
A Frank-Wolfe Based Algorithm for Robust
Discrete Optimization Under Uncertainty

Chifaa Al Dahik∗†‡, Zeina Al Masry∗†, Stéphane Chrétien§, Jean-Marc Nicod ∗†, Landy Rabehasaina∗‡
∗Université Bourgogne Franche-Comté/CNRS/ ENSMM, Besançon, France

† FEMTO-ST institute, Besançon, France
‡ Laboratoire de Mathématiques de Besançon, Besançon, France
§ Laboratoire ERIC, UFR ASSP, Université Lyon2, Lyon, France

Abstract—This paper addresses a class of robust
optimization problems whose inputs are correlated and belong to
an ellipsoidal uncertainty set, which is known to be NP-Hard. For
that, we propose an efficient heuristic scalable approach based
on the iterative Frank-Wolfe (FW) algorithm. In our approach,
we take a radically different perspective on FW by looking at
the exploration power of the integer inner iterates of the method.
Our main discovery is that, for small dimensional instances, our
method is able to provide the same optimal integer solution
as an exact method provided by CPLEX, after no more than
a few hundred iterations. Moreover, as opposed to the exact
method, our FW-guided integer exploration approach applies
to large scale problems as well. Our findings are illustrated by
comprehensive numerical experiments. We focus on two target
applications, the robust shortest path problem as a first test case,
and the robust clustering as a real application in a PHM context
and data analysis.

Index Terms—Uncertainty, Robust Clustering, Robust
Discrete Optimization, Ellipsoidal uncertainty set

I. INTRODUCTION

Prognostics and Health managements (PHM) is a
discipline that allows to understand the behavior of a given
system and to provide an adapted decision in order to manage
the state of health of this system. PHM is based on several
pillars such as data analysis, diagnostic, prognostics and
decision making [1], [2]. Clustering techniques are one of the
different tools used in PHM: It can be used, for example, to
classify the remaining useful life (RUL) of several machines
for scheduling purposes [3]–[5]. Clustering is a common
optimization problem that consists in finding the best groups
that are close to some cluster centers. It has many variants such
as the k-median, the k-means, or new clustering definitions
that do not require the number of cluster centers [6]. When
the distances between the objects are known, there exist
algorithms that propose optimal clustering. However, in the
case where these distances are uncertain, a robust solution
for that cluster is needed. This solution is not supposed to
be optimal in all cases, but it accommodates with potential
fluctuations of the input data set. Up to our knowledge, a
robust version of the clustering problem does not exist so far,
despite its relevance and impact on PHM, data analysis and
other disciplines.

The problem of finding robust solutions in view of
decision-making has received increased attention lately, due to

its practical relevance. While some studies prove theoretical
solvability for different definitions of robustness, others
suggest exact and heuristic methods for computing a robust
solution [7]. In real life problems, i.e., large size problem,
finding a solution for this problem using branch-and-bound
techniques can be difficult and sometimes even impossible.
Then, it is mandatory to develop some scalable methods for
robust combinatorial optimization.

One way of addressing the problem is to relax the
underlying constraint set by considering its convex hull.
However, solving the problem on the convex hull might not
be relevant for decision-making, especially when the decision
needs a feasible solution. Nevertheless, some methods, such as
the Frank-Wolfe algorithm, implement intermediate steps that
solve at each iteration a version where the objective function is
linearized. In the case where these intermediate steps provide
feasible solutions (such as for integer linear programs (ILP)
with total unimodularity), the Frank-Wolfe algorithm exhibits
feasible solutions along the trajectory.

This paper aims to study how these intermediate feasible
solutions can help solving the original combinatorial robust
optimization problem. For the ease of the understanding of our
approach, the chosen motivating example is the robust shortest
path problem. Our main empirical findings show in the case of
the robust shortest path problem that our Frank-Wolfe-based
algorithm swiftly discovers the optimal robust solution along
its process, despite the intrinsic worst case difficulty of the
considered robust counterpart. Comparisons with CPLEX [8],
an optimization software package based on branch-and-bound
methods, illustrate our discovery. These unexpected results
open the way to further investigations into the problem of
certifying the exactness of the exhibited solutions, via e.g.,
duality tools1. Then, an extension of the proposed algorithm
is presented for the robust clustering problem.

This paper is organized as follows: Section II presents
the state-of-the-art of the robust discrete optimization.
Section III gives the problem statement addressed by the paper.
Section IV details an exact method of the problem solving.
Section V exhibits the suggested scalable heuristic approach
and Section VI presents a numerical example, namely the

1see forthcoming extended version of this work to be posted on ArXiv.

robust shortest path problem. Section VII proposes a robust
version of the clustering problem. Section VIII ends the paper
by presenting a conclusion and future work.

II. RELATED WORK

In the literature, many definitions of robustness were
proposed, such as absolute robust solution [9], robust
deviation [9], relative robust solution [9], robust two-stage
problems [10], K-adaptability [11], light robustness [12], etc.
We here are interested in the absolute robustness criterion
since it is relatively easy to evaluate from a computational
perspective. Recall that the absolute robust solution is feasible
for every scenario in the set of all the relevant realizations
of the uncertainty parameters, and it is worst-case optimal.
In addition, a choice of the uncertainty set should be
made such as discrete, polyhedral (interval) and ellipsoidal
sets [7]. The ellipsoidal uncertainty set is less conservative
than interval uncertainty set [13], since it eliminates the
extreme points of the set that are not likely to occur.
It also permits to control how much one is willing to
accept the risk (see Section III). Moreover, it allows to
model correlations between the coefficients of the cost.
Note that in reality significant correlations between the cost
vector components may occur. This makes the problem
computationally challenging. Approaches in the non-correlated
case are proposed by Baumann et al. in [14] and by Bertsimas
et al. in [15]. In order to fit with real applications, we here
consider the ellipsoidal uncertainty set in the correlated case.

The optimization problem considered in this paper is
NP-hard, i.e., it is unlikely that there can be developed a
polynomial-time algorithm for finding an optimal solution,
and to the best of our knowledge, there are not many
numerical methods for solving this type of problems. In [16], a
Lagrangean decomposition approach for the branch-and-bound
algorithm has been suggested, but this approach is not scalable.
On the other hand, a Frank–Wolfe based branch-and-bound
algorithm has been devised for a similar problem in [17],
where it is applied to a general ellipsoidal uncertainty set.
The problem, written in the form of a mixed integer second
order cone programming problem (MISOCP), can be solved
numerically by a MISOCP solver like CPLEX. This type of
solvers is usually used as a reference for comparing obtained
solutions and computation efficiency of the above approaches.

The main result of this paper is the proposition of a
heuristic algorithm inspired from Frank-Wolfe’s algorithm for
solving robust discrete optimization problems as presented in
the sequel. It is worth to mention that, up to our knowledge,
there does not exist any adaptation of Frank-Wolfe’s algorithm
for discrete problems.

III. PROBLEM STATEMENT

We consider general combinatorial optimization problems
of the form:

min
x∈X

cTx (1)

where X ⊆ Nm is the set of the feasible solutions, and where
the cost vector c ∈ Rm is subject to uncertainty, i.e., it has
more than one possible realization. Let U be an uncertainty set
included in Rm (U ⊆ Rm). The absolute robust counterpart
of Problem (1) is then defined as:

min
x∈X

max
c∈U

cTx. (2)

Problem (2) is motivated as follows. If we suppose
that c takes its values in U , then solving (2) amounts to
finding the optimal solution in X corresponding to the worst
possible cost. If we consider that the cost coefficient vector
c has a multinormal distribution with expectation µ ∈ Rm
and covariance matrix Σ ∈ Rm×m , which is a reasonable
assumption, an interesting uncertainty set to consider is the
following ellipsoid:

U = {c ∈ Rm; (c− µ)TΣ−1(c− µ) ≤ Ω2}. (3)

Indeed, U is a confidence set for c, i.e., c belongs to U
with probability 1 − α ∈ [0, 1], where Ω > 0 is written as
Ωα = χ2

m(1−α) and χ2
m(1−α) refers to the quantile function

for probability 1 − α of the chi-squared distribution with m
degrees of freedom . In that case, the parameter Ω describes
the level of confidence in solving the corresponding problem
(2), i.e., the risk the user is willing to take. If Ω = Ωα is
small, i.e., α is close to 1, the user is willing to accept the
risk to obtain a better solution. While a user who chooses a
bigger value for Ω prefers to be secured in more cases, even
if these cases are less likely to occur.

If U is defined by the set (3), problem (2) can be rewritten
as a non-linear optimization problem:

min
x∈X

µTx+ Ω
√
xTΣx. (4)

This reformulation can be done using conic duality or by
means of a substitution that reduces the task to a linear
maximization problem over a ball (for more details see Section
2.2.1.1 of [16]). We see that in the special case of the
ellipsoidal uncertainty set, finding a robust solution is reduced
to solving a deterministic optimization problem. In addition,
one could interpret (4) as a weighted sum of the mean µTx
and the risk

√
xTΣx, which is called a mean-risk optimization

problem [18].

IV. METHOD FOR COMPUTING AN OPTIMAL SOLUTION

There exists another formulation of problem (4) that
permits us to solve it using existing algorithms which can be
found in [16]. First note that we are able to write the objective
function as µTx+

√
xTΣx, by replacing Σ by Ω2Σ, in order to

simplify its expression. Problem (4) can be written as a mixed
integer second order cone programming problem (MISOCP).
Since Σ is positive symmetric semi-definite, then we can write
Σ = Σ

1
2 Σ

1
2 , with Σ

1
2 symmetric, and we obtain:

minµTx+
√
xTΣx (5)

s.t. x ∈ X

⇐⇒ minµTx+

√
xTΣ

1
2 (Σ

1
2)Tx

s.t. x ∈ X.

With a change of variable and after adding a variable that
transforms the objective function to a linear one, (5) becomes:

minµTx+ z

s.t. ‖y‖2 ≤ z
y = (Σ

1
2)Tx

x ∈ X, y ∈ Rm, z ∈ R+.

Finally, noticing that a cone constraint is revealed, we conclude
that (5) is equivalent to:

minµTx+ z (6)

s.t. (y, z)T ∈ Km+1

y = (Σ
1
2)Tx

x ∈ X, y ∈ Rm, z ∈ R+,

with Km+1 = {x ∈ Rm+1; ‖(x1, . . . , xm)T ‖2 ≤ xm+1}
being a second order cone. The same problem without the
integrality condition corresponds to a second order cone
program (SOCP) and can be solved in a polynomial time [19].
Thus, we easily obtain a lower bound for a branch-and-bound
method to get an optimal solution. There exists a MISOCP
solver in CPLEX [8] that gives an optimal solution of the
addressed problem using the formulation (6). But we mention
that for problems of large size, the processing time of branch-
and-bound methods may become considerable, since the size
of the tree may grow exponentially. Thus proposing a heuristic
algorithm seems mandatory. Such algorithm is presented in the
following section.

V. SCALABLE SUGGESTED HEURISTIC ALGORITHM

The proposed heuristic algorithm is a variant of
the Frank-Wolfe algorithm [20]. It requires some specific
assumptions which are listed first. Then we recall the classical
Frank-Wolfe algorithm. Finally, we describe the algorithm in
detail.

A. Assumptions

From now on, we consider the robust counterparts (4) of
problems in the form (1) that verify the following assumptions:

(A1) For any real-valued vector a (not necessarily with
positive entries), there exists an efficient algorithm to
solve minx∈X a

Tx;
(A2) For any real-valued vector a, there exists a
solution for minx∈Conv(X) a

Tx that belongs to X , where
Conv(X) ⊂ Rm is the convex hull of X;

(A3) The vector with zeros in all entries 0Rm does not
belong to X .

An example for which these assumptions are verified is
the robust shortest path problem: there exist polynomial time
algorithms to optimally solve the deterministic shortest path
problem with real valued costs, hence (A1) is satisfied. (A2) is
verified since the incidence matrix of the graph in that problem
is totally unimodular. The vector 0Rm is never a path, hence
(A3) is satisfied. Another example is the workforce planning
problem(see [21, Section 0.8]). For more details about totally
unimodular matrices, see [21].

B. The classical Frank-Wolfe algorithm

Let f be a real valued, convex and continuously
differentiable function defined on a compact convex D.
We consider in this section general constrained convex
optimization problems of the form

min
x∈D

f(x).

For such optimization problems, one of the simplest and
earliest known iterative optimizers is given by the Frank-Wolfe
method, also known as conditional gradient method, described
in Algorithm 1.

Algorithm 1 Frank-Wolfe 1956 [20]

Let x(0) ∈ D
for k = 0 to K do

compute s(k) := argmin
s∈D

∇f(x(k))T s

update x(k+1) := (1− γ(k))x(k) + γ(k)s(k)

end for

Note that the step size γ(k) in Algorithm 1 admits several
variants. The simplest one is γ(k) = 2

k+2 , a more advanced
one is the step size by line search:

γ(k) = argmin
α∈[0,1]

f((1− α)x(k) + αs).

This algorithm proceeds as follows. In each step, at a
current position x(k), the algorithm moves in the direction
of a minimizer of the linearization of the objective function
(see [22]). The main advantage of this algorithmis that there
is no need for projection of the updated position on the
convex set D at each step k. Another interesting fact on the
computational side is that at each step, we only need to solve
an optimization problem with a linear objective function.

C. A Frank-Wolfe based algorithm

Recall that our objective now is to solve:

min
x∈X

g(x) (7)

where
g(x) = µTx+ Ω

√
xTΣx.

Note that Problem (7) is a constrained integer non-linear
problem. In order to define the gradient needed in Algorithm 2,
it is reasonable to suppose that the covariance matrix Σ is
symmetric positive definite (as in [16]) and not only symmetric
positive semi-definite. This means that xTΣx is null only if x

equals 0Rm that does not belong to X thanks to (A3). So for
all x in X , the gradient of g at x is computed as follows:

∇g(x) = µ+ Ω
Σx√
xTΣx

.

One should notice that we are not capable of using the Frank-
Wolfe algorithm directly to solve (7), since the constraint
set X is discrete and so the problem is not convex. Instead,
we suggest Algorithm 2 that we denote as DFW referring to
Discrete Franke-Wolfe.

Algorithm 2 DFW: a Frank-Wolfe based algorithm to solve
(7)

1: x(0) a random feasible solution, ε > 0 close to zero, K a
maximum number of iterations.

2: k := 1
3: stop := false
4: while k ≤ K and ¬stop do
5: if g(x(k−1))− g(x(k)) < ε: then
6: stop := true
7: else
8: s(k) ∈ argmin

y∈Conv(X)

∇g(x(k))T y, with s(k) ∈ X

9: γ(k) = argmin
α∈[0,1]

g(x(k) + α(s(k) − x(k)))

10: x(k+1) = x(k) + γ(k)(s(k) − x(k))
11: end if
12: k + +
13: end while
14: return argmin

s∈{s(1),...,s(k−1)}
g(s)

Note kend the last iteration of DFW algorithm.
The main idea of our approach is that we use the classic

Frank-Wolfe algorithm on the convex hull Conv(X), and we
exploit the fact that s(k) belongs to X thanks to (A2), which
means that it is a feasible solution. When Algorithm 2 stops,
x(k) is close to the optimal solution x∗ of the relaxed problem
in the sense that g(x(k))− g(x∗) ≤ O(1

k).
Adding to this that s(k) (defined in Algorithm 2, Line
8) is a minimizer of the linear approximation of g
in the neighbourhood of x(k), and since x(k) tends to
minimize g in Conv(X), this leads us to think that
argmins∈{s(1),...,s(kend)} g(s) is the best choice to minimize
g in X . We choose the line search step γ(k) (defined in
Algorithm 2, Line 9) because it guarantees that g(x(k))
decreases at each iteration. The stopping criteria has been
chosen as the convergence of the relaxed problem.

VI. NUMERICAL RESULTS

This section is dedicated to illustrate the results of
Algorithm 2. First, we describe the experimental setup. Then
we discover the evolution of some interesting metrics along
the iterations of the algorithm, and we finally compare the
solutions and the performance between DFW and the MISOCP
solver of CPLEX as a function of the size of the problem.

A. Experimental setup

To test the algorithm, we take the example of the shortest
path problem that can be written in the form (1) and verifies
the assumptions (A1), (A2) and (A3). We consider a directed
graph G with n nodes and m edges, and we would like to find
an s — d-path with minimal cost, where the costs associated
to the edges can be, e.g., the duration or the distance between
the nodes. In this type of problems, we have:

X = {x ∈ {0, 1}m;Ax = b},

where
• A is the incidence matrix (of size n×m),
• b ∈ Rm is given by bi = 1{i=s}−1{i=d}, i = 1, . . . ,m,
• s being the source node and d the destination node.

We choose to take grid graphs with L rows and L columns so
that n = L2 and m = 2L(L− 1).

In the following numerical illustrations, we take
µ = (µ1, . . . , µm) where µi are chosen randomly in [0, 100],
i = 1, . . . ,m. The random covariance Σ matrix is defined as
in [16]. Let us write Σ = PTDP where P is an orthogonal
eigenvector matrix and D is the corresponding diagonal
eigenvalue matrix. Each of the eigenvalues λi, i = 1, . . . ,m,
is chosen as the square of a random number in [0, µi] and P
is a random orthogonal matrix.

For the implementation, we use the Python language,
with the Networkx package for creating and manipulating
graphs. To compute the solution s(k) (Line 8 of Algorithm 2),
we used an LP minimizer with the LP modeler PuLP. In all
the results of this paper, we set ε = 10−6, K = 1000 and
Ω = 1.

B. Behavior of DFW algorithm

To observe the behavior DFW algorithm, we take the grid
graph with L = 34. We denote, at each iteration k, the best
solution so far as:

s
(k)
opt = argmin

s(l)∈{s(1),...,s(k)}
g(s(l)).

Note then that s(kend)
opt is the heuristic solution proposed

by DFW. We show in Figure 1 the evolution of g(s(k)) and
g(s

(k)
opt) in the 200 first iterations.

In this example, the algorithm gives the same solution as
CPLEX at iteration k = 90 (Figure 1.b.). We see that, although
s(k) alternates all along the iterations (Figure 1.a.), it discovers
new optimal values as g(x(k)) decreases and gets closer to the
optimal solution g(x∗).

C. Performance of the DFW algorithm as a function of L

In order to test the DFW Algorithm, we changed the size
of the graph, and we compared with the solutions provided
by CPLEX. Experiments show that for small to medium
graphs, DFW gives the same solution as CPLEX. Arguably,
when L is large, methods based on branch-and-bound are no
more efficient, which is observed in graphs corresponding to
values of L larger than 40. In fact, due to the increase of

0 50 100 150 200

2,050

2,100

2,150

k

g
(s

(k
)
)

(a). Evolution of g(s(k))

0 50 100 150 200

2,020

2,022

2,024

k

g
(s

(k
)

o
p
t
)

(b). Evolution of g(s
(k)
opt)

Fig. 1. The evolution of g(s(k)) and g(s
(k)
opt) in the 200 first iterations

memory consumption, the console only displays at the end
the cost of the best integer solution found so far, rounded off
to 4 decimal digits, without the corresponding integer vector,
hence we could only compare with this value and thus we
could not use CPLEX to obtain a robust solution. We tested
graphs with L up to 46, (n = 2116 and m = 4140), and we
observed that the cost of the solution proposed by DFW is
the same displayed by CPLEX. This result demonstrates that,
even if we are not able to prove that DFW gives the optimal
solution, it is a heuristic that is indeed efficient in cases of
big graphs, where branch-and-bound methods are no more
efficient.
Another interesting fact to mention is that, in more than 97%
of the cases, ε = 10−3 is more than enough to obtain the same
solution proposed by CPLEX, and in all the experiments, we
obtained it at less than 250 iterations.

To sum up the numerical results, the behavior of DFW
algorithm is controlled, and it surpassed the MISOCP solver
of CPLEX. These numerical findings show that the approach
is promising. To understand the importance of the size of

graphs taken in the study, one may consider the example of
the city of Barcelona. It can be represented with a graph
of 1020 nodes and 2522 edges. Another example is Berlin-
Mitte-Center which can be represented with 398 nodes and
871 edges. This is to be compared with a grid graph with
40× 40 = 1600 nodes and 3120 edges.

VII. ROBUST CLUSTERING: A SECOND TARGET
APPLICATION

In this section, we consider a robustification of the k-
median clustering problem.

Suppose that we are given a set of finite points
P = {P1, . . . , Pn}. The k-median problem permits to choose
the clusters that minimize the sum of the distances between
the points p ∈ P and their cluster centers. It can be expressed
in the form of an integer programming problem, as formulated
in [23]. The formulation is the following:

min
(zpq)pq∈{1,...,n}2∈R{1,...,n}

2
Σp,q∈{1,...,n}2d(Pp, Pq)zpq (8)

s.t. Σp∈{1,...,n}zpq = 1 ∀q ∈ {1, . . . , n}
zpq ≤ yp ∀p, q ∈ {1, . . . , n}2

Σp∈{1,...,n}yp = k

zpq, yp ∈ {0, 1},

where d(Pp, Pq) are real positive distances between the points
Pp and Pq , yp indicates whether the point Pp ∈ P is a cluster
center or not, zpq tells us whether Pq ∈ P is assigned to
Pp ∈ P as center or not. The constraints of (8) assure that
each point is assigned to one and only cluster center, that
we do not assign a point to another one unless the second
is a center and that there exist k centers. In practice, the
variables (zpq)pq∈{1,...,n}2 are represented by a n× n matrix,
with (yp)p∈{1,...,n} in its the diagonal entries.

In real life applications, the distances between the points
defined above are subject to uncertainty. Thus a robust
clustering solution seems mandatory. The aim of the following
is to motivate the possibility to apply our approach for the k-
median clustering, by writing (8) in the formulation (1).

Following (8) and considering the concatenated version z
(respectively d) of length n2 of (zpq)pq∈{1,...,n}2 (respectively
(d(Pp, Pq))pq∈{1,...,n}2), the deterministic k-median problem
can be written as

min dT z (9)
s.t. Σni=1zn(i−1)+j = 1 ∀j = 1, . . . , n

zn(i−1)+j ≤ zn(i−1)+i ∀i, j = 1, . . . , n

Σni=1zn(i−1)+i = k

z ∈ {0, 1}n
2

This problem has the formulation of (1) which can be written
as

min
z∈X

dT z (10)

with X ⊆ {0, 1}n2

and where

X = {z ∈ {0, 1}n
2

|Σni=1zn(i−1)+j = 1 ∀j = 1, . . . , n,

zn(i−1)+j ≤ zn(i−1)+i
∀i, j = 1, . . . , n,Σni=1zn(i−1)+i = k}.

So supposing that the distances between the points are
uncertain and making the assumption that d has a multinormal
distribution with expectation µ ∈ Rm and covariance matrix
Σ ∈ Rm×m, if we follow the development done previously,
then the robust clustering problem is reduced to solving the
following non-deterministic problem:

min
z∈X

µT z + Ω
√
zTΣz (11)

The formulation done above could permit us to use DFW
to solve (11), by taking advantage of the work done in [23],
where Awasthi et al. studied exact recovery conditions for
convex relaxations of the k-median problem. These conditions
should serve us for the integrality of the inner iterates of our
algorithm.

VIII. CONCLUSION

This paper proposes a heuristic algorithm that solves
the robust counterpart of a general formulation of integer
optimization problems with ellipsoidal uncertainty sets. The
proposed algorithm is a relaxation-guided version of the
Frank-Wolfe algorithm, where we are interested in the
optimum of the linear approximation that the algorithm
computes at each iteration when relaxing the constraint set
in its convex hull. This is legitimate in some problems,
such as the shortest path problem, where the computed
solutions are feasible solutions for the discrete problem.
Numerous numerical experiments have been carried for the
robust shortest path problem, and comparisons with the
optimal solution given by the second order cone programming
solver of CPLEX have been done. Results show that our
approach always gives the same solution as CPLEX in
the instances where this solver is able to propose one. In
addition, the scalability of our algorithm has been approved in
problems of large size, where branch-and-bound methods are
no more efficient. The approach could be equally applicable
on the k-median clustering problem, where the exact recovery
conditions for convex relaxations are satisfied. This could have
a decisive impact on artificial intelligence and PHM domains
concerning data analysis.

Future work will include real applications and
experimental studies using real input data, focused on
real classification problems encountered in PHM. Moreover,
duality-based validation of the approach is ongoing and aims
at evaluating the quality of the obtained solutions in the
cases where it is no more possible to use a branch-and-bound
method.

ACKNOWLEDGMENT

This work has been supported by the EIPHI Graduate
school (contract ”ANR-17-EURE-0002”).

REFERENCES

[1] R. Gouriveau, K. Medjaher, and N. Zerhouni, From prognostics and
health systems management to predictive maintenance 1: Monitoring
and prognostics. John Wiley & Sons, 2016.

[2] B. Chebel-Morello, J.-M. Nicod, and C. Varnier, From Prognostics and
Health Systems Management to Predictive Maintenance 2: Knowledge,
Reliability and Decision. John Wiley & Sons, 2017.

[3] N. Herr, J.-M. Nicod, and C. Varnier, “Prognostics-based scheduling
in a distributed platform: Model, complexity and resolution,” in 2014
IEEE International Conference on Automation Science and Engineering
(CASE). IEEE, 2014, pp. 1054–1059.

[4] S. Chrétien, N. Herr, J.-M. Nicod, and C. Varnier, “A post-prognostics
decision approach to optimize the commitment of fuel cell systems in
stationary applications,” in 2015 IEEE Conference on Prognostics and
Health Management (PHM). IEEE, 2015, pp. 1–7.

[5] N. Herr, J.-M. Nicod, and C. Varnier, “Prognostic decision making
to extend a platform useful life under service constraint,” in 2014
International Conference on Prognostics and Health Management.
IEEE, 2014, pp. 1–11.

[6] N. Komodakis, N. Paragios, and G. Tziritas, “Clustering via lp-based
stabilities,” in Advances in neural information processing systems, 2009,
pp. 865–872.

[7] C. Buchheim and J. Kurtz, “Robust combinatorial optimization under
convex and discrete cost uncertainty,” EURO Journal on Computational
Optimization, vol. 6, no. 3, pp. 211–238, 2018.

[8] “IBM academic portal,” https://www.ibm.com/academic.
[9] P. Kouvelis and G. Yu, Robust discrete optimization and its applications,

OCLC: 854966265.
[10] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski,

“Adjustable robust solutions of uncertain linear programs,” Mathematical
Programming, vol. 99, no. 2, pp. 351–376, 2004.

[11] G. A. Hanasusanto, D. Kuhn, and W. Wiesemann, “K-adaptability
in two-stage distributionally robust binary programming,” Operations
Research Letters, vol. 44, no. 1, pp. 6–11, 2016.

[12] M. Fischetti and M. Monaci, “Light robustness,” in Robust and online
large-scale optimization. Springer, 2009, pp. 61–84.

[13] D. Bertsimas and M. Sim, “Robust discrete optimization and network
flows,” Mathematical programming, vol. 98, no. 1-3, pp. 49–71, 2003.

[14] F. Baumann, C. Buchheim, and A. Ilyina, “A lagrangean decomposition
approach for robust combinatorial optimization,” in Technical report.
Optimization Online, 2014.

[15] D. Bertsimas and M. Sim, “Robust discrete optimization under
ellipsoidal uncertainty sets,” 2004.

[16] A. Ilyina, “Combinatorial optimization under ellipsoidal uncertainty,”
Ph.D. dissertation, Technische Universität Dortmund, 2017.

[17] C. Buchheim, M. De Santis, F. Rinaldi, and L. Trieu, “A frank–wolfe
based branch-and-bound algorithm for mean-risk optimization,” Journal
of Global Optimization, vol. 70, no. 3, pp. 625–644, 2018.

[18] H. Markowitz, “Portfolio selection,” The journal of finance, vol. 7, no. 1,
pp. 77–91, 1952.

[19] F. Alizadeh and D. Goldfarb, “Second-order cone programming,”
Mathematical programming, vol. 95, no. 1, pp. 3–51, 2003.

[20] M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval research logistics quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[21] J. Lee, A first course in combinatorial optimization. Cambridge
University Press, 2004, vol. 36.

[22] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse convex
optimization.” in ICML (1), 2013, pp. 427–435.

[23] P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnaswamy, S. Villar,
and R. Ward, “Relax, no need to round: Integrality of clustering
formulations,” in Proceedings of the 2015 Conference on Innovations
in Theoretical Computer Science. ACM, 2015, pp. 191–200.

