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Abstract

The fourth industrial revolution is derived from advances in digitization and prognostic and health management (PHM)
disciplines to make plants smarter and more efficient. However, an adapted approach for data-driven PHM process
implementation in small and medium-sized enterprises (SMEs) has not been yet discussed. This research gap is
due to the specificities of SMEs and the lack of documentation. In this paper, we examine existing standards for
implementing PHM in the industrial field and discuss the limitations within SMEs. Based on that, a novel strategy
to implement a data-driven PHM approach in SMEs is proposed. Accordingly, the data management process and
the impact of data quality are reviewed to address some critical data problems in SMEs (e.g., data volume and data
accuracy). A first set of simulations was carried out to study the impact of the data volume and percentage of missing
data on classification problems in PHM. A general model of the evolution of the results accuracy in function of data
volume and missing data is then generated, and an economic data volume notion is proposed for data infrastructure
resizing. The proposed strategy and the developed models are then applied to the Scoder enterprise, which is a French
SME. The feedback on the first results of this application is reported and discussed.

Keywords: Small and medium-sized enterprises, Data-driven PHM, Industrial data management, Data quality
metrics, PHM implementation strategy

1. Introduction

The industrial domain has evolved rapidly over time through the various industrial revolutions, from steam engines
to cloud computing technology [1]. Throughout these changes, small and medium-sized enterprises (SMEs) have
always played an essential role in global business. SMEs are defined as an organization with less than 250 workers,
and in terms of turnover, they do not exceed 40 millions euros [2]. Thus, SMEs represent about 90% of all companies
and actively contribute to job creation and global economic development [3]. In [4], the authors argue that the
sustainability of SMEs depends on their ability to satisfy their customers effectively. However, they still cannot
benefit from the industry 4.0 technologies because they suffer from many problems that limit their adoption of such
technologies. These problems are mainly related to the fact that the paradigm industry 4.0 is created by big groups to
be deployed in their production process. In [5], Sahal et al. define the concept of industry 4.0 as a general framework
that enables industries with new elements of tactical intelligence using new technologies such as the internet of things
and big data. Moreover, industry 4.0 can be defined as ”a new approach for controlling production processes by
providing real-time synchronization of flows and by enabling the unitary and customized fabrication of products”
[6]. This industrial revolution is based on data collection and valorization not only for maintenance perspective
but for a more general objective which covers performance evaluation, equipment (production) memory creation,
process deviation prediction, and decision support [7]. From these new needs of industrial companies, the industrial
maintenance paradigm has evolved to give birth to the Prognostics and Health Management (PHM) discipline.

PHM is a cutting-edge science that brings together different technologies such as diagnosis, prognosis, and deci-
sion support. In the case of data-based approaches, PHM presents solutions for data management and valorization.
The main idea of this approach consists of studying the health state of an equipment and predicting its future evo-
lution. This concept allows us to control the production process and to implement suitable maintenance strategies
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[8]. Thus, data-driven PHM approach takes advantage of industry 4.0 techniques and technologies to make the plant
factory smarter and improve their performance [1]. Nevertheless, SMEs are not, for instance, involved in the deploy-
ment of advanced manufacturing technologies [9]. They are expected to be in the third industrial revolution, which
makes it more complex to carry out industry 4.0 technologies in their production processes. The complexity can be
summarized in two main aspects: (i) the lack of dedicated documentation for such projects and (ii) the absence of the
required technologies infrastructure.

In [2], Mittal et al. review the characteristics of SMEs and identify the issues that need to be addressed to ensure
successful digital transformation within SMEs. In [10], the authors argue that SMEs are interested in including new
technologies in their manufacturing process. However, they consider that standards belonging to these technologies
can make their know-how accessible to their competitors. It is clear that SMEs feel the importance of digital transfor-
mation and the need to include new technologies such as PHM in their workshops, but they still fear the consequences
of this transformation and its success. Up to our knowledge, there still no PHM guideline or strategy implementation
for SMEs in the literature. In this paper, we here are interested in developing a first strategy for PHM implementation
in SMEs. To do, the limitations of the SMEs are discussed to propose a set of best practices that facilitate the success
of a PHM strategy in small companies. Moreover, the impact of the data quality (DQ) on the results of this strategy
is addressed. To be more precise, DQ dimensions and metrics are reviewed, and the most critical data issues in SMEs
are studied. These issues concern data volume and data completeness essentially. Then, a general model of the impact
of these problems on PHM classification problems is proposed. This model is developed using a set of simulations
conducted from several public datasets. Finally, the proposed strategy is deployed in a real case study, and the general
evolution model is used to resize the data infrastructure.

The rest of this paper is organized as follows. The evolution of maintenance strategies and standards in the
industrial domain as well as the gap between the PHM documentation and technologies are presented in Section 2.
Then, industrial PHM concept and applications are described in Section 3 while discussing the factors that limits its
applicability in SMEs. To fill this gap, a new strategy to implement data-driven PHM within SMEs is proposed in
Section 4. Section 5 and 6 deal with the data management process and the impact DQ aspect on the PHM results. A
real case study for Scoder factory is provided in Section 7. Finally, conclusions and perspectives are drawn in Section
8.

2. Historical perspectives and problem statement

As shown in Figure 1, data are always collected in the industrial domain. However, nature and utility of these data
have evolved over time with the evolution of the manufacturing process. In fact, the new needs in terms of product
quality and process optimization have forced companies to collect more data to increase the reliability and capability
of their manufacturing processes [7]. This numerical transformation has been supported by the advances in the Infor-
mation Technologies (IT) [11]. These technologies have enabled enterprises to have more accurate information about
their production process. Thus, the valorization of the industrial data has been evolved from absenteeism rate calcula-
tion to a more global PHM framework which allows to optimize the maintenance function, to improve the production
process, and to reduce the operational cost. In this section, we propose to review the evolution of the industrial data
collection throughout the different industrial revolutions. Then, we propose to study the impact of this evolution on
the evolution of the maintenance function within industrial companies. Moreover, the evolution of documentation that
standardizes the data management process for maintenance applications is addressed (See Figure 1).

2.1. The evolution of manufacturing data

For a long time, data is generated throughout the manufacturing process. The complexity of these data depends
on the complexity of the industry and its degree of development. Usually, data is recorded with different technologies,
from paper to big data hubs. The utility of these data depends on the needs of the companies. The role of data has
evolved in line with the evolution of the industrial activities, which are characterized by four revolutions (from industry
1.0 to industry 4.0). For that purpose, we propose to study the manufacturing data in line with these revolutions.
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The first industrial revolution (industry 1.0). This revolution was triggered by the introduction of steam engines into
the production process [12]. According to Tao et al. [11], this revolution has no impact on the collection, storage, and
analysis of data. Only a few data are managed manually by the workers through papers, but the rest is stored in human
memory as know-how. These data usually relate to workers and serve very limited purposes. Thus, information such
as assistance, productivity, and performance are collected to evaluate worker performance.

The second industrial revolution (industry 2.0). The second revolution is characterized by mass production. In fact,
electric machines are used with more sophisticated management principles (e.g., the Bessemer process, the Taylorism,
etc.) [12]. Unlike the first revolution, Industry 2.0 has imported many changes in data management. As a matter of
fact, more data are recorded in more formal documents such as charts and logbooks [11]. As a result, the utility of
these data has been expanded to reach other applications such as operation planning, quality control, and failure rate.

The third industrial revolution (industry 3.0). The third revolution was introduced thanks to the development intro-
duced in the domain of computers and semiconductors in the 1960s [13]. This revolution is characterized by the use of
Logic Controllers, Computer Numerical Control (CNC) robotics, which gives birth to the concept of fully automated
factories [12]. As a result, data are collected automatically, saved in computers, and managed by information systems.
From these data revolution was born a set of information systems (eg. ERP, MES,etc.) to manage the maintenance,
production, supply chain, and financial data [11].

The fourth industrial revolution (industry 4.0). The fourth industrial revolution was triggered thanks to the emergence
of technology of Internet of Things (IoT), Artificial Intelligence (AI), and Big Data analytics, which are integrated
into the manufacturing process. All these technologies make it possible to collect and manage a huge quantity of data
from several heterogeneous sources [11]. These data describe the product throughout its life-cycle [14].

To sum up, the evolution of data collection, technologies and utility are evolved in line with the development of
industries. Also, the data analysis techniques are evolved increasingly to valorize these data and extract knowledge
from it. These techniques can be regrouped in a general framework such as the PHM [15]. The evolution of this
concept is discussed in the next section.

2.2. Towards predictive manufacturing: The evolution of PHM

As mentioned above, manufacturing systems have evolved throughout four industrial revolutions. This industrial
evolution has been accompanied by a change in the manufacturing functions such as the maintenance one [16]. This
function was evolved from ”repair work” to PHM (See Figure 1). For a long time, maintenance is considered as
repair work where machines are not maintained except in case of breakdown [17]. Since there is no available data
for the machines, the prediction of the breakdowns was impossible. A little more time later, developments in the
maintenance paradigm give birth to a new concept that is Time Based Maintenance (TBM). TBM is based on the
breakdowns historic of the machine to introduce preventive maintenance planning. However, this strategy ignores
many information (since they do not exist) that can affect machine degradation. Because of these drawbacks and
the evolution of the data technologies, the TBM was replaced by a more sophisticated maintenance method which
is the Condition-Based Maintenance (CBM). The CBM is based on preventive actions taken after the apparition of
failure symptoms [18]. Thus, CBM allows analyzing data coming from machines to avoid failure [19, 20]. Despite
this significant evolution in the maintenance paradigm, many disadvantages have been entrusted to the CBM. The
drawbacks concern the cost-effectiveness specially and the scope; in fact, this method becomes useless and expensive
in the case of non-critical components. Moreover, CBM ignores many aspects such as safety, reliability and the
economic aspect. As a result, the CBM concept has evolved to give birth to the PHM discipline [7]. PHM goes
beyond CBM scope and integrate many aspects such as logistics, security, reliability, mission criticality and cost-
effectiveness [21].

2.3. The evolution of data-driven industrial PHM Standards

PHM process involves different domains and applications, making it challenging to develop a general approach
for PHM installation in enterprises. In this context, Vogl et al. [22], assert that until now, there was no consistent guide
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for conducting a PHM study, and even the standardization of specific methods for PHM was ineffective since each ap-
plication had its own requirements. As the PHM paradigm has evolved from a maintenance function to a more global
framework, documentation in this field has also evolved from a general maintenance context (FD X60250 standard) to
a closer PHM context (ISO 13374). Many international institutes and organizations have worked in this domain and
proposed standards and guidelines for PHM process implementation. These organizations include the Air Transport
Association (ATA), the International Organization for Standardization (ISO), the International Electrotechnical Com-
mission (IEC), the Society of Automotive Engineers (SAE), and the United States Army (US Army) [15].

Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0
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Figure 1: The evolution of maintenance paradigm within the industrial revolutions.

During the first and second industrial revolutions, no standards were identified in the context of asset maintenance
and management, and even the few existing documents were only applied in the military domain. One of the first
standards in this area is X60104 (1981), which defined the requirements of maintenance contracts. Then, the ISO
3952-1 was published to introduce the symbols system and to facilitate the documentation of machine components by
modeling their interaction. In addition, there is the FDX60250 standard (1983), which presents technical maintenance
documentation for users and recommendations for its implementation. Later in the 2000s and with the emergence of
the data technologies, the maintenance documentation has evolved in order to follow the technological revolutions.
In this context, the IS O55000 standard has introduced the concept of asset management and widen the maintenance
scope to integrate related activities such as the planning, design, implementation, and review of asset management
activities. IS O15926 was published for the representation of process plant life-cycle information via a data model
with a consistent context for data definitions. In the same context of data management standards, the ISO 13374 series
(Condition monitoring and diagnostics of machines) was introduced. This standard is presented in 4 parts:

• ISO 13374-1 aims to provide the basic requirements for open software specifications to facilitate the transfer of
data among various condition monitoring software, regardless of platform or hardware protocols [23].

• The ISO 13374-2 goes beyond the data transformation and provides requirements for a reference information
model and a reference processing model for an open Condition Monitoring and Diagnostics (CM&D) architec-
ture [24].

• The third part of the ISO 13374 standard (ISO 13374-3 [25]) defines the communication requirements for any
open CM&D systems to aid the interoperability of such systems [25].

• The ISO 13374-4 [26] details the requirements for the presentation of information for technical analysis and
decision support in an open architecture for condition monitoring and diagnostics.
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To facilitate the uses of these standards, the Machinery Information Management Open Systems Alliance (MI-
MOSA) publishes an open CMD information specification known as the MIMOSA Open Systems Architecture for
Enterprise Application Integration (OSA-EAI) [27], which is free for download and compliant with the requirements
outlined in ISO 13374-1 and ISO 13374-2. Based in the feedback of this standard, MIMOSA has elaborated another
documentation (MIMOSA Open Systems Architecture for Condition Based Maintenance (OSA-CBM)), which is the
most used in both the research and industrial domains [28].

Generally, the development and deployment of PHM within an industrial organization is a very complex task. In
[15], Guillen et al. affirm that there is a gap in terms of PHM documentation. Establishing general methodological
approaches to guide the design and implementation of PHM process is hence needed. Moreover, up to our knowledge,
there are no documentations dedicated to SMEs. In [9], the authors concluded that SMEs are not involved in the
deployment of advanced manufacturing technologies. Thus, SME’s constraints are studied and discussed in the next
section in order to propose a generic PHM implementation strategy.

3. Industrial PHM applications and their limits within SMEs

The increased amount of data in the industrial field requires appropriate treatment to meet the challenge of zero
defect manufacturing [29]. In this context, data-driven PHM of industrial systems has attracted the attention of
researchers and industrialists during the last decade [30]. Their works concern many fields such as the manufacturing,
energy and transportation industries [31]. In this section, we review these studies while presenting the conditions for
implementing a data-driven PHM in the industrial domain.

3.1. The PHM paradigm

Prognostics and Health Management is a science that study the health state of an equipment and predict its future
evolution [7]. This concept allows to better control the systems and to implement suitable maintenance strategies
[8]. In [7], the authors define PHM as ”a set of tools that can be used in cascade or separately to monitor the health
state of a system, predict its future evolution and/or optimize decisions”. In [32], the authors affirm that PHM can
be implemented using model-based or data-driven approaches. The first approach consists of building analytical
models that are directly related to the physical processes which influence the health state of systems. Thus, a good
comprehension of the physical process of components degradation and interaction is required. The second approach
consists in using historical monitoring data to model the evolution of the system until a failure occurs. In this case,
the understanding of the physical process of the system could not be necessary, but results only depend on the quality
of historical data.

Figure 2: The traditional PHM cycle.
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Traditionally, the PHM is decomposed in three main steps (observation, analysis and decision) which are detailed
in 7 steps from data acquisition to the Human Machine Interface (HMI) as shown in Figure 2. This configuration
of the PHM process assumes that the studied system is already defined and that the necessary detection and analysis
resources are available. Most of the existing PHM works does not cover how to define the PHM system and assumes
that the PHM will improve its performance [33]. However, in the industrial domain, there are many systems to be
studied with different impacts on the production system. Moreover, in the case of SMEs, available resources are
generally limited and their allocation need to be optimized to maximize the benefit of the PHM study. In [33], the
authors state that choosing the most suitable PHM project is a difficult activity. Thus, a clear estimation methodology is
therefore needed. This methodology can be based on PHM indicators and their expected evolution after the application
of the PHM. Moreover, the financial impact of the PHM depends on the available resources and data. In fact, unless
useful data (or the related resources) are available, a PHM project may be insignificant.

3.2. Industrial PHM applications

The PHM concept has been widely applied in the industrial domain [30]. In this context, Toshiba collaborate with
NEC to develop an IoT-based PHM system. Thus, data are collected from the Toshiba’s devices and saved in data
centers managed by NEC, then Toshiba maintenance team analyzes the data to respond to the costumer’s requests [31].
A similar collaboration have been developed between Nidec and IBM. In fact, PHM services are proposed by IBMs
based on the collected data from Nidec’s machine [31]. As for the automotive industry, cars from General Motors,
Tesla, BMW, and other manufacturers are equipped by an application programming interfaces (APIs). The APIs allow
applications built by third parties to use the collected data. This enables the development of applications for IoT-based
PHM that add value by increasing connectivity, availability, and safety [31]. Concerning the construction and mining
industries, they benefit from the development of the connectivity technologies in order to control their equipment,
since working sites are generally in isolated locations. In this context, Komatsu [31] developed a data-driven PHM
module in order to monitor and diagnosis their construction equipment via satellite communications. In [34], the
authors assumes that PHM is a multidisciplinary activity that require significant time and effort which make it very
expensive. Feldman et al. [35] applies the PHM concept to an electronics Line-Replaceable Unit (LRU) in the Boeing
737 aircraft. The results are obtained for 300 flights and shown that the PHM cost for each LRU is 700 $ (value is in
2008 U.S. dollars). These studies prove that PHM implementation requires an important investment which seems to
be very expensive for an SME.

3.3. Factors that limit the implementation of an SME-oriented PHM approach

PHM is considered as a cutting edge technology that requires specific resources which make its implementation
within SMEs a difficult task. In [7], the authors review the SMEs domain and propose to classify the constraints that
limit the development of such approach into two main classes: Resources-based constraints and Organization-based
constraints. Moreover, Müller et al. [36] conduct a study on German SMEs, and they affirm that standardization,
personnel resources, financial resources, and a belief on digitization are unique constraints for SMEs to integrate ad-
vanced technologies. We here propose to study the constraints that limit the development of an SME-oriented PHM
process: Human, Organizational factors, and Resources factors.
The human aspect is a crucial factor in the success or failure of the implementation of a data-driven PHM process.
In this context, Lee et al. [37] affirm that data become useless unless its analysis by the right expert in the right
context. However, the PHM process is generally complex and includes a huge volume of data that exceeds the user’s
capacity [38]. This disadvantage creates a kind of mistrust between the human and the PHM process, particularly in
the case of incorrectly predicted events. Thus, a misunderstanding is created between the user and the PHM system.
The PHM process requires human expertise to improve its performance, but the user feels that these technologies will
replace him. So, the workers rely on false predictions to justify the uselessness of the PHM. In addition, the required
resources and time for a PHM process are unknown. All these problems make the PHM a doubtful project for the
SMEs managers. SMEs are characterized by central management, where the owners are involved in all the decision-
making process from the strategic level to the operational level [39]. Thus, the first challenge in implementing a PHM
process in an SME is to convince the manager of the effectiveness of these technologies. In addition, communication
in SMEs is generally informal and very close between workers [40]. Hence, information that concerns the manufac-
turing process is not documented since they are kept in the mind of the manager and key workers [7]. Nevertheless,
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a reliable data valorization process inside companies requires a certain level of documentation that guarantees no loss
of knowledge [41]. Usually, activities related to documentation and corporate memory creation are supposed to be
useless since their added value is not yet explored in SMEs. This calls into question the limited financial resources
in an SMEs, which limits the adoption of new technologies that seems to be expensive [42]. In [2], Mittal et al. con-
clude that SMEs are financially constrained, which affect their ability to adopt advanced manufacturing technologies.
Moreover, SME’s limited resources have affected the research and development field among small enterprises [43].
After all, it can be concluded that the development of SME-oriented PHM is limited by many constraints. Thus, an
implementation strategy is required to guarantee the success of data-driven PHM approaches within SMEs.

4. Strategy to conduct data-driven PHM projects inside SMEs

Taking into account the previously detailed constraints, the best appropriate way to implement a data-driven PHM
process within SMEs is to start by existing data. Before collecting new data, it is necessary to digitize the existing data.
Since SMEs do not have a lot of resources (financial resources in particular) to install sophisticated data acquisition
devices. It is recommended to use simple acquisition systems and use non-expensive storage solutions. Thus, smart-
phones and tablets are the simplest solutions when they are coupled with existing and free mobile applications. Free
cloud solutions could be used to ensure real-time acquisition, but this solution calls into question the confidentiality
and security of the collected data. Once the company’s ordinary data is digitized, potential valorization applications
are discussed. A matrix that links each data group to the valorization application with its associated benefit can help
to set priorities for the data analysis phase. One should note that the SME world is not accustomed to sophisticated
processes such as data-driven PHM, so it is better to think about working quickly with existing data to quickly provide
useful results and prove the feasibility of the project. This step can convince the managers, implicate workers, and
introduce PHM culture into the company at the same time. Workers are in central of any PHM strategy; thus, a user-
friendly PHM framework should be developed where the user can communicate with it and integrate his expertise on
it. Another important issue that can be started in parallel is the standardization of the communication process within
the enterprise in order to guarantee the no loss of information. We here propose a set of best practices that should
be followed to successfully implement the PHM in SMEs (See Figure 3). In particularly, we focused on three main
elements which are detailed in the following: data inventory, scope identification and PHM metrics.

PHM

Deployment
Data 

Acquisition
Scope 

Identification

Data 
Inventory

Evaluation 
Metrics

Figure 3: The extended PHM cycle.

4.1. Data inventory
Data inventory is a deep analysis of the circulating data around the manufacturing process. More particularly,

data inventory is a quest to collect information about the existing data. These information concern different elements
present in Table 1.

In addition to the process of collecting information about the data, data inventory also aims to regroup data around
potential PHM projects and identify the missed data to accomplish these projects. To do, a list of necessary attributes
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for each system can be defined. This list depend on the nature of the studied system. In [44], the author propose a
set of variables that can be collected to make PHM study on 8 different domains (see [44] for more details). This list
can help to define the needed variables for each system and then to compare them with the existing ones in order to
identify the missed variables.

4.2. Scope identification

Since available resource in SMEs are limited, it is mandatory to limit the scope of a PHM study and focus only in
the relevant projects. Thus the potential projects identified in the data inventory step should be ranked and select the
most relevant ones. Projects relevance depend on the following points:

• The available digital data;

• The data to be collected or digitized;

• PHM profitability.

To do, some techniques are proposed in the literature. As example of projects raking techniques we can cite
the Analytical Hierarchical Process (AHP) [45] and the Data Envelopment Analysis (DEA) [46]. In the PHM case,
some works are done to optimize the sensors selection [47]. The selection process is generally converted in an
optimization problem that can be solved by the traditional techniques such as linear programming. The common point
between these techniques is the assignment of an importance order to each characteristic in order to prioritize them
and calculate a global score for each system. This score is used to rank the available equipment, to select the relevant
PHM equipment applicability and to guide the investment plan to maximize the benefits of the study.

Information Description

Title Dataset name
Features Dataset attributes
Purpose Data creation aim
Type Text, images, numbers
The owner of the data Production team, Marketing team
Location of the data ERP, Server
The volume of the data 1 GB, 1TB
The format of the data Papers, CSV files
Data transfer Data usgae per team
Update frequency 1 hours, 1 day, 1 week
Restrictions Confidentiality, Accessibility

Table 1: Attributes of a Data Inventory Quest.

4.3. PHM metrics

One of the most important steps in a PHM study is the evaluation of the whole approach. To do, a set of metrics
are needed to assess the objectives of the project either for big or small companies. Also, metrics are needed to
better describe the performance of the used technologies to satisfy these objectives. In [48], the author proposes a
set of PHM metrics in relation with the different PHM themes and theirs benefits. We here propose to classify the
PHM metrics in relation with the characteristics of the company, the objectives, the collected data and the used PHM
techniques.

Table 2 shows an example of PHM metrics that can be used in the different steps of a PHM study. Accordingly
to the fixed objectives, a set of performance of the used techniques can be identified. Moreover and based on these
performance, the data required data quality can be fixed. In real case study, it is difficult some times to ensures the
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Company Objectives PHM tools Data quality

R & D budget Reduce maintenance frequency Accuracy Completeness

%of skilled workers Improve products quality False alarm Time to value

Documentation level Optimize resources allocation Prediction lead time Volume

Table 2: Example of PHM metrics in SME.

required data quality which necessitates a modification in the initial objectives [7]. PHM metrics are common to all
sizes of companies, but one should think about specific metrics for SMEs in relation with their limits. In this context,
the percentage of skilled workers, the research and development (R & D) budget and the documentation level can be
used as PHM metrics in the case of SMEs.

To sum up, the proposed PHM strategy deals extends the PHM cycle (See Figure 3). This process is indeed
very long, but in our opinion, it is the most adapted one for SMEs with few resources, as mentioned previously.
The performances of data acquisition devices are limited in the case of SMEs which impact the data quality and
consequently the PHM results. In the sequel, the data management phase is detailed. Moreover, this phase allows us
to asses and improve the data quality, to define the data requirements and to resize the PHM infrastructure.

5. Industrial data management

Data are real-world objects with storage, retrieval, and development capabilities, and it can communicate over
a network [49]. The process that deals with their valorization are called Data management. In [50], the authors
start from the definition of ”management” which means ”the process of dealing with or controlling ... [and] having
responsibility for ...”, and they claim that data management is more than ” deal with ”since it includes many tasks such
as identifying resources to meet objectives, organizing these resources, defining and implementing a data management
strategy to achieve a fixed set of objectives. For the Data Management Association (DAMA) [51], data management
is ”the business function that develops and executes plans, policies, practices, and projects that acquire, control,
protect, deliver, and enhance the value of data”. In the same context, another definition is proposed by Fisher in [52],
which considers data management as “a consistent methodology that ensures the deployment of timely and trusted
data across the organization”. In [22], authors affirm that data management concerns data collection, processing,
visualization, and storage. Hereafter, we are interested in the first two steps (data collection and processing) by
detailing the industrial data sources and studying the impact of the quality of these data on the processing phase.

5.1. Industrial data sources

As mentioned above, the implementation of the PHM must take into account the existing data in the enterprise
and propose adequate solutions to deal with the problems that characterize these data. Here, we propose to clarify the
data architecture in the manufacturing organizations and to detail the different data sources that can be used as input
in a data-driven PHM process. In this context, data can be extracted from different levels and sectors of production.
These levels are usually represented in a pyramidal architecture where information flows from the bottom to the top
of the pyramid, unlike the control flows that flow from top to bottom [53]. Figure 4 represents the different data levels
into an industrial company. From the top to the down, this pyramid is decomposed into Enterprise Resource Planning
(ERP), Manufacturing Execution Systems (MES), Control Level, and Device Level.

ERP systems are created as a solution to a classic problem in the industrial field. This problem involves treating the
activities and transactions separately, without any link between them [54]. For this, ERP systems provide a common
systems platform that enhances data visibility. In [55], ERP is defined as a method for planning and controlling the
required resources to respond to customer orders. These tasks are satisfied using a software package that manages the
data flowing in the enterprise. These data concern a global representation of the companies, including the different

9



Communication layer

Communication layer

Communication layer

Workers Machines Logistics

Controllers

Execution planning

Enterprise

Device Level

Control Level

MES

ERP

Figure 4: Automation pyramid in the industrial domain.

resources (human, machines, and raw materials). Also, the ERP database includes information about sales, historical
production data, accounting, and production range [55]. ERP systems are used for long term activities planning
without focusing on the shop scheduling to accomplish these tasks [53]. Unlike ERP systems, the MES software
focuses on the digitization of the production process to enable real-time control of the different activities [56]. The
MES provides information to optimize activities throughout the production process. Using current and accurate data,
an MES system guides, initiates, response, and reports on workshop activities as they occur. [57]. In other words, the
MES manages finer data in terms of granularity. These data concerns manufacturing instructions, design engineering
data, the status of resources, the progress of activities, and all events that occurred during the production activities.
The control level is composed of all forms of computer or programmable cards that control the evolution of the system
state during its operational mode to detect and avoid failures. In addition, these digital computers are responsible for
controlling the industrial environment to reflect the atmosphere of the workshop. The device-level is characterized
by low-level devices that are represented by the machines or sensors. These devices generate data that is needed to
perform process optimization or to detect problems in the production flow.

From these different sources, many types of data can be collected, such as tabular, image and time series, etc.
These data generally present some quality problems. However, the results of a PHM process depend heavily on the
quality of the input. In this context, Hyunseok [58] describes this phenomenon using a well-known proverb ”Garbage
in, garbage out” which means that if the used data are of low quality, the poor results are unavoidable. In [7] and
concerning the data problems in the SMEs, the authors report that the well-known problems are the missing data, the
manually recorded data, the small volume of data, and the irrelevant data. Missing data refers to incomplete elements
in a database. This missing data are due to a problem in the acquisition system or difference in terms of the acquisition
frequency. For manually recorded data, this problem applies to all businesses regardless of size, but it should be noted
that this problem is more related to SMEs because they do not have the technology to digitize their data. The next
sections are dedicated to detail the data quality issues while focusing on those that affect the SMEs’ data.

5.2. Data quality dimensions

In the literature, we find many definitions of high-quality data. Generally, these definitions link quality to a set of
requirements to satisfy. The ISO/IEC 25012 standard [59] defines high-quality data as ”the degree to which a set of
characteristics of data fulfills requirements”. In the same context, authors in [60] define poor DQ as ”the degree to
which a set of characteristics of data does not fulfill the requirements”. High-quality data can also be defined as ”data
that is fit for use by data consumers” [50]. From a quality management point of view, high-quality data is ”appropriate
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for use or to meet user needs, or it is quality of data to meet customer needs” [61]. As we can see, DQ is evaluated
with a set of requirements. These requirements define the constraints, fixed by the user [62], that should be satisfied
for the resolution of a problem. Moreover, these requirements represent the goals behind a data analysis task. Thus,
we define high-quality data as all data with a minimum level of quality that guarantees the satisfaction of objectives
set by the owner. Wang and Strong in [63] have presented one of the first approaches for DQ dimensions identification
and present many DQ dimensions which are reduced in a first step in 20 dimensions and then in only 15 dimensions
regrouped in 4 classes:

1. The intrinsic category: It includes dimensions that express the natural quality of the data such as accuracy,
believability, objectivity, and reputation;

2. The contextual category: It expresses the fact that the quality of the data must be considered in a specific context.
These dimensions include the amount of data, its completeness, relevancy, value-added and timeliness;

3. The representational category: It refers to dimensions related to the format and meaning of the data such as the
ease of understanding, the interpretability, and the consistency;

4. The accessibility category: It refers to dimensions that express how data is accessible to users [60], including
the ease of access and its security.

Many DQ dimensions were proposed and discussed in the literature, but until now, there is no consensus on the
essential DQ dimensions for DQ evaluation [50]. However, there is a shortlist of DQ dimensions, which are the most
cited and discussed in the literature. According to Redman [64], this list contains:

• Accuracy: Degree to which data is correctly recorded and represents the real word.

• Completeness: It evaluate the ratio of missing values for a variable.

• Timeliness: Evaluate whether data is up to date.

• Consistency: Evaluate if the data respect all the constraints imposed by the data context.

Only quality problems that characterize the SME’s data are here studied. As mentioned above, SMEs suffer from
a lack of the required data infrastructures. As a result, data that comes from SME’s production process are usually
incomplete and with a small volume. For that purpose, only these two DQ problems will be studied in the rest of this
paper. However, to evaluate the DQ and to propose strategies to improve it, the quantification of these qualities is a
crucial activity [60]. In this context, a DQ metric can be defined as a function that transforms a quality dimension
to a numerical value [65]. Below, a set of metrics is proposed to measure the previously mentioned DQ dimensions
(Volume and completeness).

• Volume is one of the most critical DQ dimensions. It refers to the available amount of data for the construction
of a PHM model. In this paper, we consider data volume as the number of instances (observations) in a dataset.

• Completeness is the data characteristics that deal with the problem of missing data. In the literature, complete-
ness is often defined as the ”breadth, depth, and scope of information contained in the data” [66]. In [63], divide
completeness into Schema completeness, column completeness, and population completeness (See section 2 for
more details about data modeling). In the literature, many works [66, 67] use the following formula to calculate
completeness:

Completeness = 1 −
Number o f incomplete elements

Total number o f elements
. (1)

In the case of SMEs, we are dealing with a particular type of missing data. Usually, one or more features are
completely missing due to the absence of sensors or because they are not digitized. Thus, completeness is no
longer the percentage of available values, but it is represented as the percentage of available features in relation
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to the total number of features that describe the problem. For that, in this paper, the following metric is used to
measure the data completeness:

Completeness =
Number o f available f eatures

Total number o f f eatures
. (2)

6. Modelling the data quality impact: Numerical simulations

The idea in this section consists of testing the most used classification tools using different datasets to model the
DQ impact on a data-driven PHM approach. Thus, we suppose that data are only collected from the main sensors, and
the rest of the sensors are supposed to have one by one, an ISO impact on the results.

Data-driven PHM is usually based on data mining techniques to perform advanced tasks in relation to diagnosis
and prediction activities. Since the available data in the industrial domain are generally with poor quality, it is hence
needed to identify the impact of DQ on the PHM results. In this context, classification techniques are well applied in
the data-driven PHM since they are able to perform different tasks such as fault detection and system diagnosis [68].
A set of simple classification techniques is tested to define their behavior regarding the data problems in the SMEs
world. These techniques are Artificial Neural Network, Decision Tree, Support Vector Machine, K-Nearest Neighbors
and Gaussian Naive Bayes. We first recall the basic concept of these tools, and we then follow three strategies of
simulation:

• Artificial neural network: An Artificial Neural Network (ANN) is a supervised machine learning tool that aims
to define a function that links m input variables to n output variables. Given a set of features and a target, it
can learn a non-linear function that can be used for classification or regression. ANN is different from logistic
regression by the fact that between the input layer and the output layer, it can be one or more non-linear layers,
called hidden layers [69].

• Decision tree: The decision tree (DT) is a supervised, non-parametric machine learning tool that can be used
both in classification and regression. The main idea of the DT algorithm is to learn from the data to create
simple inferred rules that will be used to segment the data and make predictions [70]. In the literature, many
tree techniques are proposed, such as Chi-squared Automatic Interaction Detection (CHAID), Classification
And Regression Trees (CART), and C4.5 [71]. The main advantage of the DT method is the possibility to
explain the developed model. However, the performance of this model is generally lower than that of other
machine learning techniques.

• Support Vector Machine: The Support Vector Machine (SVM) aims to find a separating hyperplane that sepa-
rates the different classes. The hyperplane that reduces the number of wrongly classified samples in the training
phase is called Optimal Separating Hyperplane (OSH). To find it, the SVM technique focuses only on the
training instances that are in the border of each class distribution [72]. To do this, the OSH is defined as the
hyperplane situated between the classes that maximize the margin between them [73].

• K-Nearest Neighbors: The nearest neighbor technique is one of the biggest approaches of learning. It can
deserve both supervised (classification and regression) and unsupervised (clustering) learning. The nearest
neighbors approach is based on finding a fixed number k of samples from a training dataset, which are the
closest ones, in terms of distance, to the new instance to predict its label. The KNN classifier is a particular
application of this approach; it consists in predicting the class of a new point based on the classes of the k
closest instances to this later [74]. Many techniques to measure the distances between samples are used, and
the Euclidean distance remains the most used in KNN algorithm implementation.

• Naive Bayes: The Naive Bayes (NB) method is a simple, probabilistic, and supervised classifier. This later is
based on coupling the Bayes theorem with the Naive hypothesis of conditional independence between every
pair of features given the value of the class variable. This coupling support a well known and very efficient
classifier [75]. More details about this technique are presented in this work [76].
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Based on the selected tools, we now come to deal with the DQ problems tested with different datasets obtained
from the Machine Learning Repository [77]. The idea consists of using many public datasets with different quality
levels in relation with two quality aspects that we consider them the most important in the SMEs domain. These
aspects concern the data completeness and volume. The used datasets concerns the Letter Recognition Data Set [78],
Magic Gamma Telescope Data Set [79] and Covertype Data Set [80] where their characteristics are presented in Table
3. The first dataset is for English alphabet recognition; the second one is for predicting the forest cover type while the
third dataset is for the Gamma signal detection. The different datasets are modified to test the impact of DQ problems

Dataset # of instances # of features # of classes
Letter 20000 16 26
Forest cover 581012 54 7
MAGIC Gamma 19020 11 2

Table 3: Characteristics of the used datasets.

on the results of the used classifiers. To do, three simulation strategies are proposed:

• Strategy 1 (volume test strategy): To study the impact of the data volume on the results of the different classifiers.
The used datasets are divided into 10% for test and the remaining 90% for the train. Then, different train
iterations are performed; the first one consists of using only 1% of the training dataset to train the model. Then,
in the second iteration, 2% of the training subset is used. These iterations are repeated until reaching 100%
of the training subset. The objective of this strategy is to imitate the case when no historic data are available
to conduct a data-driven PHM study within SMEs. To more imitate the reality of SMEs, where generally we
observe one class more than the others, an intelligent sampling is used to guarantee that a class is present more
than the other ones in the training subset.

• Strategy 2 (missing test strategy): This strategy aims to study the impact of the missing data on the classification
task. For this purpose, missing data are processed from the point of view of SMEs where missing data may
relate to one or more sensors, which means that one or more variables are completely missing. To imitate this
reality, different training iterations are performed; the first consists of deleting a characteristic (a column of the
training subset). This procedure continues in subsequent iterations until only one feature remains in the data
set. At each iteration, the developed model is tested in a test subset with the same features like the training one.

• Strategy 3 (volume and missing test strategy): This strategy aims to summarize the previous strategies. The
objective is to understand the impact of DQ issues (volume, missing data) on the classification results.
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Figure 5: Accuracy evolution of the training data volume. The blue curve represents the mean of the obtained results from the different tested
classifiers on the different datasets. The red curve refers to the fitting one.
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We then come to study the impact of the previously discussed problems on the results are studied and discussed.
The results of this study will be used to satisfy two objectives: the first one is to determine the best techniques to deal
with each DQ problem, and the second is to evaluate the impact of the DQ on the pertinence of the results. Noted
that these results are normalized to be between 0 and 1 where 1 refers to the case when the predictions are 100%
correct. Figure 5 shows the results of the first strategy of simulations. These evolutions prove that the larger the data,
the greater the probability of having all the classes of the output variable in the training phase. Thus, the developed
model will be more general since it takes into account all the possible cases. The mean accuracy obtained from the
different classification tools tested on several datasets is used to fit an empirical function that models the evolution
of the accuracy in function of the data volume. The fitting results are shown in Figure 5, and we can conclude that
accuracy increases exponentially with increasing data volume. This evolution can be modeled using the following
equation:

Accuracy = Acc0 × (1 − e−b×V ) (3)

where Acc0 is the maximum precision that can be achieved by the model, b is a constant that characterizes the speed of
the model to reach a stable level of accuracy, c is a regularization constant, and V is the data volume (in percentage).
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Figure 6: Accuracy evolution of the missing data percentage. The blue curve represents the mean of the obtained results from the different tested
classifiers on the different datasets. The red curve refers to the fitting one.

The figure 6 shows the obtained results from the second simulation strategy. The results show that accuracy
decreases with increasing percentage of missing data. This conclusion is explained by the fact that the missing data
partly represents the reality which affects the quality of the forecast model. Again, an adjustment algorithm is used to
extract an empirical equation that models the change in accuracy as a function of the percentage of missing data. This
evolution can be modeled using the following equation:

Accuracy = a × (M2 + e−b×M2
) + c (4)

where a, b and c are constant that can be determined empirically while M is the percentage of missed data.

Figure 7 represents the mapping of the accuracy function of the data volume (%) and the percentage of missing
data. This figure shows that with a small number of missing data, we can obtain satisfactory results even if the data
volume is small. However, when the percentage of missing data is high, the accuracy is low, even with a big volume
of data. This result can be explained by the fact that knowledge is represented by a set of features, and if a set of them
is missing, the information is incomplete, and we cannot achieve the expected result.

The results of this DQ impact study represent a first element of the solution to implement data-driven PHM within
SMEs. For that, the next section is dedicated to detail the used case study while presenting the obtained results.
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Figure 7: Accuracy map function of the data volume and the percentage of missing data.

7. Case study

We here consider the Scoder case study as a real application of the proposed approach. For that, several assump-
tions are here considered:

• Systems are monitored;

• Systems are assumed to operate in a nominal situation;

• Features are extracted following an order of importance.

Scoder is a French SME specialized in ultra-precise stamping for automotive applications. This case study consist
of sheet metal forming lines. Three machines need to be studied but we have the resources to study only one. The
machines are equipped by an integrated acquisition systems to record the breakdowns historic. More data about the
metal proprieties, the quality rates and the historic of maintenance are collected by different teams. The complexity
of these data and their degree of digitization differs from one machine to another. For that purpose, the proposed
methodology is applied in the Scoder factory in order to conduct a data-driven PHM study.

7.1. Application of the proposed strategy in the Scoder factory

Different data which comes from heterogeneous sources are shared in the factory. These data are generally
recorded in papers that make it difficult for their deployment in this study. As proposed in the strategy, the first
step to conduct a PHM study within SMEs is to start with the data inventory. Figure 8 describes the physical and
informational flows in the factory.
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Figure 8: Data inventory in the Scoder case study.

The objective is to ensure a stable production but with the available resources, we can only study one machine. A
scope selection is first done according to the characteristics mentioned in Subsection 4.2. Then, these characteristics
are used to affect empirically a score to each machine and rank them to select the most suitable one for a PHM study
(See Figure 9). One should note that it could be possible to formulate this score mathematically based on the feed-
backs of the conducted PHM projects. To take into account the importance level of each characteristic, a constant
coefficient is affected to them. Then the final score is calculated as below:

S core = 0.2 × available digital data + 0.3 × data to be collected + 0.5 × PHM pro f itability. (5)

Figure 9: Machines ranking for potential data-driven PHM projects. Red color refers to a poor score, yellow color represents an acceptable score
and green color indicates a good score.

Figure 9 shows that the third machine is the most suitable to conduct a data-driven PHM study. The PHM project
was initiated with the objective of ensuring a stable production by reducing machine failures and improving produc-
tivity. The production performance is affected by the used metal, the die, and the mechanical press. However, a study
was conducted inside the factory showed that the used metal coil characteristics have the most important impact on
production. From this existing data, a PHM study is conducted to determine an ”Id card” for each sheet metal coil.
This Id card represents the characteristics of the coil, the caused press breakdowns, and the quality rate of the products
fabricated from it. However, only the sheet metal characteristics are available without any indication about the quality
rate, date, and time of the use of each metal coil. To overcome this lack of data, a very simple data acquisition system
is installed on the Scoder’s machine. This system consists of using a tablet at the beginning of the production line to
scan the bar code of each coil to save its date of use, and another tablet at the end of the production line is used to
collect the quality data (See Figure 10).

These data are coupled with the machine breakdowns data to describe the production process. Data are structured
and saved to be analyzed later using intelligent algorithms and extract knowledge from them. The characteristics of
the Scoder dataset are presented in Table 4.
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Figure 10: Details of the SCODER case study.

Dataset # of instances # of features # of classes
Scoder dataset 90 16 2

Table 4: Characteristics of the Scoder dataset.

However, existing data concern only the characteristics of the sheet metal, which means a 60% of missing data
(other data from the production process exist but are not digitized). Based on this information and the evolution curve
of the accuracy function of the percentage of missing data, we can conclude that at best, the used PHM algorithm
can reach an accuracy of 88% (See Figure 11). Moreover, the volume of the created database is very small (only 90
instances), which means that the accuracy result will be less than this level.
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Figure 11: Expected accuracy for the Scoder case study regarding the missing data factor.

In this case study, the DT algorithm is used to classify the metal coils in different categories regarding their
expected performance. The DT method is chosen because it is an explainable machine learning tool, which means
that workers have an idea about the built classification rules. Figure 12 shows the evolution of the accuracy rate in
function of the volume of training data (since the real output of the nth training iteration added to the training subset
of the (n + 1)th iteration). One can point out that after a few iterations, we can reach about 50% of accuracy. This low
accuracy could be explained by the fact that the existing data doesn’t contain information about the health state of the
die and the press. Moreover, the data volume is not sufficient.
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Figure 12: Evolution of the accuracy function of the number of instance used in the training phase. These results are obtained using the DT
algorithm.

Based on the previous DQ study, it is possible to reach a stable level of accuracy when 50% or more of the needed
data volume is used. In addition, Figure 12 shows that the accuracy of the prediction is about 50%, which means that
the existing data represents about 10% of the needed data volume (See Figure 13). Since the accuracy will stabilize
from the threshold of 50% we can conclude that we need four times more data (360 instances) to reach the maximal
accuracy that can be obtained with the existing features. Thus, we need to collect more data for one year since the
existing data are collected in three months. This conclusion affirms that a stable prediction model can be obtained
in one year, which will be proved in the next months. Therefore, an economical (optimal) volume of data is defined
(450 instances), which means that, with the existing features, we need only 450 instances to reach the maximal level
of accuracy and build a stable prediction model. The data collect frequency can be reduced after this period, and only
a few data will be collected that will serve to adjust the classification model over time.
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Figure 13: Expected results for the Scoder case study regarding the data volume factor.

Despite the unsatisfied results of the PHM project, the performance of the studied machine has been improved. The
considered horizon for parts production is 115 days. The PHM study have been started on day 50 of the production.
Figure 14 shows the evolution of the produced quantity of parts between two breakdowns during 115 production days.
This indicator allows to quantify the occurrence of breakdowns by taking into account the produced quantity. The
results shows that the productivity have been improved with more than 80% after PHM deployment.
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Figure 14: Impact of the PHM study on the evolution of the number of produced parts between breakdowns.

7.2. Discussion

Recall that this paper addresses the two most critical issues that limit the implementation of data-driven PHM in
industry and particularly in SMEs. These problems are the lack of documentation and the impact of DQ. On the basis
of this study, a generic strategy is proposed to implement a data-driven PHM process in SMEs while focusing on the
impact of DQ. Based on the DQ study, general models of the evolution of the accuracy function of the data volume
and/or the missing data percentage are identified. Thus, it is possible to define a required data volume and a percentage
of missing data that allows reaching an expected accuracy rate. This result means that only with a little amount of
data we can do a PHM study, and based on the obtained results, we can make a projection over time to determine the
time of data requirements and the expected results.The objective is to resize the PHM infrastructure and give a clear
idea about the data requirements that should be satisfied. These requirements include the data acquisition system,
storage hub, analysis tools and devices, frequency of collect, volume of data, etc. Thus, a temporal and technological
boundary can be affected to each PHM project, and in this way, the cost of the PHM strategy can be calculated. In
fact, one of the non-announced PHM limitations is its unknown cost, which still an understudied topic.

8. Conclusion and perspectives

PHM discipline is widely used in the industrial domain to make plants smarter and more efficient. For a long
time, PHM was applied only in the big companies since they have the required human and technological resources.
However, the current PHM tool is inapplicable in the case of SMEs due to many characteristics that differ them from
big corporations. In this paper, we pointed out the issues that limit the integration of new technologies within a small
organization. These problems concern the lack of resources and human factors essentially. Based on these limits, an
adapted PHM has been proposed. Finally, a study was conducted to characterize the needed data in terms of volume
and completeness to satisfy the fixed objectives. Table 5 summarizes the main differences between big companies and
SMEs for PHM implementation as well as the proposed solutions for each challenge.

The proposed strategy is a first framework for an semi-developed domain, which can be improved and completed
by other aspects such as the business impact. Thus, one should think about developing a global PHM cost model.
Moreover, the human factor in the PHM implementation is not yet considered despite its key impact on the success
of the strategy. In this context, an interactive and user-friendly PHM framework must be developed. Thus, the use of
explainable data analysis techniques may help in the integration of the users in the PHM strategy.
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Factor Attributes Big companies SMEs Proposed solutions

Technology Infrastructure Available Limited Scope identification

Data quality Medium Medium DQ assessment and improvement

Human Skilled workers High Medium User friendly PHM framework

Resistance to change Low Medium Automate the existing data projects

Organization Documentation Developed Semi-developed Knowledge capitalization process

Objectives metrics Detailed Global Standards PHM metrics

Table 5: The SME-oriented PHM challenges and solutions.
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