = 1/1, (b)
q/p = 2/1, (c) q/p = 3/2, and (d) q/p = 5/3. The lowest two
transverse bands and their back-folded parts are colored in
red, the other less important bands are plotted in gray. These
data are shown in magnified form in Fig. S6 [41]. (e) and (f)
exhibit the relative frequency splitting, 2(f2 − f1)/(f2 + f1),
between the two transverse bands. The colors for the four ap-
proximants are indicated in the legend. (e) ΓK direction. (f)
ΓM direction. The results shown in Figs. 3 and 4 have been
evaluated for the wave number indicated by the dashed gray
straight lines.

rections. This splitting can generally have two differ-
ent origins: Unwanted anisotropy and wanted chirality.
The anisotropy results in linearly or elliptically polar-
ized eigenmodes, whereas chirality alone ideally leads to
chiral phonons connected to circularly polarized eigen-
modes. In the long-wavelength limit of a periodic struc-
ture, the anisotropy-induced relative frequency splitting
is independent of the wave number |k|. In contrast,
the chirality-induced splitting should vanish ∝ |k| in the
long-wavelength limit, for which classical Cauchy elas-
ticity applies [15]. Therefore, we expect the splitting at
|k| = 0 to be anisotropy-induced only, which is unwanted.
It is thus instructive to plot the relative frequency split-
ting, 2(f2−f1)/(f2+f1), versus the phonon wave number
|k| in Figs. 2(e) and (f). The dips in the curves indicated
by the arrows occur on the edge of the first Brillouin zone
for the corresponding approximant periodic cell. Clearly,
the relative frequency splitting at |k| = 0 converges to
zero with increasing approximant order (see Figs. 2(e)
and (f)). For the highest approximant order numerically
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FIG. 3. Calculated results for increasing order (from left to
right) of 3D quasi-crystal approximants for |k| = 1/9 (π/a6D)
(cf. dashed gray lines in Figs. 2(e) and (f)). (a) q/p = 1/1,
(b) q/p = 2/1, (c) q/p = 3/2, and (d) q/p = 5/3. In the
first two rows, we depict the direction dependence of the two
transverse phonon eigenfrequencies, f1 and f2 on a false-color
scale. In addition, the length of the vector from the origin to
the surface of the plot is proportional to the eigenfrequency
for this propagation direction. In the third row, we depict
the relative frequency splitting between the two transverse
eigenfrequencies, 2(f2 − f1)/(f2 + f1), in the same manner.

accessible to us, i.e., q/p = 5/3, the relative splitting
for |k| = 0 is about 0.3% for wave vectors along the cu-
bic face diagonals (see Fig. 2(e)) and less than 0.03% for
the principal cubic directions (see Fig. 2(f)). As expected
from micropolar continuum elasticity [19], the chirality-
induced relative splitting converges towards a behavior
∝ |k| (see the purple dashed straight line in Fig. 2(e)).
At the indicated gray line at |k| = 1/9 (π/a6D), chirality-
induced splitting dominates over the anisotropy-induced
splitting and we expect chiral phonon polarizations for
the two sets of directions considered. Indeed, inspection
of the corresponding eigenmodes reveals circular phonon
polarization (see Fig. S7 and Supplemental Videos 2 and
3 [41]).

Yet more importantly, based on our entire design pro-
cess, we expect an isotropic chiral behavior of the acous-
tic phonons in the limit of increasing approximant or-
der. To numerically test this conjecture, we visualize the
three-dimensional direction dependence of the eigenfre-
quencies f1 and f2 in Fig. 3 and of the eigenmode polar-
izations in Fig. 4 (again for a fixed modulus of the phonon
wave vector of |k| = 1/9 (π/a6D)). For the q/p = 5/3 ap-
proximant in Fig. 3, the frequency f1 varies only between

a minimum of 19.61 kHz and a maximum of 19.66 kHz. f2
varies between 19.82 kHz and 19.86 kHz. The correspond-
ing relative frequency splitting 2(f2−f1)/(f2 +f1) ≈ 1%
is nearly isotropic, too. In the ideal isotropic limit, f1,
f2, and 2(f2−f1)/(f2+f1) should be constant. In Fig. 4,
we visualize the eigenpolarizations of the two transverse
phonon bands. This is accomplished in two different
ways. First, we define the polarization degree as the ra-
tio, ζ, of the minor and major axes of the polarization
ellipse formed by the mean displacement vector of the
periodic cell versus time: ζ = 1 corresponds to circu-
lar polarization, ζ = 0 to linear polarization, and values
in between to elliptical polarization. In the top row of
Fig. 4, we false-color code ζ onto the surface of a sphere
in 3D wave vector space. From this representation, one
can see that the ideal of constant ζ = 1 is approached
with increasing approximant order. However, one can-
not see the orientation of the polarization ellipse. There-
fore, we depict in the bottom row of Fig. 4 the real-space
trace of the mean displacement vector, again for the two
transverse bands, i = 1, 2. Obviously, very nearly circu-
lar polarization is achieved for all wave vector directions
for the highest q/p = 5/3 approximant, whereas linear
or elliptical polarizations still dominate for the 1/1 and
the 2/1 approximants. If the local coordination num-
ber is reduced by considering only the red connections
in Fig. 1(a), the isotropic ideal is not yet reached for the
5/3 approximant (cf. Fig. S8 [41]).

In conclusion, we have presented a rational design of
truss-based chiral 3D mechanical-metamaterials exhibit-
ing nearly isotropic chiral acoustic phonons (and as a spe-
cial limit also isotropic achiral acoustic phonons). Our
design approach is based on 3D quasi-crystal approx-
imants of increasing order. Intuitively, for sufficiently
large wavelengths and on average over the course of prop-
agation through the infinite 3D periodic approximant,
the elastic wave “feels” an isotropic chiral medium with
complete rotational symmetry around any wave propa-
gation direction. This averaging should make the archi-
tecture robust against disorder but comes at the price of
reduced chiral effects. Here, we achieve an isotropic rel-
ative frequency splitting of 1%, which compares to max-
ima over 10% in highly anisotropic cubic 3D metamate-
rial crystals [31]. Future experimental realizations of our
proposal appear possible based on advanced 3D additive
manufacturing. However, the more than ten thousand
chiral meta-rods per 3D approximant periodic cell pose
a formidable challenge.
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FIG. 4. Calculated results for increasing order (from left to
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(cf. dashed gray lines in Figs. 2(e) and (f)). (a) q/p = 1/1, (b)
q/p = 2/1, (c) q/p = 3/2, and (d) q/p = 5/3. The first row
exhibits the polarization degree, ζ, on a false-color scale (cf.
Fig. 3). ζ = 0 corresponds to linear polarization and ζ = 1 to
circular polarization. The second row shows real-space trajec-
tories of the phonon displacement vector versus time (mean
over one periodic cell), i.e., a circle corresponds to circular
phonon polarization, an ellipse to elliptical polarization, and
a line to linear polarization. The center of each miniature on
the sphere indicates the corresponding wave vector direction
in 3D. The behavior of the two transverse phonon bands, with
indices i = 1 and i = 2, is shown in red and black, respec-
tively. For the 5/3 approximant, chiral phonons are obtained
for all phonon propagation directions in 3D.
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I. CUBIC APPROXIMANTS FROM CUT-AND-PROJECT METHOD

In our Letter, the (generalized) cut-and-project method [25, 27, 38] is applied to a 6D

simple-cubic lattice with lattice constant a6D, leading to an ideal 3D quasi-crystal or a peri-

odic approximant of an ideal 3D quasi-crystal, respectively. For illustration, as the procedure

is hard to visualize or illustrate for 6D, we here apply the same method to a 2D square lattice

with lattice constant a2D shown in Fig. S1(a). This leads to the 1D quasi-crystal shown in

Fig. S1(b) or to the periodic 1D quasi-crystal approximant shown in Fig. S1(c), respectively.

In this 2D case, the (6×6)-matrix given in Eq. (1) of the Letter is replaced by the simple

(2×2)-matrix

M =
1√

1 + τ 20

 τ1 −1

1 τ2

 (1)

where τ0 = (1 +
√

5)/2 is the golden number. For the 1D quasi-crystal case shown in

Fig. S1(b), we have τ1 = τ2 = τ0. In that case, the matrix product of M by its transpose

gives the Identity matrix and so M is an orthogonal matrix. The square lattice of black

dots from Fig. S1(a) is rotated with respect to the horizontal physical-space axis by an angle

Θ = tan−1(1/τ0). The physical-space axis and the internal-space axis are perpendicular;

they include an angle of 90 degrees. Black dots that lie within the gray acceptance domain

(an infinite strip) are projected onto the horizontal physical-space axis. This gray area

results from the rotated Wigner-Seitz cell (highlighted in red) of the 2D square lattice. The

projected blue dots on the horizontal physical-space axis are the 1D quasi-crystal lattice

points.

For the 1D quasi-crystal approximant shown in Fig. S1(c), we have τ1 = τ0 and τ2 =

q/p, where the integers q = Fn+1 and p = Fn are successive Fibonacci numbers Fn =

1, 1, 2, 3, 5, 8, . . . In the limit of n → ∞, the fraction Fn+1/Fn converges to the golden

number τ0. The procedure illustrated in Fig. S1(c) is analogous to that in Fig. S1(b), except

for the important difference that the physical-space axis and the internal-space axis no longer

include an angle of 90 degrees. Here, the internal-space axis is rotated with respect to the

original principal axis of the 2D square lattice by an angle Θ2 = tan−1(1/τ2). As a result

of this “shear”, the gray acceptance domain is rotated with respect to that in Fig. S1(b).

The blue points projected onto the physical-space axis are periodic along the physical-space

axis with period aq/p = a2/1. With increasing n, the ratio τ2 converges to τ0. Furthermore,
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the period aq/p, which is indicated in Fig. S1(c), becomes larger and larger. Eventually, in

the limit of n → ∞, the periodic 1D quasi-crystal approximant of blue dots in Fig. S1(c)

converges to the ideal 1D quasi-crystal of blue dots shown in Fig. S1(a).

FIG. S1. Illustration of the (generalized) cut-and-project method starting from a 2D square lattice

of black dots instead of the 6D simple-cubic lattice discussed in the Letter. (a) Two-dimensional

square lattice of black dots with lattice constant a2D and its Wigner-Seitz cell (red). (b) For

τ1 = τ2 = τ0, the cut-and-project method leads to an ideal 1D quasi-crystal of blue dots on the

physical-space axis. (c) For τ1 = τ0 and τ2 = q/p (depicted is the example of q/p = 2/1), its

generalization leads to a periodic approximant of the ideal 1D quasi-crystal of blue dots with the

indicated 1D periodicity or 1D lattice constant aq/p. The 1D acceptance domain (or interval) is

highlighted by the gray area (an infinite strip).
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Fig. S2 illustrates the 3D acceptance domains (upper row) and the 3D quasi-crystal ap-

proximants (lower row) resulting from the (generalized) cut-and-project method [25, 27, 38]

and the projection matrix in Eq. (1) of the Letter, starting from a 6D simple-cubic lattice

with lattice constant a6D.

FIG. S2. Acceptance domain in internal space (upper row) and resulting corresponding approx-

imants in physical space (lower row). (a) q/p = 1/1, (b) q/p = 2/1, (c) q/p = 3/2, and (d)

q/p = 5/3. The acceptance domains converge towards the ideal quasi-crystal case. The case of

q/p = 3/2 has already been shown in Fig. 1(a). An animated version of the q/p = 3/2 cubic

approximant is given in Supplemental Video 1.
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II. CALCULATED RESULTS FOR ACHIRAL APPROXIMANTS

Achiral approximants of icosahedral quasi-crystal lattices have been obtained by replacing

each segment in Fig. 1(a) by a cylindrical rod (also see Fig. S2). Otherwise, the procedure,

the geometrical parameters, and the numerical approach for the achiral approximants are

the same as for the chiral approximants shown in the Letter, for which each segment in

Fig. 1(a) is replaced by the chiral element shown in Fig. 1(b). Therefore, the following

discussion applies to both cases, achiral and chiral approximants. The rod radius is chosen

to be r/a6D=0.01 (also see caption of Fig. 1), with a fixed a6D = 100µm. For all rods,

we use the Young’s modulus E = 4.18 GPa, the Poisson’s ratio ν = 0.4, and the mass

density ρ = 1.15 × 103 kg/m3. We solve the dynamic elasticity equation −ρω2u = E/(2 +

2ν)/(1 − 2ν)∇(∇ · u) + E/(2 + 2ν)∇2u for the achiral metamaterial to obtain the band

structure and corresponding eigenmodes. ω and u represent the angular eigenfrequency

and the displacement field, respectively. We apply traction-free boundary conditions on the

boundary of all rods, and apply Floquet-Bloch conditions on six sides of cubic approximants.

The elasticity equation is solved using a finite-element approach implemented within the

commercial software COMSOL Multiphysics R© (MUMPS solver). All the rods are discretized

using the Timoshenko beam module in COMSOL Multiphysics R© with a mesh size smaller

than L/10. The equations underlying the Timoshenko beam approach are given in Section

5.4. of [40].
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FIG. S3. Numerically calculated phonon dispersion relations along the cubic face diagonals (ΓK

direction, left) and the principal cubic directions (ΓM direction, right) for achiral approximants.

(a) q/p = 1/1, (b) q/p = 2/1, (c) q/p = 3/2, and (d) q/p = 5/3. The lowest two transverse

bands are colored in red, the other bands are plotted in gray. Here, we have restricted ourselves

to the lowest 200 bands. The gray bands can barely be separated because they lie so closely. The

frequency splitting between the two transverse bands is hardly visible, which is desirable for an

achiral isotropic material.
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FIG. S4. Calculated direction dependence of the first two transverse eigenfrequencies for the achiral

approximants in the long-wavelength limit, |k| = 1/14 (π/a6D). (a) q/p = 1/1, (b) q/p = 2/1, (c)

q/p = 3/2, and (d) q/p = 5/3. In the first two rows, we depict the direction dependence of the two

transverse phonon eigenfrequencies, f1 and f2 on a false-color scale. In the third row, we show the

relative frequency splitting between the two transverse eigenfrequencies, 2(f2 − f1)/(f2 + f1). All

of these refer to a fixed modulus of the wave vector |k| = 1/14 (π/a6D). Note that this choice is

smaller than the one for the chiral case in the main paper. We choose a smaller wave number here

in order to avoid having to deal with the dense set of gray bands in Fig. S3. In the long-wavelength

limit, the relative frequency splitting is independent of the wave number anyway. Upon inspection

of the lowest row in panels (a)–(d), it becomes obvious that the relative frequency splitting tends

to zero for increasing approximant order, indicating an asymptotically achiral isotropic response.

Likewise, when going from (a) to (d), the upper two rows show that the eigenfrequencies become

isotropic with increasing approximant order as well.
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III. COMPARISON OF TIMOSHENKO BEAMS AND SOLID MODEL

All calculations shown in the Letter are based on using the approximation of Timoshenko

beams. It is therefore important to evaluate possible errors. For computational reasons, a

comparison for the 3D quasi-crystal approximant architectures is not possible. Therefore, we

investigate a simpler test case: We use a one-dimensional lattice of chiral elements as shown

in Fig. 1(b), implemented by using Floquet-Bloch-periodic boundary conditions along the

z-axis. To implement the structure shown in Fig. 1(b) as the unit cell for the Timoshenko-

beam model, we use about 60 Timoshenko-beam elements with a mesh size smaller than

L/10. To mesh the structure shown in Fig. 1(b) as the unit cell for the solid model, we use

about 20 thousands tetrahedra with a mesh size smaller than r/3. Results are shown in

Fig. S5. For the relative frequency splitting in Fig. S5(b), which is the most important part

in the Letter, the agreement between the solid model and the Timoshenko-beam model is

quantitative throughout the entire Brillouin zone. For the absolute frequencies, the solid

model consistently yields higher frequencies. This behavior is expected because the solid

model leads to stiffer joints between the finite-radius rods than the Timoshenko-beam model,

which assumes infinitely thin rods everywhere [40].

FIG. S5. To check the validity of the approximation in terms of Timoshenko beams, we compare

results based on using Timoshenko beams (dots) with corresponding results using a solid model (full

curves). (a) Calculated band structure for phonon propagation along the z-direction. (b) Relative

frequency splitting 2(f2 − f1)/(f2 + f1) between the two lowest-frequency shear-like bands, as

derived from the data in (a).
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IV. CALCULATED RESULTS FOR CHIRAL APPROXIMANTS

Chiral approximants of icosahedral quasi-crystal lattices have been obtained by replacing

each segment in Fig. 1(a) by a chiral meta-rod. For the chiral meta-rod, we consider the

geometric parameters as already quoted in the caption of Fig. 1: d/L = 0.3, R/L = 0.2,

h/L = 0.035, r/a6D = 0.01 (leading to the same rod radius for all rods in the architecture for

fixed a6D), and fixed a6D = 100µm. For all rods, we use the Young’s modulus E = 4.18 GPa,

the Poisson’s ratio ν = 0.4, and the mass density ρ = 1.15 × 103 kg/m3. These material

parameters correspond to those of typical polymers, amenable to 3D laser printing [18]. In

similar to previous cases, all the rods are modeled using the Timoshenko beams with a mesh

size smaller than L/10.

Figure S6 shows the same data as Figs. 2(a)-(d) but in magnified form. Figure S7 exhibits

two representative eigenmodes. In Fig. S8, we demonstrate the importance of a large local

coordination number by leaving away the connections along the face-diagonals (see blue

dotted segments in Fig. 1(a)) and body diagonals (see dashed gray segment in Fig. 1(a)).

The result in Fig. S8 can directly be compared with Fig. 4.

FIG. S6. (a)-(d), same data as in Figs. 2(a)-(d), but in magnified form.
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FIG. S7. Representation of the transverse eigenmodes corresponding to the first transverse band for

the q/p = 5/3 chiral approximant. For clarity, the displacements have been largely exaggerated. (a)

Real and (b) imaginary parts of the displacement-vector field within one unit cell for a wave vector

k = (1/
√

2, 1/
√

2, 0)1/9 (π/a6D) along a cubic face diagonal. The red and the blue arrows indicate

the real and the imaginary parts of the mean of the displacement vector over one approximant

unit cell. The phonon polarization is circular because the red and the blue arrows are orthogonal

to each other, and the real and the imaginary parts are phase delayed by 90 degrees. (c) and (d)

are analogous to (a) and (b), but for a wave vector k = (0, 0, 1)1/9 (π/a6D) along a principal cubic

direction. Results for the two propagation directions are further visualized in Supplemental Video

2 and 3, respectively.
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FIG. S8. As Fig. 4, but the connections along the face-diagonals (see blue dotted segments in

Fig. 1(a)) and the body diagonals (see dashed gray segment in Fig. 1(a)) have been left away.

Therefore, only the red connections in Fig. 1(a) are left. As a result, isotropy is by far not yet

reached for the 5/3 approximant (cf. Fig. 4).
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Supplemental Video 1: Animated version of Fig. 1(a).

Supplemental Video 2: Animation of the first transverse eigenmode corresponding to

Figs. S7(a) and (b). The red arrow represents the instantaneous displacement vector.

Supplemental Video 3: Animation of the first transverse eigenmode corresponding to

Figs. S7(c) and (d). The red arrow represents the instantaneous displacement vector.

Supplemental File 1: *.x b file of the considered achiral 1/1 3D quasi-crystal approximant

(underlying Fig. S2-S3).

Supplemental File 2: *.x b file of the considered achiral 2/1 3D quasi-crystal approximant

(underlying Fig. S2-S3).

Supplemental File 3: *.x b file of the considered achiral 3/2 3D quasi-crystal approximant

(underlying Fig. S2-S3).

Supplemental File 4: *.x b file of the considered ahiral 5/3 3D quasi-crystal approximant

(underlying Fig. S2-S3).

Supplemental File 5: *.x b file of the considered chiral 1/1 3D architecture (underlying

Figs. 2-4).

Supplemental File 6: *.x b file of the considered chiral 2/1 3D architecture (underlying

Figs. 2-4).

Supplemental File 7: *.x b file of the considered chiral 3/2 3D architecture (underlying

Figs. 2-4).

Supplemental File 8: *.x b file of the considered chiral 5/3 3D architecture (underlying

Figs. 2-4).
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